cone-beam image reconstruction by moving frames xiaochun yang, biovisum, inc. berthold k.p. horn,...

21
Cone-beam image reconstruction by moving frames Xiaochun Yang, Biovisum, Inc. Berthold K.P. Horn, MIT CSAIL

Upload: ralph-foster

Post on 21-Jan-2016

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Cone-beam image reconstruction by moving frames Xiaochun Yang, Biovisum, Inc. Berthold K.P. Horn, MIT CSAIL

Cone-beam image reconstruction

by moving frames

Xiaochun Yang, Biovisum, Inc.Berthold K.P. Horn, MIT CSAIL

Page 2: Cone-beam image reconstruction by moving frames Xiaochun Yang, Biovisum, Inc. Berthold K.P. Horn, MIT CSAIL

Cone-beam Imaging Apparatus

• Radiation source and area detector• Source-detector rotate around the object • Collect integrals of density along straight

lines when source travels along a 3D curve

Page 3: Cone-beam image reconstruction by moving frames Xiaochun Yang, Biovisum, Inc. Berthold K.P. Horn, MIT CSAIL

The problem

• Cone-beam reconstruction:

to recover a 3D density function from its

integrals along a set of lines emitting from

a 3D curve

• Among the first problems in integral

geometry

Page 4: Cone-beam image reconstruction by moving frames Xiaochun Yang, Biovisum, Inc. Berthold K.P. Horn, MIT CSAIL

Difficulties

• Inverse calculation deals with curved

spaces

• Algorithmic implementation encounters:

Large dataset

sophisticated geometric mapping

expensive data interpolations

Page 5: Cone-beam image reconstruction by moving frames Xiaochun Yang, Biovisum, Inc. Berthold K.P. Horn, MIT CSAIL

Radon’s formula

• Radon transform: integral over planes

• 3D Radon inverse (1917):

|( , ) : ( )

x x x lRf l f x dx

2

2

2S

1 ( , )( )

8 l x

Rf lf x d

l

x

Backprojection sphere

Page 6: Cone-beam image reconstruction by moving frames Xiaochun Yang, Biovisum, Inc. Berthold K.P. Horn, MIT CSAIL

Grangeat’s “Fundamental Relation”

• Link cone-beam data to the first-order

radial derivative of the Radon

transform (1991)

Page 7: Cone-beam image reconstruction by moving frames Xiaochun Yang, Biovisum, Inc. Berthold K.P. Horn, MIT CSAIL

Geometric constraints: within and across projections

• 3D to 2D reduction

• Great circle under a rigid rotation

X. Yang: Geometry of Cone-beam Reconstruction, MIT Ph.D. Thesis, 2002

Page 8: Cone-beam image reconstruction by moving frames Xiaochun Yang, Biovisum, Inc. Berthold K.P. Horn, MIT CSAIL

Formulae by Yang and Katsevich

• Yang (2002)

• Katsevich (2003)

along curve

2

( )S

1 | '( ) |( ) " ( ( ) , )

8 ( , )x

f x R f d dM

2

0

'

( , )1( ) ( ( '), cos ( , )

8 | ( ) | '

sin ( , , ))sin

m

m

c xf x Df x

x

dx d

along curve within projection

across projection

across projection

within projection

Page 9: Cone-beam image reconstruction by moving frames Xiaochun Yang, Biovisum, Inc. Berthold K.P. Horn, MIT CSAIL

Forward projection and spherical space

• Forward projection maps to

Ε

33E 2P

( )

S

Lines:Planes:

( ) :source orbit

Page 10: Cone-beam image reconstruction by moving frames Xiaochun Yang, Biovisum, Inc. Berthold K.P. Horn, MIT CSAIL

Fiber bundle structure

• Attach to each source point a unit sphere which represents a local fiber

• Fiber bundle: the union of all the spheres

Page 11: Cone-beam image reconstruction by moving frames Xiaochun Yang, Biovisum, Inc. Berthold K.P. Horn, MIT CSAIL

Calculations within and across

projections

• Within projection: calculations within each fiber require only local coordinates

• Across projections: differentiation along curves on the fiber bundle requires global coordinates

Page 12: Cone-beam image reconstruction by moving frames Xiaochun Yang, Biovisum, Inc. Berthold K.P. Horn, MIT CSAIL

Euclidean moving frames

• At each source point attach an orthonormal Euclidean basis, i.e.,

( )

Page 13: Cone-beam image reconstruction by moving frames Xiaochun Yang, Biovisum, Inc. Berthold K.P. Horn, MIT CSAIL

Euclidean moving frames (Cont’d)

• Allows easy exchange between local and global coordinates of points, lines and planes

• Allows treating the non-Euclidean space, “locally”, as an Euclidean space equipped with Euclidean-like coordinates

Page 14: Cone-beam image reconstruction by moving frames Xiaochun Yang, Biovisum, Inc. Berthold K.P. Horn, MIT CSAIL

Selection of moving frame basis

• Many choices in selecting moving frame bases,

i.e.,

• Main considerations: simplify coordinate computation, ease system alignment

( )

Page 15: Cone-beam image reconstruction by moving frames Xiaochun Yang, Biovisum, Inc. Berthold K.P. Horn, MIT CSAIL

Moving frame basis (I)

• Under cylindrical symmetry:

2 1

2 2

1 2

1 2

2 2

1 2

( ), ( ), 0

( ) ( )

(0, 0,1)

( ), ( ), 0

( ) ( )

u

v

w

Good selection of moving frames simplifies the geometric computationas well as system alignment.

Page 16: Cone-beam image reconstruction by moving frames Xiaochun Yang, Biovisum, Inc. Berthold K.P. Horn, MIT CSAIL

Moving frame basis (II)

• Under spherical symmetry:

( )

( )

'( )

'( )

w

w

w

v

u v w

There is an alignment step in system design to align the axes of the detectors to two of the axes of the moving frames.

Page 17: Cone-beam image reconstruction by moving frames Xiaochun Yang, Biovisum, Inc. Berthold K.P. Horn, MIT CSAIL

Integral within projection

• Integration in the fiber space• Local coordinate and discretization• Irregularity in sampling

Page 18: Cone-beam image reconstruction by moving frames Xiaochun Yang, Biovisum, Inc. Berthold K.P. Horn, MIT CSAIL

Exterior differentiation: differentiation across projections

• Two fibers are disjoint excepts at a zero measure set

• Differentiation across fibers can’t be replaced by differentiation within the closed fiber

P

P

S

ζ

η

Page 19: Cone-beam image reconstruction by moving frames Xiaochun Yang, Biovisum, Inc. Berthold K.P. Horn, MIT CSAIL

Exterior derivative (Cont’d)

• Parallel lines: having the same

• The rotational matrix is made up of the

three orthonormal basis vectors:

• Localgloballocal coordinate

transforms:

( ) ( ), ( ), ( )R u v w

1 1

12 2'

( )

( )

'R

R

1'

2'

Page 20: Cone-beam image reconstruction by moving frames Xiaochun Yang, Biovisum, Inc. Berthold K.P. Horn, MIT CSAIL

Exterior derivative (Cont’d)

• Parallel planes: having the same• Localgloballocal coordinate

transforms• Local coordinate of the intersection line

2

2 22

arctan

ls D

R l

v

u

( , )s

Page 21: Cone-beam image reconstruction by moving frames Xiaochun Yang, Biovisum, Inc. Berthold K.P. Horn, MIT CSAIL

Summary

• New geometric representations

• A new “method of moving frames” applied to cone-

beam reconstruction (a new computational

framework)

• 3D discretization of the curved transform space,

applicable to all cone-beam geometries

• Methods to compute the exterior derivatives

• Further study on sampling/interpolation schemes

to improve algorithm efficiency