computer engineering electronics and … engineering electronics and communications systems. ... o...

63
Dip. Ingegneria dell’Informazione, Univ. Pisa, Pisa, Italy Basics of 4G Communications (and Beyond) Giacomo Bacci, Marco Luise [email protected] Computer Engineering Electronics and Communications Systems

Upload: nguyendieu

Post on 28-Apr-2018

219 views

Category:

Documents


1 download

TRANSCRIPT

Dip. Ingegneria dell’Informazione, Univ. Pisa, Pisa, Italy

Basics of 4G Communications (and Beyond)

Giacomo Bacci, Marco Luise

[email protected]

Computer Engineering Electronics and Communications Systems

Ele

ctr

on

ics

an

d C

om

mu

nic

atio

ns

Sy

ste

ms

C

om

pu

ter

En

gin

ee

rin

g

Giacomo Bacci, Marco Luise

Basics of 4G communications and beyond

2

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

4G systems

Ele

ctr

on

ics

an

d C

om

mu

nic

atio

ns

Sy

ste

ms

C

om

pu

ter

En

gin

ee

rin

g

Giacomo Bacci, Marco Luise

Basics of 4G communications and beyond

3

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Evolution of Cellular Standards

Ele

ctr

on

ics

an

d C

om

mu

nic

atio

ns

Sy

ste

ms

C

om

pu

ter

En

gin

ee

rin

g

Giacomo Bacci, Marco Luise

Basics of 4G communications and beyond

4

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

IMT-advanced requirements

4G systems

o peak data rates of 100 Mb/s for high-mobility users, and 1 Gb/s for low-mobility users

o larger bandwidths (up to 40 MHz)

o lower latencies (< 15 ms)

Ele

ctr

on

ics

an

d C

om

mu

nic

atio

ns

Sy

ste

ms

C

om

pu

ter

En

gin

ee

rin

g

Giacomo Bacci, Marco Luise

Basics of 4G communications and beyond

5

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

4G deployment status

4G systems

Ele

ctr

on

ics

an

d C

om

mu

nic

atio

ns

Sy

ste

ms

C

om

pu

ter

En

gin

ee

rin

g

Giacomo Bacci, Marco Luise

Basics of 4G communications and beyond

6

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

4G standards

4G systems

There were two competing systems labeled as 4G technologies:

o LTE-advanced (LTE-A), standardized by the

3rd generation partnership project (3GPP)

o IEEE 802.16m, standardized by the Institute

of Electrical and Electronic Engineers (IEEE)

Ele

ctr

on

ics

an

d C

om

mu

nic

atio

ns

Sy

ste

ms

C

om

pu

ter

En

gin

ee

rin

g

Giacomo Bacci, Marco Luise

Basics of 4G communications and beyond

7

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

LTE-advanced

4G systems

o The long-term evolution – advanced (LTE-A)

has been standardized by the 3GPP in

March 2011, as 3GPP Release 10

(current version: Release 13)

o LTE-A adopts OFDMA for the DL, and SC-FDMA for the UL, achieving peak

rates of 3 Gb/s (DL) and 1.5 Gb/s (UL), and maximum latency 10 ms

o Carrier frequencies: 700 MHz, 900 MHz, 1800 MHz, 2100 MHz, 2600 MHz

o Carrier spacing: 15 kHz

o Bandwidths: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, 20 MHz

o Constellations: QPSK, 16-QAM, 64-QAM

Ele

ctr

on

ics

an

d C

om

mu

nic

atio

ns

Sy

ste

ms

C

om

pu

ter

En

gin

ee

rin

g

Giacomo Bacci, Marco Luise

Basics of 4G communications and beyond

8

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Two-ray channel Amplitude response

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

|H(f

)|

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

Frequenza (MHz)

A=1

A=0.1

A=0.5

t =1 ms

fN = 0.5 MHz

See the notch

frequencies!

2( ) 1 j j fH f Ae e t

2 ( )( ) 1 Nj f f

H f Ae t

or

Ele

ctr

on

ics

an

d C

om

mu

nic

atio

ns

Sy

ste

ms

C

om

pu

ter

En

gin

ee

rin

g

Giacomo Bacci, Marco Luise

Basics of 4G communications and beyond

9

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Time-Invariant Channel of DVB-T

Rs=6 Mbit/s

Ts=0.16 ms

Ele

ctr

on

ics

an

d C

om

mu

nic

atio

ns

Sy

ste

ms

C

om

pu

ter

En

gin

ee

rin

g

Giacomo Bacci, Marco Luise

Basics of 4G communications and beyond

10

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Amplitude Response of the DVB-T Channel

-25

-20

-15

-10

-5

0

5

|H

(f)|

(d

B)

1.0 0.8 0.6 0.4 0.2 0.0

Normalized Frequency, fT

Ele

ctr

on

ics

an

d C

om

mu

nic

atio

ns

Sy

ste

ms

C

om

pu

ter

En

gin

ee

rin

g

Giacomo Bacci, Marco Luise

Basics of 4G communications and beyond

11

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Too many notches !

The equalizer is too complicated !

How to cope with severely selective channels ? 1/2

-25

-20

-15

-10

-5

0

5

|H

(f)|

(d

B)

1.0 0.8 0.6 0.4 0.2 0.0

Normalized Frequency, fT

DVB-T 20-ray Channel Model

Modulated Signal Spectrum

Ele

ctr

on

ics

an

d C

om

mu

nic

atio

ns

Sy

ste

ms

C

om

pu

ter

En

gin

ee

rin

g

Giacomo Bacci, Marco Luise

Basics of 4G communications and beyond

12

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

-25

-20

-15

-10

-5

0

5

|H

(f)|

(d

B)

0.60.50.40.30.2

Normalized Frequency, fT

Split your (single-carrier) high-rate stream into many

“parallel” low-rate streams on

different subcarriers that

“see” each a FLAT channel response

!!

How to cope with severely selective channels ? 2/2

Ele

ctr

on

ics

an

d C

om

mu

nic

atio

ns

Sy

ste

ms

C

om

pu

ter

En

gin

ee

rin

g

Giacomo Bacci, Marco Luise

Basics of 4G communications and beyond

13

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

exp{ 2 0 }scj f t

exp{ 2 1 }scj f t

exp{ 2 ( 1) }scj N f t

.

.

.

cmN+k S/P

(DeMUX)

symbol time: NT=Ts

S b(t)

N=# of subcarriers

fsc=subcarrier spacing

m=block index

k=intra-block subcarrier index,

0k N-1

+1 -1

1

( )

0

mc

( )

1

mc

( )

1

m

Nc

symbol time: T

Multi-Carrier Modulation (DVB-T, ADSL,WLAN)

Ele

ctr

on

ics

an

d C

om

mu

nic

atio

ns

Sy

ste

ms

C

om

pu

ter

En

gin

ee

rin

g

Giacomo Bacci, Marco Luise

Basics of 4G communications and beyond

14

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

The I/Q Modulator

0 0( ) cos(2 ) sin(2 )( ( ))IBP Qx x t x tt f t f t

xI(t)

I/Q

Carrier

Generator

xQ(t)

xBP(t)

-sin(2f0t)

cos(2f0t)

Equivalent to

xI(t)+jxQ(t) x(t)

exp(j2f0t)=cos(2f0t)+jsin(2f0t)

Ele

ctr

on

ics

an

d C

om

mu

nic

atio

ns

Sy

ste

ms

C

om

pu

ter

En

gin

ee

rin

g

Giacomo Bacci, Marco Luise

Basics of 4G communications and beyond

15

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Orthogonal FDM

To convey the stream of infomation symbols on multiple subcarriers without

any INTERFERENCE, we use a set of orthogonal subcarriers:

4G systems

normalized frequency

no

rma

lize

d P

SD

classical frequency division multiplexing

normalized frequency

no

rma

lize

d P

SD

OFDM

This solution requires the minimum bandwidth occupancy

Ele

ctr

on

ics

an

d C

om

mu

nic

atio

ns

Sy

ste

ms

C

om

pu

ter

En

gin

ee

rin

g

Giacomo Bacci, Marco Luise

Basics of 4G communications and beyond

16

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

The OFDM Signal Format

k-th data stream

12 /( )

0

( ) ( ) s

Nj kt Tm

k s

k m

x t c p t mT e

m is the time index of an OFDM symbol

k-th subcarrier

exp{ 2 0 }scj f t

exp{ 2 1 }scj f t

exp{ 2 ( 1) }scj N f t

..

..

..

ccmNmN+k+k

S/P SSbb((tt))

( )

1

mc

( )

1

m

Nc

exp{ 2 0 }scj f t

exp{ 2 1 }scj f t

exp{ 2 ( 1) }scj N f t

..

..

..

ccmNmN+k+k

S/P SSbb((tt))

( )

1

mc

( )

1

m

Nc

12 /

0

( ) ( ) s

Nj kt T

k

k

x t x t e

1

0

( ) ( / )k

N

x x s

k

S f S f k T

Ele

ctr

on

ics

an

d C

om

mu

nic

atio

ns

Sy

ste

ms

C

om

pu

ter

En

gin

ee

rin

g

Giacomo Bacci, Marco Luise

Basics of 4G communications and beyond

17

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Power Spectrum of OFDM

-30

-25

-20

-15

-10

-5

0

5

10

Sx(f

) (d

B)

1.21.00.80.60.40.20.0-0.2

Normalized Frequency, fT

N=2048

N=64

N=64

IEEE 802.11 Wireless LAN

N=2048

DVB-T Terrestrial Digital Video

Broadcasting

1

0

( ) ( / )k

N

x x s

k

S f S f k T

Ele

ctr

on

ics

an

d C

om

mu

nic

atio

ns

Sy

ste

ms

C

om

pu

ter

En

gin

ee

rin

g

Giacomo Bacci, Marco Luise

Basics of 4G communications and beyond

18

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Orthogonal FDM again

To convey the stream of infomation symbols on multiple subcarriers without

any INTERFERENCE, we use a set of orthogonal subcarriers:

4G systems

normalized frequency

no

rma

lize

d P

SD

classical frequency division multiplexing

normalized frequency

no

rma

lize

d P

SD

OFDM

This solution requires the minimum bandwidth occupancy

Ele

ctr

on

ics

an

d C

om

mu

nic

atio

ns

Sy

ste

ms

C

om

pu

ter

En

gin

ee

rin

g

Giacomo Bacci, Marco Luise

Basics of 4G communications and beyond

19

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Digital Implementation

How can we implement OFDM?

o Using L local oscillators to sinthesize at the transmitter

and the receiver is a highly inefficient architecture

o Let us try to sample our signal at intervals mTb:

4G systems

inverse discrete Fourier

transform (IDFT)

Ele

ctr

on

ics

an

d C

om

mu

nic

atio

ns

Sy

ste

ms

C

om

pu

ter

En

gin

ee

rin

g

Giacomo Bacci, Marco Luise

Basics of 4G communications and beyond

20

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Digital Implementation

4G systems

exp{ 2 0 }scj f t

exp{ 2 1 }scj f t

exp{ 2 ( 1) }scj N f t

.

.

.

cmN+k S/P

(DeMUX) S b(t)

( )

0

mc

( )

1

mc

( )

1

m

Nc

Ele

ctr

on

ics

an

d C

om

mu

nic

atio

ns

Sy

ste

ms

C

om

pu

ter

En

gin

ee

rin

g

Giacomo Bacci, Marco Luise

Basics of 4G communications and beyond

21

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Digital Implementation

4G systems

.

.

.

cmN+k S/P

(DeMUX)

b(t) IFFT P/S

(MUX) DAC

.

.

.

.

.

.

Ele

ctr

on

ics

an

d C

om

mu

nic

atio

ns

Sy

ste

ms

C

om

pu

ter

En

gin

ee

rin

g

Giacomo Bacci, Marco Luise

Basics of 4G communications and beyond

22

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Digital Implementation

4G systems

.

.

.

cmN+k S/P

(DeMUX)

b(t) IFFT P/S

(MUX) DAC

.

.

.

.

.

.

Ele

ctr

on

ics

an

d C

om

mu

nic

atio

ns

Sy

ste

ms

C

om

pu

ter

En

gin

ee

rin

g

Giacomo Bacci, Marco Luise

Basics of 4G communications and beyond

23

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

…and in the Receiver

4G systems

.

.

.

cmN+k S/P

(DeMUX)

b(t) FFT P/S

(MUX) ADC

.

.

.

.

.

.

OFDM is very efficient, as it can exploit both at the TX and at the RX (fast) FFT

processing with L=2D (e.g., L=2048 for LTE)

Ele

ctr

on

ics

an

d C

om

mu

nic

atio

ns

Sy

ste

ms

C

om

pu

ter

En

gin

ee

rin

g

Giacomo Bacci, Marco Luise

Basics of 4G communications and beyond

24

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Virtual Carriers

Carrier # 0 Carrier # N-1

Signal BW

Carrier # Nv/2 Carrier # N- Nv/2-1

Reduced Signal BW

Symbols # 0,.., Nv/2-1 and N- Nv/2 ,..,N-1 are set to 0 to control signal bandwidth

Ele

ctr

on

ics

an

d C

om

mu

nic

atio

ns

Sy

ste

ms

C

om

pu

ter

En

gin

ee

rin

g

Giacomo Bacci, Marco Luise

Basics of 4G communications and beyond

25

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Channel equalization in OFDM (1/3)

What happens when introducing the additive white Gaussian noise (AWGN)?

4G systems

filtered

noise term

Considering channel selectivity

In this case, multipath propagation can lead to inter-carrier

interference (ICI), and orthogonality is lost

maxt

( ) ( ) ( ) k k k

m m mr c nm st mT

m st mT

MF

MF

Ele

ctr

on

ics

an

d C

om

mu

nic

atio

ns

Sy

ste

ms

C

om

pu

ter

En

gin

ee

rin

g

Giacomo Bacci, Marco Luise

Basics of 4G communications and beyond

26

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Channel equalization in OFDM (2/3)

To mitigate the ICI, we can add a special guard interval, called the cyclic

prefix (CP), with length :

4G systems

Using the CP, we have “artificially” introduced a cyclic inter-symbol

interference (ISI), that can now be controlled

maxtpT

Ele

ctr

on

ics

an

d C

om

mu

nic

atio

ns

Sy

ste

ms

C

om

pu

ter

En

gin

ee

rin

g

Giacomo Bacci, Marco Luise

Basics of 4G communications and beyond

27

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Channel equalization in OFDM (3/3)

Adopting the same receiver technique,

4G systems

In this case, channel equalization is extremely simple:

( ) ( ) ( ) ( ) ( )

k k k k k

m m m k m m

s

kr H c n H c n

T

sfT

Ele

ctr

on

ics

an

d C

om

mu

nic

atio

ns

Sy

ste

ms

C

om

pu

ter

En

gin

ee

rin

g

Giacomo Bacci, Marco Luise

Basics of 4G communications and beyond

28

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

( ) ( ) ( ) k k k

m k m mr H c n

FFT P/S

Channel

Estimator

ˆkH

( )-1

ˆ1/ kH

( ) ( ) ( ) ( )1

ˆ ˆ k k k kk

m m m m

k k

Hc n c n

H H

Channel Estimation with known PILOT SYMBOLS (1 every a few)

Channel distortion is canceled !

Equalization in the Frequency Domain

( )k

mr

Ele

ctr

on

ics

an

d C

om

mu

nic

atio

ns

Sy

ste

ms

C

om

pu

ter

En

gin

ee

rin

g

Giacomo Bacci, Marco Luise

Basics of 4G communications and beyond

29

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Channel equalization in OFDM (5/5)

How can the receiver estimate the coefficients Hk in practice?

4G systems

OFDM symbols contain sparse pilot subcarriers, with known symbols

ck=1, to let the receiver get an accurate estimation of the channel

response:

( ) ( ) ( )ˆ1 k k k

m k m k mr H n H r

Of course there are etimation errors caused by the presence of the noise

term nm(k)

Ele

ctr

on

ics

an

d C

om

mu

nic

atio

ns

Sy

ste

ms

C

om

pu

ter

En

gin

ee

rin

g

Giacomo Bacci, Marco Luise

Basics of 4G communications and beyond

30

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Channel equalization in OFDM (5/5)

How can the receiver estimate the coefficients Hk in practice?

4G systems

OFDM symbols contain sparse pilot subcarriers, with known symbols, to

let the receiver get an accurate estimation of the channel response:

Ele

ctr

on

ics

an

d C

om

mu

nic

atio

ns

Sy

ste

ms

C

om

pu

ter

En

gin

ee

rin

g

Giacomo Bacci, Marco Luise

Basics of 4G communications and beyond

31

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

LTE DL Pilots

Ele

ctr

on

ics

an

d C

om

mu

nic

atio

ns

Sy

ste

ms

C

om

pu

ter

En

gin

ee

rin

g

Giacomo Bacci, Marco Luise

Basics of 4G communications and beyond

32

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

OFDM architecture

4G systems

Features:

o optimal implementation via (I)FFT

o no ICI due to carrier orthogonality

o controlled OOB emissions thanks to the virtual carriers

o frequency-domain equalization thanks to the CP

Ele

ctr

on

ics

an

d C

om

mu

nic

atio

ns

Sy

ste

ms

C

om

pu

ter

En

gin

ee

rin

g

Giacomo Bacci, Marco Luise

Basics of 4G communications and beyond

33

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Orthogonal frequency division multiple access (OFDMA)

How can we adapt the OFDM technology to the multiuser case?

4G systems

Each user can be assigned a subset of subcarriers, by zeroing the inactive subcarriers

o Subcarrier allocation is critical to exploit

the frequency diversity

o This allocation introduces some overhead

in the network

Ele

ctr

on

ics

an

d C

om

mu

nic

atio

ns

Sy

ste

ms

C

om

pu

ter

En

gin

ee

rin

g

Giacomo Bacci, Marco Luise

Basics of 4G communications and beyond

34

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Fequency Reuse with Factor K

Introduction to modern wireless communications systems

End of 1950s/beginning of 1960s: introducing cells to provide seamless coverage

available channels

Ele

ctr

on

ics

an

d C

om

mu

nic

atio

ns

Sy

ste

ms

C

om

pu

ter

En

gin

ee

rin

g

Giacomo Bacci, Marco Luise

Basics of 4G communications and beyond

35

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Universal Fequency Reuse of CDMA (K=1)

Introduction to modern wireless communications systems

Typical of 3G systems

available channels

Ele

ctr

on

ics

an

d C

om

mu

nic

atio

ns

Sy

ste

ms

C

om

pu

ter

En

gin

ee

rin

g

Giacomo Bacci, Marco Luise

Basics of 4G communications and beyond

36

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Fractional frequency reuse (FFR)

Introduction to modern wireless communications systems

available bandwidth

Ele

ctr

on

ics

an

d C

om

mu

nic

atio

ns

Sy

ste

ms

C

om

pu

ter

En

gin

ee

rin

g

Giacomo Bacci, Marco Luise

Basics of 4G communications and beyond

37

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Limits of OFDM(A)

o sensitivity to synchronization errors:

• single-carrier systems: the residual frequency offset must be

• multicarrier systems:

o high peak-to-average power ratio (PAPR):

• the superposition of L sinusoidal signals yields a large PAPR, thus

calling for linear radio-frequency (RF) amplifiers

• to improve the efficiency of the RF stage at the MSs, the uplink can

adopt a modified version of OFDMA, called single-carrier FDMA (SC-

FDMA)

4G systems

Ele

ctr

on

ics

an

d C

om

mu

nic

atio

ns

Sy

ste

ms

C

om

pu

ter

En

gin

ee

rin

g

Giacomo Bacci, Marco Luise

Basics of 4G communications and beyond

38

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Single-carrier FDMA (SC-FDMA)

o FFT precoding significantly reduces the PAPR

o the IFFT at the transmitter operates on the Fourier coefficients rather than

on information symbols (as in OFDMA)

o the distinctive feature with respect to a traditional FDMA is the presence

of the CP, that allows for frequency-domain equalization

4G systems

Ele

ctr

on

ics

an

d C

om

mu

nic

atio

ns

Sy

ste

ms

C

om

pu

ter

En

gin

ee

rin

g

Giacomo Bacci, Marco Luise

Basics of 4G communications and beyond

39

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Multiple-input multiple-output (MIMO) systems

Another technology that is widely adopted in 4G standards to meet the ITU-

advanced requirements is MIMO:

4G systems

SISO:

MISO:

SIMO:

MIMO:

Ele

ctr

on

ics

an

d C

om

mu

nic

atio

ns

Sy

ste

ms

C

om

pu

ter

En

gin

ee

rin

g

Giacomo Bacci, Marco Luise

Basics of 4G communications and beyond

40

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Benefits of MIMO (1/2)

o array gain: the signal-to-noise ratio (SNR) can be increased by

beamforming at the transmitter and/or coherent combining at

the receiver

o diversity gain: channel fading can be mitigated by combining

independent copies of the transmitted signal in space,

frequency, or time

o spatial multiplexing: the throughput can be increased by

transmitting multiple, independent (at most, ) data

streams, thus increasing the capacity of the network

4G systems

Ele

ctr

on

ics

an

d C

om

mu

nic

atio

ns

Sy

ste

ms

C

om

pu

ter

En

gin

ee

rin

g

Giacomo Bacci, Marco Luise

Basics of 4G communications and beyond

41

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Limits of MIMO

4G systems

o it is not possible to exploit all the degrees of freedom to simultaneously

obtain array gain, space diversity, and spatial multiplexing: some

fundamental tradeoffs in terms of system performance need to be taken

o in most cases, full CSI at both the transmitter and the receiver cannot be

guaranteed in a realistic environment: the actual performance is poorer

than the maximum achievable one

o some tradeoffs between system complexity and performance are needed

to reduce the intensive computational load of MIMO: suboptimal

algorithms are necessary

Ele

ctr

on

ics

an

d C

om

mu

nic

atio

ns

Sy

ste

ms

C

om

pu

ter

En

gin

ee

rin

g

Giacomo Bacci, Marco Luise

Basics of 4G communications and beyond

42

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

4G deployment status

4G systems

Ele

ctr

on

ics

an

d C

om

mu

nic

atio

ns

Sy

ste

ms

C

om

pu

ter

En

gin

ee

rin

g

Giacomo Bacci, Marco Luise

Basics of 4G communications and beyond

43

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

4G standards

4G systems

There used to be two competing systems labeled as 4G technologies:

o LTE-advanced (LTE-A), standardized by the

3rd generation partnership project (3GPP)

o IEEE 802.16m, standardized by the Institute

of Electrical and Electronic Engineers (IEEE)

Ele

ctr

on

ics

an

d C

om

mu

nic

atio

ns

Sy

ste

ms

C

om

pu

ter

En

gin

ee

rin

g

Giacomo Bacci, Marco Luise

Basics of 4G communications and beyond

44

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

LTE-advanced

4G systems

o The long-term evolution – advanced (LTE-A)

has been standardized by the 3GPP in

March 2011, as 3GPP Release 10

(current version: Release 13)

o LTE-A adopts OFDMA for the DL, and SC-FDMA for the UL, achieving peak

rates of 3 Gb/s (DL) and 1.5 Gb/s (UL), and maximum latency 10 ms

o Carrier frequencies: 700 MHz, 900 MHz, 1800 MHz, 2100 MHz, 2600 MHz

o Carrier spacing: 15 kHz

o Bandwidths: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, 20 MHz

o Constellations: QPSK, 16-QAM, 64-QAM

Ele

ctr

on

ics

an

d C

om

mu

nic

atio

ns

Sy

ste

ms

C

om

pu

ter

En

gin

ee

rin

g

Giacomo Bacci, Marco Luise

Basics of 4G communications and beyond

45

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Structure of the LTE-A frame

4G systems

Ele

ctr

on

ics

an

d C

om

mu

nic

atio

ns

Sy

ste

ms

C

om

pu

ter

En

gin

ee

rin

g

Giacomo Bacci, Marco Luise

Basics of 4G communications and beyond

46

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Enabling technologies for 4G standards

4G systems

o carrier aggregation

o network MIMO

o relaying

Ele

ctr

on

ics

an

d C

om

mu

nic

atio

ns

Sy

ste

ms

C

om

pu

ter

En

gin

ee

rin

g

Giacomo Bacci, Marco Luise

Basics of 4G communications and beyond

47

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Carrier aggregation

4G systems

With carrier aggregation (CA), we can increase the signal bandwidth by

grouping physical channels, in both TDD and FDD configurations

intraband, contiguous CA:

intraband, non-contiguous CA:

interband CA:

By grouping up to 5 carriers, we

can obtain a 100-MHz bandwidth

Ele

ctr

on

ics

an

d C

om

mu

nic

atio

ns

Sy

ste

ms

C

om

pu

ter

En

gin

ee

rin

g

Giacomo Bacci, Marco Luise

Basics of 4G communications and beyond

48

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Network MIMO

4G systems

Network MIMO, known as coordinated multipoint (CoMP) in LTE-A, and

coordinated MIMO (CO-MIMO) in IEEEE 802.16m, consists in coordinating (at the

transmit side) or combining (at the receive side) signals using multiple antennas

o this form of distributed MIMO achieves significant performance improvements,

especially for cell-edge users (improving coverage and cell-edge rates)

o it requires a significant feedback overhead to exchange CSI across BTSs

Ele

ctr

on

ics

an

d C

om

mu

nic

atio

ns

Sy

ste

ms

C

om

pu

ter

En

gin

ee

rin

g

Giacomo Bacci, Marco Luise

Basics of 4G communications and beyond

49

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Relaying

4G systems

Relay nodes can be introduced in the network as low-power BTSs, to

provide enhanced system performance

o improved network coverage

o increased energy efficiency

o increased spectral efficiency

o some form of coordination between the relays and the network is required

Ele

ctr

on

ics

an

d C

om

mu

nic

atio

ns

Sy

ste

ms

C

om

pu

ter

En

gin

ee

rin

g

Giacomo Bacci, Marco Luise

Basics of 4G communications and beyond

50

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Basics of beyond-4G

technologies

Ele

ctr

on

ics

an

d C

om

mu

nic

atio

ns

Sy

ste

ms

C

om

pu

ter

En

gin

ee

rin

g

Giacomo Bacci, Marco Luise

Basics of 4G communications and beyond

51

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Beyond-4G technologies (1/3)

Basics of beyond-4G technologies

Do we really need 5G?

o over 50%/year growth in data traffic

o at least, a 1000× increase every decade

o in 2018, global traffic will reach more

than 1/100 of a zettabyte (1 ZB=1021 B)

1

in

cre

ase

in

fiv

e y

ea

rs

Ele

ctr

on

ics

an

d C

om

mu

nic

atio

ns

Sy

ste

ms

C

om

pu

ter

En

gin

ee

rin

g

Giacomo Bacci, Marco Luise

Basics of 4G communications and beyond

52

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Beyond-4G technologies (2/3)

Basics of beyond-4G technologies

According to CISCO, mobile data traffic will reach the following milestones within

the next five years:

o monthly global mobile data traffic will

surpass 15 exabytes by 2018

o the number of mobile-connected devices

will exceed the world’s population by 2014

o the average mobile connection speed will surpass 2 Mb/s by 2016

o due to increased usage on smartphones, smartphones will reach 66% of

mobile data traffic by 2018

o tablets will exceed 15% of global mobile data traffic by 2016

o 4G traffic will be more than half of the total mobile traffic by 2018

Ele

ctr

on

ics

an

d C

om

mu

nic

atio

ns

Sy

ste

ms

C

om

pu

ter

En

gin

ee

rin

g

Giacomo Bacci, Marco Luise

Basics of 4G communications and beyond

53

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Beyond-4G technologies (3/3)

Basics of beyond-4G technologies

source: IMT-2020 Promotion Group

Ele

ctr

on

ics

an

d C

om

mu

nic

atio

ns

Sy

ste

ms

C

om

pu

ter

En

gin

ee

rin

g

Giacomo Bacci, Marco Luise

Basics of 4G communications and beyond

54

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Technology drivers

Basics of beyond-4G technologies

o network densitification

o massive MIMO

o mm-wave technology

and many more: full-duplex antennas, spectrum sharing, advanced PHY and

interference management, device-to-device (D2D) communications, etc.

Ele

ctr

on

ics

an

d C

om

mu

nic

atio

ns

Sy

ste

ms

C

om

pu

ter

En

gin

ee

rin

g

Giacomo Bacci, Marco Luise

Basics of 4G communications and beyond

55

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Network densification (1/3)

Basics of beyond-4G technologies

Cooper’s “law”: the wireless capacity has doubled every

30 months over the last century in the last fifty years,

capacity has increased about a million times!

5× 5× 25×

1600×

The right path to pursue is

network densification: very

dense deployment of BTSs

Ele

ctr

on

ics

an

d C

om

mu

nic

atio

ns

Sy

ste

ms

C

om

pu

ter

En

gin

ee

rin

g

Giacomo Bacci, Marco Luise

Basics of 4G communications and beyond

56

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Network densification (2/3)

Basics of beyond-4G technologies

Shannon’s law:

number of antennas

bandwidth

adaptive coding and modulation, interference

management

With extreme network densification, we can reuse Shannon’s law

everywhere, thus increasing the area spectral efficiency (in b/s/Hz/m2)

heterogeneous, multi-tier

dense networks: small cells,

relays, etc.

Ele

ctr

on

ics

an

d C

om

mu

nic

atio

ns

Sy

ste

ms

C

om

pu

ter

En

gin

ee

rin

g

Giacomo Bacci, Marco Luise

Basics of 4G communications and beyond

57

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Network densification (3/3)

Basics of beyond-4G technologies

Open challenges include:

o self-organization, exacerbated by

random/unplanned deployment of small cells

o coverage and performance predicition:

stochastic geometry and random matrix

theory could serve as powerful tools

o interference management and resource

allocation, also considering the presence of

multiple tiers

Ele

ctr

on

ics

an

d C

om

mu

nic

atio

ns

Sy

ste

ms

C

om

pu

ter

En

gin

ee

rin

g

Giacomo Bacci, Marco Luise

Basics of 4G communications and beyond

58

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Massive MIMO (1/2)

Basics of beyond-4G technologies

Massive MIMO (a.k.a. as multiuser MIMO) technology:

antennas

(hundreds)

single-

antenna terminals

The massive MIMO concept relies on the law of large numbers, to average

out frequency selectivity and thermal noise:

o spatial multiplexing gain

o array gain

Ele

ctr

on

ics

an

d C

om

mu

nic

atio

ns

Sy

ste

ms

C

om

pu

ter

En

gin

ee

rin

g

Giacomo Bacci, Marco Luise

Basics of 4G communications and beyond

59

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Massive MIMO (2/2)

Basics of beyond-4G technologies

In the uplink, the BTS:

o acquires CSI from pilot symbols

o detects the information symbols

o since , adopts linear

processing techniques (MRC, ZF,

MMSE), which are nearly optimal

In the downlink, the BTS:

o uses CSI obtained in the uplink

o applies multiuser MIMO precoding,

using low-complexity precoders

o Thanks to the unused degrees of freedom, massive MIMO can obtain:

• hardware-friendly waveform shaping

• PAPR reduction due to multiuser precoding

o The major challenge is getting accurate CSI estimation

Ele

ctr

on

ics

an

d C

om

mu

nic

atio

ns

Sy

ste

ms

C

om

pu

ter

En

gin

ee

rin

g

Giacomo Bacci, Marco Luise

Basics of 4G communications and beyond

60

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

mm-wave technology (1/2)

Basics of beyond-4G technologies

Increasing the carrier frequency increases the path loss

However, network densification includes small cells with coverage radius

path loss becomes acceptable

Ele

ctr

on

ics

an

d C

om

mu

nic

atio

ns

Sy

ste

ms

C

om

pu

ter

En

gin

ee

rin

g

Giacomo Bacci, Marco Luise

Basics of 4G communications and beyond

61

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

mm-wave technology (2/2)

Basics of beyond-4G technologies

o mm-waves can provide a brand-new, very wide frequency band, with

very high-gain steerable antennas at both the MS and the BTS sides

o we can augment the currently saturated 700 MHz – 2.5 GHz radio

spectrum, moving to 60 GHz

o due to very low wavelengths, we can

accommodate the antennas required

by massive MIMO

Wireless channel modeling is not valid anymore: research challenges

include new propagation models for mm-wave communications

Ele

ctr

on

ics

an

d C

om

mu

nic

atio

ns

Sy

ste

ms

C

om

pu

ter

En

gin

ee

rin

g

Giacomo Bacci, Marco Luise

Basics of 4G communications and beyond

62

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Perspectives and open issues

Basics of beyond-4G technologies

o We need to face the tremendous increase in capacity demand

foreseen for the near future

o Current challenges include multiple hierarchical network layers,

functioning seamlessly across different radio technologies, also

considering energy efficiency, spectral efficiency, and cost efficiency

o The combination of many state-of-the-art technologies shows

potential for low-power electronics, integrated antennas, space-time

processing, and many other features

o Cellular networks are undergoing many fundamental changes, thus

calling for many long-standing models to be significantly re-thought

Ele

ctr

on

ics

an

d C

om

mu

nic

atio

ns

Sy

ste

ms

C

om

pu

ter

En

gin

ee

rin

g

Giacomo Bacci, Marco Luise

Basics of 4G communications and beyond

63

Dip. Ingegneria dell’Informazione

University of Pisa, Pisa, Italy

Bibliography

[01] A.J. Goldsmith, Wireless Communications. Cambridge, UK: Cambridge Univ.

Press, 2005.

[02] A.F. Molisch, Wireless Communications. West Sussex, UK: J. Wiley & Sons,

2005.

[03] H. Holma and A. Toskala, WCDMA for UMTS: HSPA Evolution and LTE. West

Sussex, UK: J. Wiley & Sons, 2010.

[04] L. Hanzo, M. Münster, B.J. Choi, and T. Keller, OFDM and MC-CDMA for

Broadband Multi-User Communications, WLANs and Broadcasting.

Chichester, UK: J. Wiley & Sons, 2003.

[05] H.G. Myung and D.J. Goodman, Single Carrier FDMA: A New Air Interface

for Long Term Evolution. Chichester, UK: J. Wiley & Sons, 2008.

[06] IEEE 802.16 Broadband Wireless Access Working Group, “IEEE 802.16m

System Description Document (SDD),” Tech. Rep. IEEE 802.16m- 09/0034r3,

2010. [Online]. Available: http://www.ieee802.org/16/tgm/

[07] 3rd Generation Partnership Project (3GPP), “Overview of 3GPP Release 10

V0.0.7 (06-2010),” Tech. Rep., June 2010. [Online]. Available:

http://www.3gpp.org/LTE-Advanced

[08] J.G. Andrews, S. Buzzi, W. Choi, S.V. Hanly, A. Lozano, A.C.K. Soong, and J.C.

Zhang, “What will 5G be?,” IEEE J. Sel. Areas Commun., vol. 32, Jun. 2014.

Bibliography