staffweb.itsligo.ie · contents 1 mathematics review ce1h 2 1.1 partial fractions . . . . . . . . ....

156
Mathematics Leo Creedon 1-st year Civil Engineering (Level 8) February 23, 2009

Upload: others

Post on 20-Feb-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

Mathematics

Leo Creedon

1-st year Civil Engineering (Level 8)

February 23, 2009

Page 2: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

Contents

1 Mathematics Review CE1H 21.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 151.2 Integration using Trigonometric Substitutions and other tricks 22

2 First Order Differential Equations CE1H 272.1 Separable Differential Equations . . . . . . . . . . . . . . . . . 282.2 First Order Linear Differential Equations (The Integrating Fac-

tor Method) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352.3 Homogeneous Differential Equations . . . . . . . . . . . . . . 44

3 Laplace Transforms CE1H 503.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513.2 Proof by Induction . . . . . . . . . . . . . . . . . . . . . . . . . 523.3 Inverse Laplace Transforms . . . . . . . . . . . . . . . . . . . . 583.4 Solving Differential Equations using Laplace Transforms . . . 66

4 Second Order Differential Equations 764.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 Complex Numbers 93

6 Matrices 1026.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1036.2 Addition and Subtraction of matrices . . . . . . . . . . . . . . . 1046.3 Scalar Multiplication . . . . . . . . . . . . . . . . . . . . . . . . 1066.4 Zero Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

1

Page 3: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CONTENTS 2

6.5 Multiplication of Matrices . . . . . . . . . . . . . . . . . . . . . 1076.6 Transpose of a Matrix . . . . . . . . . . . . . . . . . . . . . . . . 1156.7 Identity Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 1166.8 The Inverse of a 2× 2 matrix . . . . . . . . . . . . . . . . . . . . 1176.9 The inverse of a 3× 3 matrix . . . . . . . . . . . . . . . . . . . . 1216.10 Solving equations involving Matrices . . . . . . . . . . . . . . 1246.11 Cramer’s Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1346.12 Eigenvalues and Eigenvectors . . . . . . . . . . . . . . . . . . . 139

7 Partial Differentiation 146

Bibliography

Page 4: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

Chapter 1

Mathematics Review CE1H

3

Page 5: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 1. MATHEMATICS REVIEW CE1H 4

Exercise 1.1 12 + 1

6 =

Exercise 1.2 12 −

13 =

Exercise 1.3 12.

16 =

Exercise 1.4 12 ÷

16 =

Exercise 1.5 ab + c

d =

Exercise 1.6 ab −

cd =

Exercise 1.7 ab .

cd =

Exercise 1.8 ab ÷

cd =

Exercise 1.9 (ab)c =

Exercise 1.10 (23)2 =

Exercise 1.11 2−3 =

Exercise 1.12 ln(ab) =

Exercise 1.13 ln(ab) =

Exercise 1.14 ln(ab) =

Exercise 1.15 ln(e) =

Exercise 1.16 ln(1) =

Page 6: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 1. MATHEMATICS REVIEW CE1H 5

Exercise 1.17 eln x =

Exercise 1.18 ln(ex) =

Exercise 1.19 e0 =

Exercise 1.20 Draw a rough graph of y = ex:

Exercise 1.21 Draw a rough graph of y = ln(x):

Exercise 1.22 Draw a rough graph of y = x2:

Exercise 1.23 Draw a rough graph of y = x2 + 1:

Page 7: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 1. MATHEMATICS REVIEW CE1H 6

Exercise 1.24 Draw a rough graph of y = (x + 1)2:

Exercise 1.25 ddxx

2 =

Exercise 1.26 ddx(3x6 − 10x5 + x− 1) =

Exercise 1.27 ddx(√

x) =

Exercise 1.28 ddx(5x4 + 3x2 + 10x + 2 +

√x + 3x

32) =

Exercise 1.29 ddx sin x =

Exercise 1.30 ddt(t

−12) =

Exercise 1.31 ddx(ln(x)) =

Page 8: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 1. MATHEMATICS REVIEW CE1H 7

Exercise 1.32 ddx(x cos x) =

Exercise 1.33 ddx(sin x cos x) =

Exercise 1.34 ddx[(3x2 + 5x + 2)(cos x)] =

Exercise 1.35 ddx

(cos x2x

)=

Exercise 1.36 ddx

3x2−7x+25x2+1

=

Exercise 1.37 ddx sin(2x) =

Page 9: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 1. MATHEMATICS REVIEW CE1H 8

Exercise 1.38 ddx

√3x =

Exercise 1.39 ddx[(cos x)100] =

Exercise 1.40 ddx[(3x2 + 5x + 2)−1] =

Exercise 1.41 ddx cos(3x2 + 2x− 10) =

Exercise 1.42 ddx2 tan(

√x) =

Exercise 1.43 ddx

√cos(2x) =

Exercise 1.44 Use implicit differentiation to find dydx, where

xy + sin y = 0:

Page 10: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 1. MATHEMATICS REVIEW CE1H 9

Exercise 1.45 Use implicit differentiation to find dydx, where

y +√

y = x. Hence find the slope of the tangent line to the

curve when y = 4 (i.e. find dydx when y = 4).

Exercise 1.46 ddx ln(5x2 + 2) = ...

Exercise 1.47 Find dydx, where y = (10x2+1)100(2x−1)9

(x3+1)11

(i) by direct differentiation

(ii) by taking ln of both sides and then differentiating (log-

arathmic differentiation)

Page 11: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 1. MATHEMATICS REVIEW CE1H 10

Page 12: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 1. MATHEMATICS REVIEW CE1H 11

Review of Integration:∫ b

a f (x)dx = the area under the curve f (x), between a

and b. Also, if∫

f (x)dx = g(x) + C, (a function) thenddxg(x) = f (x). In fact

∫ b

a f (x)dx = [g(x)]ba = g(b)−g(a),

a number. This is called the Fundamental Theorem

of Calculus.

Exercise 1.48∫

[f (x) + g(x)]dx =

Exercise 1.49∫

kf (x)dx =

Exercise 1.50∫ a

b f (x)dx =

Exercise 1.51∫ a

a f (x) =

Exercise 1.52∫

x2dx =

Exercise 1.53∫ 1

0 x2dx =

Exercise 1.54∫

(3x5 − 6x3 + 2x2 − x + 5)dx =

Exercise 1.55∫ π

20 sin xdx =

Exercise 1.56∫

(cos x + tan x)dx =

Page 13: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 1. MATHEMATICS REVIEW CE1H 12

Exercise 1.57∫ √

sds =

Exercise 1.58∫ e

11xdx =

Exercise 1.59∫

( 1√x

+ 6x2 + 3x4 − x−3 + 2x− 10)dx =

Exercise 1.60 Find I =∫

cos(3x)3dx using the substitu-

tion u = 3x.

Exercise 1.61 Find I =∫ √

3x5 + x(15x4 + 1)dx, using

the substitution u = 3x5 + x.

Exercise 1.62 Find I =∫

(6x2 + sin x)32(12x + cos x)dx

using the substitution u =

Page 14: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 1. MATHEMATICS REVIEW CE1H 13

Exercise 1.63 Find I =∫

sin(3x2 − x)(6x− 1)dx.

Exercise 1.64 Find I =∫ 4

0 ex22xdx.

Exercise 1.65 Find I =∫

sin(2x)dx, by letting u =

Exercise 1.66 Use integration by parts to find I =∫

x sin xdx.

Exercise 1.67 Find I =∫

x cos xdx.

Page 15: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 1. MATHEMATICS REVIEW CE1H 14

Exercise 1.68 Find I =∫ e

1 xlnxdx.

Exercise 1.69 Find I =∫

lnxx dx.

Page 16: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 1. MATHEMATICS REVIEW CE1H 15

Exercise 1.70 Find I =∫

lnxdx.

Exercise 1.71 Find I =∫ 3

22x−1x2−x

dx.

Exercise 1.72 Find I =∫

xexdx.

Page 17: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 1. MATHEMATICS REVIEW CE1H 16

1.1 Partial Fractions

A rational function is the quotient of two polynomi-

als. e.g. f (x) = 3x2+2x−15x4+x+7

and g(x) = 1x are rational

functions.

Given a rational function, we can often rewrite it as

the sum of a few easier fractions (the partial fractions

decomposition of a rational function).

Roots of Quadratic Functions

Given a quadratic function f (x) = ax2 + bx + c, its

roots are x = −b±√

b2−4ac2a .

If b2 − 4ac > 0 then we get two real roots of f (x) =

(x− r1)(x− r2).

If b2 − 4ac = 0 then we get one (repeated) real root

of f (x) = (x− r)2.

Page 18: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 1. MATHEMATICS REVIEW CE1H 17

If b2 − 4ac < 0 then we get no real roots of f (x) (we

get two complex roots).

In this case f (x) has no factorisation and we say that

f (x) is an irreducible quadratic.

Next, Let f (x) be a rational function(

f1(x)f2(x)

). If we

factorise the denominator f2(x) into the product of

distinct linear terms, repeated linear terms and irre-

ducible quatratic terms then we can decompose f (x)

as follows:

Page 19: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 1. MATHEMATICS REVIEW CE1H 18

Case 1: For each distinct linear term (x − r) in the

denominator, the decomposition contains a term Ax−r

where A is an unknown constant.

Case 2: For each repeated linear term (x − r)2 in the

denominator, the decomposition contains terms Ax−r+

B(x−r)2

where A and B are unknown constants.

For each repeated linear term (x− r)3 in the denomi-

nator, the decomposition contains terms Ax−r + B

(x−r)2+

C(x−r)3

, where A, B and C are unknown constants.

Similarly for (x− r)4, (x− r)5, etc.

Case 3: For each irreducible quadratic term ax2+bx+

c in the denominator, the decomposition contains the

term Ax+Bax2+bx+c

where A and B are unknown constants.

Page 20: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 1. MATHEMATICS REVIEW CE1H 19

Example 1.73 The partial fractions decomposition of 2x+3(x−1)(x−2)

is Ax−1 + B

x−2, by Case 1.

Example 1.74 The partial fractions decomposition of x2+3x−1(x−6)(x−3)2

is Ax−6 + B

x−3 + C(x−3)2

, by Case 1 and Case 2.

Example 1.75 The partial fractions decomposition of x2+2x+1(x−4)(x2+1)

is Ax−4 + Bx+C

x2+1, by Case 1 and Case 3.

Example 1.76 The partial fractions decomposition of5x3+3x+1

(x−3)(x+1)3(x−6)2(x2+2)(x2+3)is

Ax−3 +

[B

x+1 + C(x+1)2

+ D(x+1)3

]+[

Ex−6 + F

(x−6)2

]+ Gx+H

x2+2+

Ix+Jx2+3

.

(Note that x2 + 2 and x2 + 3 are irreducible quadratics).

Example 1.77 In Example 1.1 we saw that 2x+3(x−1(x−2) =

Ax−1 + B

x−2. Next, we should find the constants A and B.

Multiply both sides by (x− 1)(x− 2) to get

2x + 3 = Ax−1(x− 1)(x− 2) + B

x−2(x− 1)(x− 2)

⇒ 2x + 3 = A(x− 2) + B(x− 1). ∗

Page 21: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 1. MATHEMATICS REVIEW CE1H 20

Equation ∗ is true for all values of x, so substitute in some

clever values of x.

x = 2 : 2(2) + 3 = A(0) + B(2− 1)

⇒ 7 = B.

x = 1 : 2(1) + 3 = A(1− 2) + B(0)

⇒ 5 = −A ⇒ A = −5.

∴ the partial fractions decomposition is 2x+3(x−1)(x−2) = −5

x−1 +7

x−2.

Example 1.78 In Example 1.2 we had that x2+3x−1(x−6)(x−3)2

=A

x−6 + Bx−3 + C

(x−3)2. Find A, B and C.

Multiply by (x− 6)(x− 3)2 to get

x2 +3x− 1 = A(x− 3)2 +B(x− 6)(x− 3)+C(x− 6) ∗x = 3 : 9 + 9− 1 = A(0) + B(0) + C(−3)

⇒ 17 = −3C ⇒ C = −173 .

x = 6 : 36 + 18− 1 = A(32) + B(0) + C(0)

⇒ 53 = 9A ⇒ A = 539 .

x = 0 : 0 + 0− 1 = A(−3)2 + B(−6)(−3) + C(−6)

⇒ −1 = 9A + 18B − 6C ⇒ −1 = 9539 + 18B − 6

(−173

)⇒ −1 = 53 + 18B + 34 ⇒ −1 = 87 + 18B

⇒ −88 = 18B ⇒ B = −8818 ⇒ B = −44

9 .

∴ the partial fractions decomposition is

Page 22: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 1. MATHEMATICS REVIEW CE1H 21

x2+3x−1(x−6)(x−3)2

=539

x−6 +−449

x−3 +−173

(x−3)2.

Exercise 1.79 In Example 1.3 we had that x2+2x+1(x−4)(x2+1)

=A

x−4 + Bx+Cx2+1

. Find A, B and C.

x2 + 2x + 1 = A(x2 + 1) + (Bx + C)(x− 4) ∗.

x = 4 : 16 + 8 + 1 = A(16 + 1) + 0 ⇒ A = 2517.

x = 0 : 0 + 0 + 1 = A(1) + (B(0) + C)(−4) ⇒

Page 23: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 1. MATHEMATICS REVIEW CE1H 22

∴ we have that x2+2x+1(x−4)(x2+1)

=2517

x−4 +−817 x+ 2

17x2+1

.

Page 24: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 1. MATHEMATICS REVIEW CE1H 23

1.2 Integration using Trigonometric Substitutions

and other tricks

Example 1.80 Prove the formula in the log tables Page

41: ∫1

a2 − x2dx =

1

2aln

∣∣∣∣a + x

a− x

∣∣∣∣ + C.

Using partial fractions, 1a2−x2 = 1

(a+x)(a−x) = Aa+x + B

a−x

⇒ 1 = A(a− x) + B(a + x) ∗x = a ⇒ 1 = 0 + B(2a) ⇒ B = 1

2a

x = −a ⇒ 1 = A(2a) + B.0 ⇒ A = 12a

∴ I =∫

1a2−x2dx =

∫ 12a

a+x +12a

a−xdx

= 12a

∫1

a+x + 1a−xdx = 1

2a{ln |a + x| − ln |a− x|} + C

= 12a ln |a+x

a−x| + C as required.

Example 1.81 (Completing the square)

Find I =∫

1x2+4x+2

dx.

I =∫

1(x+2)2−2

dx. Let u = x + 2, so du = dx.

∴ I =∫

1u2−(

√2)2

du = (−1)∫

1(√

2)2−u2du

= (−1) 12√

2ln |

√2+u√2−u

|+ C by the formula from the previous

Example (log tables page 41).

Thus I = −12√

2ln |

√2+x+2√2−x−2

| + C.

Note that we could also have done this example using par-

Page 25: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 1. MATHEMATICS REVIEW CE1H 24

tial fractions. Try this at home.

Example 1.82 Find I =∫

13x2+2x+4

dx.

Note that we cannot do this using partial fractions since

3x2+2x+4 is irreducible, so 13x2+2x+4

is already the partial

fractions decomposition of 13x2+2x+4

(check!).

Instead, try completing the square:

I =∫ 1

3x2+2

3x+43dx = 1

3

∫1

(x+13)2+11

9dx = 1

3

∫1

(x+13)2+

√119

2dx.

Let u = x + 13, so du = dx.

∴ I = 13

∫1

u2+√

119

2du = 13

1√119

tan−1

(u√119

)+ C

= 13

√911 tan−1[

√911(x + 1

3)] + C

= 1√11

tan−1( 3√11

x + 1√11

) + C.

Page 26: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 1. MATHEMATICS REVIEW CE1H 25

Exercise 1.83 Find I =∫

1x2+6x+4

dx.

I =∫

1(x+3)2−5

dx. Let u = x + 3, so du = dx.

∴ I = . . .

Exercise 1.84 Find I =∫

13x2+2x−4

dx.

I =∫ 1

3x2+2

3x−43dx = 1

3

∫1

(x+13)2−13

9dx.

Example 1.85 (Trigonometric Substitution)

Find I =∫ √

1− x2dx.

Recall that sin2 θ + cos2 θ = 1 (log tables page 9).

Let x = sin θ, so dx = cos θdθ.

∴ I =∫ √

1− sin2 θ cos θdθ

=∫ √

cos2 θ cos θdθ (since sin2 θ + cos2 θ = 1)

=∫

cos θ cos θdθ =∫

cos2 θdθ

Page 27: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 1. MATHEMATICS REVIEW CE1H 26

= 12[θ + 1

2 sin(2θ)] + C (log tables page 42)

= 12[sin

−1 x + 12 sin(2 sin−1 x)] + C.

Exercise 1.86 Find I =∫ √

a2 − x2dx, where a is a con-

stant.

Let x = a sin θ. ∴ dx = a cos θdθ.

Page 28: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 1. MATHEMATICS REVIEW CE1H 27

Exercise 1.87 Prove this formula from page 41 of the log

tables: I =∫

1√a2−x2dx = sin−1(x

a) + C.

Page 29: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

Chapter 2

First Order Differential EquationsCE1H

28

Page 30: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 2. FIRST ORDER DIFFERENTIAL EQUATIONS CE1H 29

2.1 Separable Differential Equations

A differential equation is an equation containing deriv-

atives (we often write D.E. for differential equation).

Example 2.1 dydx = 2xy is a D.E.

We can solve this D.E. (i.e. we can find y in terms of x).

Proceed as follows:1y

dydx = 2x ⇒ 1

ydy = 2xdx ⇒∫

1ydy = 2

∫xdx

⇒ ln|y| = 2x2

2 + C ⇒ ln|y| = x2 + C ⇒ |y| = ex2+C

⇒ y = ±ex2+C .

If a function y = f (x) satisfies a D.E. then it is called

a solution of the D.E.

In Example 2.1, y = ±ex2+C is a solution of the D.E.dydx = 2xy.

To show this for y = ex2+C , we substitute y = ex2+C

into the D.E. to get:ddx(ex2+C) = ex2+C(2x+0) = 2xex2+C = 2xy as required,

so y is a solution of the D.E.

(you can check that y = −ex2+C is also a solution).

Example 2.2 Show that y = x4

16 is a solution of the D.E.dydx = xy

12 .

Page 31: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 2. FIRST ORDER DIFFERENTIAL EQUATIONS CE1H 30

Substituting in we get that the L.H.S. (left hand side) of

the D.E. is ddx

(x4

16

)= 1

16ddxx

4 = 1164x

3 = 14x

3.

The R.H.S. of the D.E. becomes x(

x4

16

)12

= x(x4)12

(16)12

= x√

x4√16

=

xx2

4 = x3

4 = L.H.S. as required, so y = x4

16 is a solution of

the D.E.

The order of a D.E. is the order of the highest deriv-

ative in the D.E.

Example 2.3 d2ydx2 + 5

(dydx

)3

− 4y = ex has order 2, and(dydx

)6

+ 3d2ydx2 +

√d3ydx3 = 0 has order 3.

A first order D.E. of the form dydx = g(x)h(y) is called

a separable D.E.

(where g(x) is a function of x and h(y) is a function of

y).

This D.E. can be solved as follows:1

h(y)dydx = g(x) ⇒

∫1

h(y)dy =∫

g(x)dx.

Then integrate and solve for y if possible.

Example 2.4 Solve the separable D.E. dydx = 3x2

sin y .

sin ydy = 3x2dx ⇒∫

sin ydy = 3∫

x2dx

⇒ − cos y = x3 + C ⇒ cos y = −x3 − C

Page 32: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 2. FIRST ORDER DIFFERENTIAL EQUATIONS CE1H 31

⇒ cos−1(cos y) = cos−1(−x3−C) ⇒ y = cos−1(−x3−C).

Exercise 2.5 Solve the separable D.E. dydx = −e−3x.

Exercise 2.6 Solve the separable D.E. dydx = (x+1)2, given

that when x = 0, y = 0.

Page 33: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 2. FIRST ORDER DIFFERENTIAL EQUATIONS CE1H 32

Exercise 2.7 Solve the separable D.E. dydx = (x + 4)50,

given that when x = 0, y = 451

51 .

Exercise 2.8 Solve the separable D.E. dydx = 4y

x .

Page 34: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 2. FIRST ORDER DIFFERENTIAL EQUATIONS CE1H 33

Exercise 2.9 Solve the separable D.E. dydx = cos x+2

sin y .

Exercise 2.10 Solve the separable D.E. dydx = 2x

y+1.

Page 35: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 2. FIRST ORDER DIFFERENTIAL EQUATIONS CE1H 34

Exercise 2.11 Solve the separable D.E. dydx = 1+x

1+y .

Page 36: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 2. FIRST ORDER DIFFERENTIAL EQUATIONS CE1H 35

Exercise 2.12 Solve the separable D.E. dydx = y2+xy2

x2y−x2 .

Exercise 2.13 Solve xy dydx = x2+1

y+1 .

Page 37: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 2. FIRST ORDER DIFFERENTIAL EQUATIONS CE1H 36

Exercise 2.14 Solve dydx = x2y + x2 + 3y + 3.

2.2 First Order Linear Differential Equations (The

Integrating Factor Method)

Definition 2.15 A D.E. of the form dydx + P (x)y = Q(x)

is called a first order linear D.E.

We can find the general solution of this D.E. as fol-

lows:

1.) Find the integrating factor e∫

P (x)dx.

2.) Multiply the D.E. by the integrating factor (I.F.) to

get:

Page 38: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 2. FIRST ORDER DIFFERENTIAL EQUATIONS CE1H 37

e∫

P (x)dx(

dydx + P (x)y

)= e

∫P (x)dxQ(x) ∗

3.) Note (or remember) that the L.H.S. of ∗ equalsddx(ye

∫P (x)dx)

(= ddx(y.I.F.)).

∴ ∗ becomes d(ye∫

P (x)dx) = e∫

P (x)dxQ(x)dx.

4.) Integrate both sides and solve for y.

This algorithm is called the integrating factor method.

Example 2.16 Solve the first order linear differential equa-

tion dydx − 3y = 0 using the integrating factor method.

1.) I.F. = e∫

P (x)dx = e∫−3dx = e−3x

(note that we do not include the arbitrary constant C).

2.) Multiply the D.E. by the I.F. to get

e−3x(dydx − 3y) = 0e−3x ∗

3.) Recall that the L.H.S. of ∗ equals ddx(y.I.F.).

∴ ddx(ye−3x) = 0 ⇒ d(ye−3x) = 0dx.

4.) Integrate and solve for y:∫d(ye−3x) =

∫0dx

⇒ ye−3x = 0 + C

⇒ y = Ce3x.

Exercise 2.17 Use the I.F. Method to solve dydx + 5y = 4.

Page 39: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 2. FIRST ORDER DIFFERENTIAL EQUATIONS CE1H 38

1.) I.F. = e∫

5dx = e5x.

2.) Multiply by the I.F. to get

e5x(dydx + 5y) = 4e5x. ∗

3.) Recall that the L.H.S. of ∗ equals ddx(y.I.F.),

so ddx(ye5x) = 4e5x, so d(ye5x) = 4e5xdx.

4.) Integrate to get:∫d(ye5x) = 4

∫e5xdx

⇒ ye5x = 45e

5x + C

⇒ y = 45 + C

e5x .

Note that we could have done this question using

separable variables:dydx = 4− 5y ⇒ dy = (4− 5y)dx ⇒

∫1

4−5ydy =∫

dx

⇒ −15 ln |4− 5y| = x + C

(check: let u = 4− 5y).

Now solve for y.

Page 40: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 2. FIRST ORDER DIFFERENTIAL EQUATIONS CE1H 39

Exercise 2.18 Solve xdydx − 4y = x6ex.

This is not in the correct form for the I.F. Method, so we

divide across by x to get:dydx −

4xy = x5ex. Now we can use the I.F. Method on this

D.E.:

Page 41: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 2. FIRST ORDER DIFFERENTIAL EQUATIONS CE1H 40

Exercise 2.19 Solve dydx + 2y = 3.

Note that dydx + 2y = 3 is a separable D.E. so it can be

solved as follows:dydx = 3− 2y ⇒ 1

3−2ydy = dx ⇒ ...

Page 42: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 2. FIRST ORDER DIFFERENTIAL EQUATIONS CE1H 41

Exercise 2.20 Solve dydx + 3y = 2e8x.

Page 43: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 2. FIRST ORDER DIFFERENTIAL EQUATIONS CE1H 42

Exercise 2.21 Solve dydx − 3y = 2e5x.

Page 44: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 2. FIRST ORDER DIFFERENTIAL EQUATIONS CE1H 43

Exercise 2.22 Use differentiation to show that y = xex +

Cex is a solution of dydx = y + ex.

Page 45: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 2. FIRST ORDER DIFFERENTIAL EQUATIONS CE1H 44

Page 46: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 2. FIRST ORDER DIFFERENTIAL EQUATIONS CE1H 45

2.3 Homogeneous Differential Equations

The polynomial anxn + . . .+a2x

2 +a1x+a0 has degree

n (if an 6= 0).

A D.E. is homogeneous of degree n if each term in

the D.E. is a polynomial of degree n (in the variables

x and y).

Example 2.23 x2dy + y2dx = 0 is a homogeneous D.E.

of degree 2.

(x2 + 6y2)dx + (5x2 − xy)dy = 0 is a homogeneous D.E.

of degree 2.

(x2 + 6y2)dx + (x3 + 8xy2)dy = 0 is not a homogeneous

D.E. (since 2 6= 3).

(x2 + 3y2)dx + (x2 − 2xy)dy = x2 is not a homogeneous

D.E.

Note: To solve a homogeneous D.E., just let y = vx

(where v is a new variable) and you will get a sepa-

rable D.E. which should be easy to solve.

Page 47: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 2. FIRST ORDER DIFFERENTIAL EQUATIONS CE1H 46

Example 2.24 Solve the homogeneous D.E. (x − y)dx +

xdy = 0.

Let y = vx, so (x− vx)dx + xd(vx) = 0

⇒ (1− v)dx + d(vx) = 0 (dividing by x)

⇒ (1− v)dx + vdx + xdv = 0 (product rule)

⇒ dx− vdx + vdx + xdv = 0 ⇒ dx + xdv = 0

⇒ dx = −xdv ⇒ −1x dx = dv (variables are separated)

⇒∫ −1

x dx =∫

dv ⇒ (−1) ln |x| + C = v.

But y = vx, so v = yx.

∴ − ln |x| + C = yx ⇒ y = −x ln |x| + Cx.

Exercise 2.25 Solve the homogeneous D.E.

ydx + (x + y)dy = 0.

Let y = vx. ∴ vxdx + (x + vx)d(vx) = 0

⇒ vdx + (1 + v)d(vx) = 0

⇒ vdx + (1 + v)(vdx + xdv) = 0 (product rule)

⇒ vdx + vdx + xdv + v2dx + vxdv = 0

⇒ 2vdx + v2dx + xdv + vxdv = 0

⇒ 2vdx + v2dx = −xdv − vxdv

⇒ (2v + v2)dx = (−x− vx)dv

⇒ (2v + v2)dx = −x(1 + v)dv

⇒ −1x dx = 1+v

v2+2vdv (separated)

Page 48: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 2. FIRST ORDER DIFFERENTIAL EQUATIONS CE1H 47

⇒ ...

Exercise 2.26 Solve the homogeneous D.E. (x + y)dx −xdy = 0

Page 49: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 2. FIRST ORDER DIFFERENTIAL EQUATIONS CE1H 48

Exercise 2.27 Solve the D.E. −ydx + (x +√

xy)dy = 0.

Page 50: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 2. FIRST ORDER DIFFERENTIAL EQUATIONS CE1H 49

Exercise 2.28 Solve the D.E. (x + y)dx + xdy = 0

Page 51: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 2. FIRST ORDER DIFFERENTIAL EQUATIONS CE1H 50

Exercise 2.29 Solve the D.E. ydx = 2(x + y)dy.

Page 52: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

Chapter 3

Laplace Transforms CE1H

51

Page 53: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 3. LAPLACE TRANSFORMS CE1H 52

3.1 Introduction

We will use Laplace transforms to solve differential

equations.

Definition 3.1 Given a function F (t), its Laplace trans-

form is

L(F (t)) = f (s) =

∫ ∞

0

F (t)e−stdt.

Example 3.2 Let y = f (x) = ex. As x goes to ∞, ex goes

to ∞. (i.e. limx→∞ ex = ∞). As x goes to −∞, ex goes to

0. (i.e. limx→−∞ ex = 0).

Example 3.3 Find L(1).

By the definition L(1) =∫∞

0 1e−stdt = 1−s[e

−st]∞0 = −1s (e−s∞−

e−s0) = −1s (0− 1) (if s > 0) = 1

s .

∴ L(1) = 1s (where s > 0).

Example 3.4 Find L(t).

L(t) =∫∞

0 te−stdt. Use integration by parts: L.A.T.E.

Let u = t and dv = e−stdt, so du = dt and v = −1s e−st.

∴ L(t) = [uv −∫

vdu]∞0 = [t−1s e−st −

∫ −1s e−stdt]∞0

Page 54: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 3. LAPLACE TRANSFORMS CE1H 53

= −1s [∞e−s∞−0e−s0]+1

s

∫∞0 e−stdt = −1

s [0−0]+1s

1−s[e

−st]∞0

= 0− 1s2 [e

−s∞ − e−s0] = − 1s2 [0− 1] = 1

s2 .

∴ L(t) = 1s2 where s > 0.

Exercise 3.5 Find L(t2).

L(t2) =∫∞

0 t2e−stdt. Integration by parts. L.A.T.E.

Let u = t2 and dv = e−stdt. ∴ du = 2tdt and v = −1s e−st.

Thus L(t2) = [t2−1s e−st −

∫ −1s e−st2tdt]∞0

= [−t2

s e−st + 2s

∫te−stdt]∞0

= [−∞2

s e−s∞ − 02

s e−s0] + 2s

∫∞0 te−stdt

= [0−0]+2sL(t) (by the definition of the Laplace transform)

= 2s

1s2 (by the previous example)

= 2s3 .

∴ L(t2) = 2s3 (where s > 0).

3.2 Proof by Induction

If you want to prove that a statement is true for all

the positive whole numbers, then it is sufficient to:

i) Prove that the statement is true for the whole num-

ber n = 1.

ii) Prove that if the statement is true for any partic-

ular positive whole number n, then the statement is

Page 55: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 3. LAPLACE TRANSFORMS CE1H 54

true for the whole number n + 1.

This technique is called proof by induction.

Example 3.6 Use proof by induction to prove that∑ni=1 i = n(n+1)

2 , for n = 1, 2, 3, . . .

Proof:

i) The statement is true for n = 1, since this becomes∑1i=1 i = 1(1+1)

2 , i.e. 1 = 1.22 .

ii) Assume that the statement is true for a particular posi-

tive whole number n (i.e.∑n

i=1 i = n(n+1)2 ).

Now we will use this to prove that the statement is true

for n + 1 (i.e.∑n+1

i=1 i = (n+1)(n+2)2 ).∑n+1

i=1 i = (∑n

i=1 i) + (n + 1) = n(n+1)2 + (n + 1)

(by the assumption)

= n(n+1)2 + 2(n+1)

2 = n(n+1)+2(n+1)2 = (n+1)(n+2)

2 .

∴∑n+1

i=1 i = (n+1)(n+2)2 , completing the induction and com-

pleting the proof.

Example 3.7 L(tn) = n!sn+1 , for n = 1, 2, 3, . . .

Proof: Use induction:

i) The statement is true for n = 1

i.e. L(t1) = 1!s1+1 , i.e. L(t) = 1

s2 . This was proved in a

previous example.

Page 56: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 3. LAPLACE TRANSFORMS CE1H 55

ii) Assume that the statement is true for a particular posi-

tive whole number n (i.e. L(tn) = n!sn+1).

Next we will prove that the statement is true for n + 1

(i.e. L(tn+1) = (n+1)!sn+2 ).

L(tn+1) =∫∞

0 tn+1e−stdt. Use integration by parts: L.A.T.E.

Let u = tn+1 and dv = e−stdt. ∴ du = (n + 1)tndt and

v = −1s e−st.

∴ L(tn+1) = [uv −∫

vdu]∞0

= [tn+1−1s e−st −

∫ −1s e−st(n + 1)tndt]∞0

= [−tn+1

s e−st + n+1s

∫tne−stdt]∞0

= [−∞n+1

s e−s∞ − −0n+1

s e−s0] + n+1s

∫∞0 tne−stdt

= [0− 0] + n+1s L(tn)

(by the definition of the Laplace transform)

∴ L(tn+1) = n+1s L(tn) = n+1

sn!

sn+1

(by the inductive hypothesis) = (n+1)!sn+2 , as required.

This completes the induction and the proof.

Exercise 3.8 Find L(eat), where a is a constant.

L(eat) =∫∞

0 eate−stdt =∫∞

0 eat−stdt =∫∞

0 e(a−s)tdt

= 1a−s[e

(a−s)t]∞0 = 1a−s[e

(a−s)∞ − e(a−s)0]

= 1a−s[0− 1] (if a− s < 0)

= −1a−s = 1

s−a = L(eat) (where a < s).

Page 57: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 3. LAPLACE TRANSFORMS CE1H 56

Example 3.9 Find L(sin(wt)), where w is a constant.

L(sin(wt)) =∫∞

0 sin(wt)e−stdt.

Use integration by parts: L.A.T.E.

Let u = sin(wt) and dv = e−stdt.

∴ L(sin(wt)) = [uv −∫

vdu]∞0

= [sin(wt)−1s e−st −

∫ −1s e−st cos(wt)wdt]∞0

= [−e−st

s sin(wt) + ws

∫cos(wt)e−stdt]∞0

= [−e−st

s sin(wt)]∞0 + ws

∫∞0 cos(wt)e−stdt

= [−e−∞

s sin(∞)− e0

s sin 0] + ws L(cos(wt))

= [0− 0] + ws L(cos(wt)).

∴ L(sin(wt)) = ws L(cos(wt)) = w

s

∫∞0 cos(wt)e−stdt.

Integration by parts: L.A.T.E. Let u = cos(wt) and dv =

e−stdt, so du = −w sin(wt)dt and v = −1s e−st.

∴ L(sin(wt)) = ws [uv −

∫vdu]∞0

= ws [cos(wt)−1

s e−st −∫ −1

s e−st(−w) sin(wt)dt]∞0

= ws

{[−e−st

s cos(wt)]∞0 − ws

∫∞0 sin(wt)e−stdt

}= w

s

{[−e−∞

s cos(∞)− −e0

s cos 0]− ws L(sin(wt))

}ws

{[0 + 1

s ]−ws L(sin(wt))

}= w

s2 − w2

s2 L(sin(wt)).

∴ L(sin(wt)) = ws2 − w2

s2 L(sin(wt)).

Now solve for L(sin(wt)):

L(sin(wt)) + w2

s2 L(sin(wt)) = ws2

Page 58: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 3. LAPLACE TRANSFORMS CE1H 57

⇒ L(sin(wt))[1 + w2

s2 ] = ws2

⇒ L(sin(wt)) =ws2

1 + w2

s2

=ws2

s2+w2

s2

=w

s2

s2

s2 + w2=

w

s2 + w2.

This is Formula 5.

Linear Operations

Let θ be an operation sending functions to functions.

Example 3.10 ddxf (x) = f ′(x), so differentiation is an

operation sending functions to functions.∫f (x)dx is a function, so integration is an operation.

L(F (t)) = f (s), so the Laplace transform is an operation.

An operation θ is said to be a linear operation if

θ(kf (x)) = kθ(f (x)) and

θ(f (x) + g(x)) = θ(f (x)) + θ(g(x)),

where f (x) and g(x) are functions and k is a constant.

Example 3.11 ddx is a linear operation since d

dx(kf (x)) =

k ddx(f (x)) and d

dx(f (x) + g(x)) = ddx(f (x)) + d

dx(g(x)).

Integration is a linear operation since∫kf (x)dx = k

∫f (x)dx and

Page 59: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 3. LAPLACE TRANSFORMS CE1H 58∫[f (x) + g(x)]dx =

∫f (x)dx +

∫g(x)dx.

Also, the Laplace transform is a linear operation since

L(kF (t)) =∫∞

0 kF (t)e−stdt = k∫∞

0 F (t)e−stdt = kL(F (t)).

Also, L(F (t) + G(t)) =∫∞

0 (F (t) + G(t))e−stdt

=∫∞

0 (F (t)e−st + G(t)e−st)dt

=∫∞

0 F (t)e−stdt +∫∞

0 G(t)e−stdt = L(F (t)) + L(G(t))

as required.

Example 3.12 Find L(2t + 1). By linearity of L we get

L(2t + 1) = L(2t) + L(1) = 2L(t) + L(1) = 2 1s2 + 1

s

(by Formulae 2 and 1).

∴ L(2t + 1) = 2s2 + 1

s .

Exercise 3.13 Find L(2t2 + 3t + 4).

Exercise 3.14 L(6t4 + 5t3 − 7t2 + t− 10 + 8 sin(2t))

Page 60: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 3. LAPLACE TRANSFORMS CE1H 59

Exercise 3.15 L(3t5+cos(4t)+sin t+e4t+te2t+et cos(3t))

3.3 Inverse Laplace Transforms

Let L(F (t)) = f (s). We say that the Laplace trans-

form of F (t) is f (s). We can also write that the in-

verse Laplace transform of f (s) is F (t) and we write

L−1(f (s)) = F (t).

∴ L−1(L(F (t))) = F (t) and L(L−1(f (s))) = f (s).

We can now use the table of Laplace transforms (back-

wards) to find inverse Laplace transforms.

Example 3.16 L−1(

1s

)= 1 (Formula 1)

Page 61: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 3. LAPLACE TRANSFORMS CE1H 60

L−1(

1s2

)= t

L−1(

2!s2+1

)= t2

L−1(

n!sn+1

)= tn

L−1(

ws2+w2

)= sin(wt)

Note: L−1 is a linear operation.

i.e. L−1(f (s) + g(s)) = L−1(f (s)) + L−1(g(s)) and

L−1(kf (s)) = kL−1(f (s)).

Example 3.17 Find L−1( 1s4).

We know that L−1( 3!s3+1) = t3 (by Formula 3).

∴ L−1( 6s4) = t3 ⇒ 6L−1( 1

s4) = t3

(since L−1 is a linear operation) ⇒ L−1( 1s4) = t3

6 .

Exercise 3.18 Find L−1( 1s6).

Exercise 3.19 Find L−1( 1s2+9

).

Page 62: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 3. LAPLACE TRANSFORMS CE1H 61

Exercise 3.20 Find L−1( 2ss2+9

).

Exercise 3.21 Find L−1( 3s+6s2+16

).

Exercise 3.22 Find L−1( 2s+7s2+25

).

Exercise 3.23 Find L−1( 4s+33s2+12

).

Page 63: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 3. LAPLACE TRANSFORMS CE1H 62

= 43 cos(2t) + 1

2 sin(2t).

Check: L(43 cos(2t) + 1

2 sin(2t)) =

Theorem 3.24 (Formula 15) L(tF (t)) = − ddsL(F (t)).

Proof: Omit.

Example 3.25 L(t sin t) = − ddsL(sin t) (Formula 15)

= − dds(

1s2+1

) = − dds[(s

2 + 1)−1]

= −(−1)(s2 + 1)−2 dds(s

2 + 1) = (s2 + 1)−2(2s) = 2s(s2+1)2

.

(Note: You could also have used Formula 10).

Exercise 3.26 Find L(t cos(2t)) using Formula 15.

Page 64: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 3. LAPLACE TRANSFORMS CE1H 63

L(t cos(2t)) = − ddsL(cos(2t)) (Formula 15)

= − dds(

ss2+4

) (Formula 6) = −[(s2+4)−s2s(s2+4)2

] (Quotient Rule)

= −[s2+4−2s2

(s2+4)2] = −[ −s2+4

(s2+4)2] = s2−4

(s2+4)2.

(Note: You could also have used Formula 11).

Exercise 3.27 Use Formula 15 to prove Formula 9.

L(teat) =

Theorem 3.28 (First Shifting Theorem (Formula 14))

L(eatF (t)) = f (s− a) = [L(F (t))]s→s−a

(i.e. it is L(F (t)), with s replaced by s− a).

Proof: L(eatF (t)) =∫∞

0 e−steatF (t)dt =∫∞

0 e−(s−a)tF (t)dt.

Recall that L(F (t)) =∫∞

0 e−stF (t)dt, so replacing s with

s− a gives us L(eatF (t)) as required.

Example 3.29 Use Formula 14 to find L(e4tt3).

L(e4tt3) = [L(t3)]s→s−4 (Formula 14)

= [ 3!s3+1 ]s→s−4 (Formula 3) = [ 6

s4 ]s→s−4 = 6(s−4)4

.

Exercise 3.30 L(e6t cos(4t)) =

Page 65: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 3. LAPLACE TRANSFORMS CE1H 64

Exercise 3.31 L(e7tt9) =

Example 3.32 Previously we proved Formula 9

(L(teat) = 1(s−a)2

) using Formula 15. Here we prove For-

mula 9 again, this time using Formula 14:

L(teat) = L(eatt) = [L(t)]s→s−a (Formula 14)

= [ 1s2 ]s→s−a (Formula 2) = 1

(s−a)2.

Exercise 3.33 L(e8tt cos(2t)) =

Definition 3.34 Intuitively, a function is continuous if

it can be drawn without removing the pen from the page.

Page 66: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 3. LAPLACE TRANSFORMS CE1H 65

Theorem 3.35 (Formula 12) Let F (t) and F ′(t) be con-

tinuous functions for t > 0.

Then L(F ′(t)) = sL(F (t))− F (0).

Proof: L(F ′(t)) =∫∞

0 e−stF ′(t)dt.

Use integration by parts: let u = e−st and dv = F ′(t)dt.

∴ du = −se−stdt and v =∫

F ′(t)dt = F (t).

∴ L(F ′(t)) = [uv−∫

vdu]∞0 = [e−stF (t)−∫

F (t)(−s)e−stdt]∞0

= [e−stF (t)]∞0 + s[∫

F (t)e−stdt]∞0

= [e−s∞F (∞)− e0F (0)] + s∫∞

0 e−stF (t)dt

= [0 − F (0)] + sL(F (t)) (by the definition of the Laplace

transform)

= sL(F (t))− F (0).

Example 3.36 Find L( ddt(sin(t)).

By Formula 12, this equals sL(sin(t)− sin 0

(here F (t) = sin t)

= s 1s2+12 − 0 (Formula 5)

= ss2+1

.

Alternativley, L( ddt(sin t)) = L(cos t) = s

s2+1(Formula 6).

Exercise 3.37 Use Formula 12 to find L( ddt(t sin t)).

Page 67: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 3. LAPLACE TRANSFORMS CE1H 66

Theorem 3.38 (Formula 13) Let F (t), F ′(t) and F ′′(t)

be continuous functions for t > 0.

Then L(F ′′(t)) = s2L(F (t))− sF (0)− F ′(0).

Proof: L(F ′′(t)) =∫∞

0 e−stF ′′(t)dt. Use integration by

parts: let u = e−st and dv = F ′′(t)dt.

∴ du = −se−stdt and v =∫

F ′′(t)dt = F ′(t).

∴ L(F ′′(t)) = [uv −∫

vdu]∞0

= [e−stF ′(t)−∫

F ′(t)(−s)e−stdt]∞0

= [e−stF ′(t)]∞0 + s∫∞

0 e−stF ′(t)dt

= [e−s∞F ′(∞)− e0F ′(0)] + sL(F ′(t))

= [0− F ′(0)] + s[sL(F (t))− F (0)] (Formula 12)

= −F ′(0) + s2L(F (t))− sF (0)

= s2L(F (t))− sF (0)− F ′(0) as required.

Example 3.39 Find L( d2

dt2(tet)) using Formula 13.

L( d2

dt2(tet)) = s2L(tet)− s(0e0)− [ d

dt(tet)]0

Page 68: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 3. LAPLACE TRANSFORMS CE1H 67

= s2 1(s−1)2

− 0− [tet + et1]0 (by Formula 9)

= s2

(s−1)2− [0e0 + e0] = s2

(s−1)2− 1 = s2

(s−1)2− (s−1)2

(s−1)2

= s2−(s−1)2

(s−1)2= s2−(s2−2s+1)

(s−1)2= 2s−1

(s−1)2.

Alternativley, L( d2

dt2(tet)) = L( d

dt(tet + et))

= L(tet + et + et) = L(tet) + 2L(et) = 1(s−1)2

+ 2 1s−1

(Formulae 9 and 4)

= 1(s−1)2

+ 2 s−1(s−1)2

= 1+2(s−1)(s−1)2

= 2s−1(s−1)2

, as before.

Exercise 3.40 Use Formula 13 to find L(F ′′(t)), where

F (t) = cos t.

L(F ′′(t)) = s2L(F (t))− sF (0)− F ′(0) =

3.4 Solving Differential Equations using Laplace

Transforms

To solve a differential equation using the Laplace trans-

form, we:

1: Take the Laplace transform of both sides of the

Page 69: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 3. LAPLACE TRANSFORMS CE1H 68

D.E. (using Formulae 12 and 13).

2: Solve this new equation to find L(y) in terms of s.

3: Find y by taking the inverse Laplace transform of

both sides (usually we need partial fractions for this).

Example 3.41 Solve the D.E. dydt−2y = 6 cos(2t)−6 sin(2t)

using Laplace transforms, given that when t = 0, y = 0

(i.e. y(0) = 0).

1: L(dydt )− 2L(y) = 6L(cos(2t))− 6L(sin(2t)).

Now use Formulae 12, 6 and 5 to take Laplace transforms

to get:

[sL(y)− y(0)]− 2L(y) = 6 ss2+22 − 6 2

s2+22

2: Solve to find L(y):

sL(y)− 0− 2L(y) = 6(s−2)s2+22

⇒ (s− 2)L(y) = 6(s−2)s2+22 ⇒ L(y) = 6

s2+22

3: Taking the inverse Laplace of both sides we get:

L−1(L(y)) = L−1( 6s2+22) ⇒ y = 3L−1( 2

s2+22)

⇒ y = 3 sin(2t) (by Formula 5).

Exercise 3.42 Use Laplace transforms to solve the D.E.dydt + 4y = e−4t, given that y(0) = 2 (i.e. when t = 0,

y = 2).

Page 70: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 3. LAPLACE TRANSFORMS CE1H 69

Exercise 3.43 Use Laplace transforms to solve the D.E.dydt − y = 1, given that y(0) = 0.

Page 71: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 3. LAPLACE TRANSFORMS CE1H 70

∴ y = −1 + et.

Alternativley, we could solve this D.E. using separable

variables:dydt − y = 1 ⇒

Lastly, we could solve the D.E. using the Integrating Fac-

tor Method:dydt − y = 1 ⇒

Page 72: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 3. LAPLACE TRANSFORMS CE1H 71

Exercise 3.44 Use Laplace transforms to solve the D.E.

3dydt + 2y = e6t, given that y(0) = 0.

Page 73: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 3. LAPLACE TRANSFORMS CE1H 72

⇒ y = 120e

6t − 120e

−23t.

Example 3.45 Use Laplace transforms to solve the D.E.d2ydt2

= y, given that y(0) = 1 and y′(0) = 2.

1: L(d2ydt2

) = L(y) ⇒ [s2L(y) − sy(0) − y′(0)] = L(y)

(Formula 13)

⇒ s2L(y)− s1− 2 = L(y).

2: ∴ s2L(y)− L(y) = s + 2 ⇒ (s2 − 1)L(y) = s + 2

⇒ L(y) = s+2s2−1

.

3: L(y) = s+2(s+1)(s−1) = A

s+1 + Bs−1.

∴ s + 2 = A(s− 1) + B(s + 1).

s = 1 : 1 + 2 = A0 + B2 ⇒ 3 = 2B ⇒ B = 32.

s = −1 : −1+2 = A(−2)+B0 ⇒ 1 = −2A ⇒ A = −12

∴ L(y) =−1

2s+1 +

32

s−1

⇒ y = L−1(L(y)) = −12L

−1( 1s+1) + 3

2L−1( 1

s−1)

⇒ y = −12e−1t + 3

2e1t (Formula 4).

Exercise 3.46 Use Laplace transforms to solve d2ydt2

= t,

given that y(0) = 1 and y′(0) = 2.

Page 74: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 3. LAPLACE TRANSFORMS CE1H 73

⇒ y = t3

6 + 2t + 1.

Alternativley, we could solve this D.E. by integrating twice:d2ydt2

= t ⇒

Exercise 3.47 Solve the D.E. d2ydt2

+ 3dydt + 7y = 2et, given

Page 75: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 3. LAPLACE TRANSFORMS CE1H 74

that y(0) = 1 and y′(0) = −1.

1:

⇒ L(y) = s2+s(s−1)(s2+3s+7)

= As−1 + Bs+C

s2+3s+7

Page 76: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 3. LAPLACE TRANSFORMS CE1H 75

∴ L(y) =211

s−1 +911s+14

11s2+3s+7

⇒ y = 211e

1t + 111L

−1( 9s+14(s+3

2)2+(−(32)2+7)

)

= 2et

11 + 911

{L−1

(s+3

2

(s−(−32))2+(

√192 )2

)+ L−1

(2818−

2718

(s−(−32))2+(

√192 )2

)}= 2et

11 + 911

{e−

32t cos(

√192 t) + 1

181

(√

192 )

L−1[

√192

(s−(−32 ))2+(

√192 )2

]

}= 2et

11 + 911

{e−

32t cos(

√192 t) + 1

182√19

e−32t sin(

√192 t)}

= 2et

11 + 911e

−32t{

cos(√

192 t) + 1

9√

19sin(

√192 t)}

= y.

Page 77: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 3. LAPLACE TRANSFORMS CE1H 76

Summary of First Order Differential Equations:

To solve a first order D.E. we try the following four

methods (in this order):

1: If it is separable then separate, integrate and solve

for y.

2: If it is homogeneous, substitute y = vx. This will

lead to a separable D.E.

3: If it is linear (i.e. it is of the form dydx + P (x)y =

Q(x)) then use the Integrating Factor Method (mul-

tiply the D.E. by I.F. = e∫

P (x)dx and recall that this

equals ddx(yI.F.). This leads to a separable D.E.).

4: Otherwise use the Laplace transform (find L of

both sides using the Formula sheet, solve for L(y),

decompose using partial fractions and then find y =

L−1(L(y)) ).

Page 78: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

Chapter 4

Second Order DifferentialEquations

77

Page 79: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 4. SECOND ORDER DIFFERENTIAL EQUATIONS 78

4.1 Introduction

Consider a differential equation of the form

ad2ydx2 + bdy

dx + cy = 0, where a, b and c are constants.

From this D.E. we define the auxilliary equation

am2 + bm + c = 0.

We can solve this using the quadratic formula

m = −b±√

b2−4ac2a .

Case 1: b2 − 4ac > 0

Here we have two real roots of the auxilliary equa-

tion: m1 = −b−√

b2−4ac2a and m2 = −b+

√b2−4ac

2a .

This gives us the following general solution of the

D.E.: y = Aem1x+Bem2x, where A and B are unknown

constants.

Proof: We will show that y = Aem1x + Bem2x is a solu-

tion of the D.E. ad2ydx2 + bdy

dx + cy = 0.dydx = d

dx(Aem1x + Bem2x) = Am1em1x + Bm2e

m2x.

∴ d2ydx2 = Am2

1em1x + Bm2

2em2x.

Thus the L.H.S. of the D.E. becomes

a[Am21e

m1x+Bm22e

m2x]+b[Am1em1x+Bm2e

m2x]+c[Aem1x+

Bem2x]

Page 80: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 4. SECOND ORDER DIFFERENTIAL EQUATIONS 79

= Aem1x(am21 + bm1 + c) + Bem2x(am2

2 + bm2 + c)

= Aem1x0 + Bem2x0 (since m1 and m2 are roots of the

quadratic am2 + bm + c = 0)

= 0 + 0 = 0.

∴ L.H.S. =0 as required, so y = Aem1x + Bem2x is a so-

lution of the D.E. ad2ydx2 + bdy

dx + cy = 0.

Example 4.1 Solve the D.E. d2ydx2 + 5dy

dx + 6y = 0.

The auxilliary equation here is m2 + 5m + 6 = 0.

∴ the roots are m =−5±

√52−4(1)(6)

2(1) = −5±√

25−242 = −5±1

2 .

Thus we have two real roots m1 = −5+12 = −2 and m2 =

−5−12 = −3. Thus Case 1 gives us that the general solution

of the D.E. is y = Aem1x + Bem2x = Ae−2x + Be−3x.

Example 4.2 Solve the D.E. d2ydx2 − 7dy

dx + 12y = 0.

The auxilliary equation is m2 − 7m + 12 = 0.

This has roots m =−(−7)±

√(−7)2−4(12)

2(1) = 7±√

49−482 =

7±12 ⇒ m1 = 7+1

2 = 4 and m2 = 7−12 = 3.

Thus we have two real roots, so Case 1 applies, so y =

Aem1x + Bem2x ⇒ y = Ae4x + Be3x.

Exercise 4.3 Solve the D.E. d2ydx2 + 2dy

dx − 3y = 0.

Page 81: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 4. SECOND ORDER DIFFERENTIAL EQUATIONS 80

Case 2: b2 − 4ac = 0 in the auxilliary equation.

This gives one repeated real root m = −b±√

02a = −b

2a .

This gives us the following solution of the D.E.:

y = Aemx + Bxemx.

Proof: Omit.

Example 4.4 Solve the D.E. d2ydx2 + 6dy

dx + 9y = 0.

Auxilliary equation: m2+6m+9 = 0 ⇒ m =−6±

√62−4(9)

2 =−6±

√36−362 = −6±0

2 = −3 = m. Thus we have a repeated

real root m = −3, so Case 2 applies.

∴ y = Aemx + Bxemx = Ae−3x + Bxe−3x.

Exercise 4.5 Solve the D.E. d2ydx2 + 10dy

dx + 25y = 0.

Page 82: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 4. SECOND ORDER DIFFERENTIAL EQUATIONS 81

Exercise 4.6 Solve the D.E. d2ydx2 + 8dy

dx + 16y = 0.

Recall: i is a number (called an imaginary number)

such that i2 = −1, so i =√−1. A number of the form

α+ iβ is called a complex number. α is called the real

part of α + iβ and β is called the imaginary part of

α + iβ. We can draw an Argand diagram of the com-

plex number 2 + 3i.

Case 3: b2 − 4ac < 0 in the auxilliary equation.

This gives us two complex roots: α± iβ.

Page 83: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 4. SECOND ORDER DIFFERENTIAL EQUATIONS 82

In this case the general solution of the D.E. is

y = eαx[A cos(βx) + B sin(βx)].

Proof: Omit.

Example 4.7 Solve the D.E. d2ydx2 + 4dy

dx + 9y = 0.

m2 + 4m + 9 = 0 ⇒ m =−4±

√42−4(9)

2 = −4±√

16−362 =

−4±√−20

2 = −4±√

4√−5

2 = −4±2√−5

2 = −2 ±√−5 = −2 ±

√−1√

5 = −2± i√

5. This equals α± iβ. ∴ α = −2 and

β =√

5, so by Case 3, y = eαx[A cos(βx) + B sin(βx)] =

e−2x[A cos(√

5x) + B sin(√

5x)].

Exercise 4.8 Solve the D.E. d2ydx2 − 2dy

dx + 10y = 0.

Exercise 4.9 Solve the D.E. d2ydx2 + 16y = 0.

Page 84: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 4. SECOND ORDER DIFFERENTIAL EQUATIONS 83

Exercise 4.10 Solve the D.E. d2ydx2 − 12dy

dx + 36y = 0.

Example 4.11 Solve the D.E. d2ydx2 + 2dy

dx − 3y = 0, given

that y(0) = 1 and y′(0) = 2.

m2 + 2m − 3 = 0 ⇒ m =−2±

√4−4(−3)

2 = −2±√

162 =

−2±42 = −1 ± 2 ⇒ we have two real roots m1 = 1 and

m2 = −3. ∴ y = Ae1x + Be−3x.

Next we can find the (arbitrary) constants A and B using

the initial conditions y(0) = 1 and y′(0) = 2.

y(0) = 1 and y = Ae1x + Be−3x imply 1 = Ae0 + Be−3(0)

Page 85: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 4. SECOND ORDER DIFFERENTIAL EQUATIONS 84

⇒ 1 = A + B.

Also, dydx = Aex − 3Be−3x and y′(0) = 2

imply 2 = Ae0 − 3Be−3(0) ⇒ 2 = A− 3B. Next we solve

the simultaneous equations

A + B = 1

A− 3B = 2

⇒ 0 + 4B = −1 (subtracting) ⇒ B = −14.

∴ A + B = 1 ⇒ A− 14 = 1 ⇒ A = 5

4.

Thus the solution of the D.E. is

y = Aex + Be−3x = 54e

x − 14e−3x.

Exercise 4.12 Solve the D.E. 2d2ydx2 + 6dy

dx + 5y = 0, given

that y(0) = 1 and y′(0) = −1.

Page 86: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 4. SECOND ORDER DIFFERENTIAL EQUATIONS 85

Exercise 4.13 Solve the D.E. 4d2ydx2 − 12dy

dx + 9y = 0, given

that y(0) = 1 and y′(0) = 2.

Page 87: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 4. SECOND ORDER DIFFERENTIAL EQUATIONS 86

Summary:

To solve the D.E. ad2ydx2 + bdy

dx + cy = 0, find the roots of

the auxilliary equation am2 + bm + c = 0. If you get:

1: Two different real roots m1 and m2 then the gen-

eral solution is y = Aem1x + Bem2x.

2: One repeated different real root m then the gen-

eral solution is y = Aemx + Bxemx.

3: Two complex roots α ± iβ then the general solu-

tion is y = eαx[A cos(βx) + B sin(βx)].

Next we learn how to solve a D.E. of the form

ad2ydx2 + bdy

dx + cy = f (x) ∗First solve the D.E. ad2y

dx2 + bdydx + cy = 0 to get the com-

plementary function (= yc)

Then find a particular solution (= yp) of ∗.

Then the genaral solution of ∗ is of the from

y = yc + yp.

Page 88: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 4. SECOND ORDER DIFFERENTIAL EQUATIONS 87

R.H.S. yp

a A1

ax + b A1x + B1

ax2 + bx + c A1x2 + B1x + C1

aebx A1ebx

a sin(bx) A1 sin(bx) + B1 cos(bx)

a cos(bx) A1 sin(bx) + B1 cos(bx)

Example 4.14 Solve d2ydx2 − 5dy

dx + 6y = 24 ∗.

Auxilliary equation: m2 − 5m + 6 = 0 ⇒ m1 = 2 and

m2 = 3. ∴ C.F. = yc = Ae2x + Be3x.

Next we find yp. R.H.S. of ∗ = 24 ⇒ yp = C.

Now yp = C is a particular solution of the D.E. ∗, sod2

dx2C−5 ddxC+6C = 24 = 0−0+6C = 24 ⇒ C = 4 = yp.

Thus the general solution of ∗ is

y = yc + yp = Ae2x + Be3x + 4.

Example 4.15 Solve d2ydx2 + 14dy

dx + 49y = 4e5x ∗m2 + 14m + 49 = 0 ⇒ (m + 7)(m + 7) = 0

⇒ repeated real root m = −7. Thus by Case 2,

Page 89: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 4. SECOND ORDER DIFFERENTIAL EQUATIONS 88

yc = Aemx + Bxemx = Ae−7x + Bxe−7x.

yp = Ce5x is a particular solution of ∗ (by the table).

Next find C by substituting yp = Ce5x into ∗:d2

dx2(Ce5x) + 14 ddx(Ce5x) + 49(Ce5x) = 4e5x

⇒ 25Ce5x + 14C5e5x + 49Ce5x = 4e5x

⇒ 25C + 70C + 49C = 4 ⇒ 144C = 4 ⇒ C = 136.

∴ yp = 136e

5x.

Thus the general solution of ∗ is

y = yp + yc = 136e

5x + Ae−7x + Bxe−7x.

Example 4.16 If the R.H.S. of ∗ is 3 cos(x), write down

yp: yp = A1 sin x + B1 cos x

If R.H.S. = 2e7x then yp = Ce7x.

If R.H.S. = 3 sinh x = 312(e

x− e−x then yp = Cex +De−x.

If R.H.S. = 2x2 − 7 then yp = A1x2 + B1x + C1.

If R.H.S. = x + 2ex then yp = A1x + B1 + C1ex.

Example 4.17 Solve d2ydx2 − 5dy

dx + 6y = 2 sin x ∗ ∗Note that the L.H.S. of ∗∗ =L.H.S. of ∗ from a previous

example, so they have the same yc.

∴ yc = Ae2x + Be3x (again).

R.H.S.= 2 sin x, so by the table, yp = C cos x + D sin x.

Page 90: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 4. SECOND ORDER DIFFERENTIAL EQUATIONS 89

This is a solution of ∗∗, sod2

dx2(C cos x+D sin x)−5 ddx(C cos x+D sin x)+6(C cos x+

D sin x) = 2 sin x

⇒ ddx(−C sin x+D cos x)−5(−C sin x+D cos x+6(C cos x+

D sin x) = 2 sin x

⇒ −C cos x−D sin x + 5C sin x− 5D sin x + 6C cos x +

6D sin x = 2 sin x

⇒ cos x(−C−5D+6C)+sin x(−D+5C +6D) = 2 sin x

⇒ (5C − 5D) cos x + (5C + 5D) sin x = 2 sin x

⇒ 5C − 5D = 0 and 5C + 5D = 2

(by comparing coefficients).

∴ 5C − 5D = 0

5C + 5D = 2

⇒ 10C + 0D = 2 (by adding)

⇒ C = 15. Also, 5C − 5D = 0, so 51

5 − 5D = 0 ⇒1− 5D = 0 ⇒ D = 1

5

∴ yp = 15 cos x + 1

5 sin x.

Also, yc = Ae2x + Be3x.

Thus the general solution is

y = yp + yc = 15 cos x + 1

5 sin x + Ae2x + Be3x.

Exercise 4.18 Solve d2ydx2 + 6dy

dx + 10y = 2 sin(2x) ∗

Page 91: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 4. SECOND ORDER DIFFERENTIAL EQUATIONS 90

To find yp, we see that 2 sin(2x) is not exactly on our table,

but we can work it out by replacing x with 2x.

∴ yp = C cos(2x) + D sin(2x).

Page 92: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 4. SECOND ORDER DIFFERENTIAL EQUATIONS 91

Thus the general solution of the D.E. is y = yp + yc =−215 cos(2x) + 1

15 sin(2x) + e−3x(A cos x + B sin x).

Exercise 4.19 Solve the initial value problem (I.V.P.)d2ydx2 + 3dy

dx − 11y = 0, given that y(0) = 1 and y′(0) = 2.

Page 93: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 4. SECOND ORDER DIFFERENTIAL EQUATIONS 92

Exercise 4.20 Solve the I.V.P. d2ydx2 + 2dy

dx + 3y = 0, given

that y(0) = 2 and y′′(0) = 3.

Page 94: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 4. SECOND ORDER DIFFERENTIAL EQUATIONS 93

Page 95: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

Chapter 5

Complex Numbers

94

Page 96: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 5. COMPLEX NUMBERS 95

Let z = a + ib, where a and b are real numbers and

i2 = −1. z is called a complex number. a is called the

real part of z and b is called the complex part of z.

Example 5.1 Let z1 = a1 + ib1 and z2 = a2 + ib2. Then

z1+z2 = (a1+a2)+i(b1+b2), z1−z2 = (a1−a2)+i(b1−b2),

z1z2 = (a1+ib1)(a2+ib2) = a1a2+ia1b2+ia2b1+i2b1b2 =

(a1a2 − b1b2) + i(a1b2 + a2b1) (since i2 = −1).

Exercise 5.2 Let z1 = 1+2i and z2 = 3−4i. Find z1+z2,

z1 − z2 and z1z2.

Exercise 5.3 Let z1 = 3+5i and z2 = 6−2i. Find z1+z2,

z1 − z2 and z1z2.

Page 97: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 5. COMPLEX NUMBERS 96

Definition 5.4 Let z = a + ib. Then z̄ = a− ib is called

the conjugate (or complex conjugate) of z.

We can draw a graph of a complex number on a

diagram called an Argand diagram.

So to get a complex conjugate, we just reflect it through

the real (horizontal) axis on its Argand diagram.

Write Re(z) for the real part of z and write Im(z) for

the imaginary part of z.

So Re(a + ib) = a and Im(a + ib) = b.

The length (or mudulus) of a complex number z =

Page 98: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 5. COMPLEX NUMBERS 97

a + ib is |z| = |a + ib| =√

a2 + b2

(by Pythagoras, |z|2 = a2 + b2, so |z| =√

a2 + b2).

Exercise 5.5 Draw on an Argand diagram the set of com-

plex numbers z where Re(z) = 2.

Exercise 5.6 Draw on an Argand diagram the set of com-

plex numbers z where Im(z) = −3.

Page 99: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 5. COMPLEX NUMBERS 98

Exercise 5.7 Draw on an Argand diagram the set of com-

plex numbers z where |z| = 1.

Exercise 5.8 Draw on an Argand diagram the set of com-

plex numbers z where |z + 2− i| = 2.

Next we learn to divide by complex numbers. To

divide by a complex number, multiply above and be-

low by the complex conjugate of the denominator

and then simplify (i.e. z1z2

= z1z2

z̄2z̄2

= . . .)

Example 5.9 Let z1 = 1 + 2i and z2 = 3− 4i.

Page 100: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 5. COMPLEX NUMBERS 99

Then z1z2

= 1+2i3−4i

z̄2z̄2

= (1+2i)(3+4i)(3−4i)(3+4i) = 3+4i+6i+8i2

9+12i−12i+i2(−4)4

= −5+10i9+(−1)(−16) = −5+10i

25 = −525 + 10

25i = −15 + 2

5i.

Exercise 5.10 Let z1 = 5− 3i and z2 = 2 + 4i. Find z1z2

.

The Polar Form of a Complex Number

Let z = a + ib. Thus r =√

a2 + b2 is the length (or

modulus) of z (r = |z|). θ = tan−1 ba is the argument of

z (= arg z). (From the graph, tan θ = ba, so θ = tan−1 b

a.)

Exercise 5.11 Let z = 2 + 5i. Find |z| and arg z.

Page 101: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 5. COMPLEX NUMBERS 100

Note that from the diagram cos θ = ar , so a = r cos θ.

Also, sin θ = br(

oppositehypothenuse), so b = r sin θ. Thus we can

rewrite z = a + ib as z = a + ib = r cos θ + ir sin θ =

r(cos θ + i sin θ) = z. This is called the polar form of

the complex number z.

Exercise 5.12 Find the polar form of z = 4 + 3i.

Exercise 5.13 Find the standard form of the complex num-

ber z if z has length 10 and argument π4 .

Theorem 5.14 (Euler’s Theorem) eiθ = cos θ + i sin θ

Proof: Omit.

Page 102: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 5. COMPLEX NUMBERS 101

Example 5.15 eiπ = −1.

Indeed, eiπ = cos π + i sin π = −1 + i0 = −1.

Next we can use Euler’s Theorem to prove

Theorem 5.16 (DeMoivre’s Theorem) einθ = cos(nθ)+

i sin(nθ) = (cos θ + i sin θ)n.

Proof: einθ = (eiθ)n = (cos θ + i sin θ)n (by Euler’s Theo-

rem). Also,

einθ = ei(nθ) = cos(nθ) + i sin(nθ) (by Euler’s Theorem).

Example 5.17 Let z = 1 +√

3i. Write z in polar form,

find z15 and write your answer in standard (Cartesian)

form.

r = |z| =

√12 +

√3

2=√

1 + 3 = 2.

arg z = θ = tan−1√

31 = π

3 .

∴ z = r(cos θ + i sin θ) = reiθ = 2eiπ3 .

∴ z15 = (2eiπ3 )15 = 215(eiπ

3 )15 = 32, 768e(iπ315) = 32, 768ei5π.

In standard form this is 32, 768(cos(5π) + i sin(5π))

(by DeMoivre’s Theorem) = 32, 768(−1 + i0) = −32, 768.

Exercise 5.18 Let z =√

3 + i. Find z100.

Page 103: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 5. COMPLEX NUMBERS 102

Page 104: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

Chapter 6

Matrices

103

Page 105: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 6. MATRICES 104

6.1 Introduction

Definition 6.1 A matrix is a rectangular array of num-

bers.

Example 6.2

(2 5

1 3

)is a matrix.

Example 6.3

3 1 2

2 1 0

0 −5 1

is a matrix.

Example 6.4

(2 1 2

3 5 2

)is a matrix.

Note : A matrix depends on the number of rows and

columns that it contains.

Example 6.5 Example 6.2 is a 2× 2 matrix, Example 6.3

is a 3× 3 matrix and Example 6.4 is a 2× 3 matrix.

Exercise 6.6 What types of matrices are the following :

(i)

(2

1

)(ii)

(2 3)

(iii)

3 1

5 1

2 3

(iv)

3 3 1 0

0 5 1 0

5 1 −1 7

Page 106: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 6. MATRICES 105

6.2 Addition and Subtraction of matrices

We can only add or subtract matrices of the same

type. When two matrices are of the same type, we

add or subtract componentwise.

Example 6.7 Let A =

(2 2

5 5

)and B =

(1 5

3 −5

). Then

A + B =

(2 + 1 2 + 5

5 + 3 5 + (−5)

)=

(3 7

8 0

).

Example 6.8 Let A =

2 5 3

−1 0 1

3 2 1

and B =

1 1 5

2 −1 3

7 8 9

.

Then

A−B =

2− 1 5− 1 3− 5

−1− 2 0− (−1) 1− 3

3− 7 2− 8 1− 9

=

1 4 −2

−3 1 −2

−4 −6 −8

.

Exercise 6.9 Let A =

(2 5

3 1

), B =

(5 3

−1 2

), C =(

2 5

3 1

)and D =

(2 1 5

3 3 2

). Calculate where possible:

Page 107: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 6. MATRICES 106

(i) A + B.

(ii) A−B.

(iii) B − C.

(iv) B + A.

(v) D + A.

(vi) A− C.

Exercise 6.10 Let A =

2 5 3

1 1 1

0 1 1

, B =

3 5 2

5 1 0

0 0 1

and

C =

6 0 3

1 0 0

0 2 0

. Calculate :

(i) A + B.

(ii) A− C.

(iii) B + A.

Page 108: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 6. MATRICES 107

6.3 Scalar Multiplication

When we are multiplying a matrix by scalar (e.g. a

real or complex number), we simply multiply every

entry in the matrix by the scalar.

Example 6.11 Let A =

(2 2

5 5

)and B =

(1 5

3 −5

). Then

5A + 6B =

(10 10

25 25

)+

(6 30

18 −30

)

=

(16 40

43 −5

)

Exercise 6.12 Let A =

(2 −1

0 −3

)and B =

(1 4

3 −2

).

Find (i) 3A + 5B

(ii) A− 3B

(iii) 2A− 1

2B.

Page 109: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 6. MATRICES 108

6.4 Zero Matrix

Definition 6.13 The Zero Matrix (On) is an n× n ma-

trix where each of the entries is zero.

Example 6.14 O2 =

(0 0

0 0

), O3 =

0 0 0

0 0 0

0 0 0

and O4 =

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

.

The zero matrix has an important property. Let A be

any n× n matrix. Then

A + On = A = On + A .

6.5 Multiplication of Matrices

When multiplying matrices, we have to be very care-

ful since we can only multiply matrices that are con-

formable.

Page 110: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 6. MATRICES 109

Definition 6.15 Let A and B be matrices. Then A and

B are conformable if the number of columns in A are the

same as the number of rows in B.

Note : If two matrices A and B are conformable, this

doesn’t necessarily mean that B and A are conformable.

Example 6.16 A =

(2 5 3

1 2 3

), B =

(2 2

−1 0

), C =

(5 0

0 3

)and D =

3 1 0

0 1 0

0 3 −1

. A is 2 × 3 matrix, B is

2 × 2 matrix , C is 2 × 2 matrix and D is 3 × 3 matrix.

For the matrices A, B, C and D, Which pairs of matrices

are conformable?

• A and B are not conformable, however B and A

are conformable.

• A and C are not conformable, however C and A

are conformable.

• A and D are conformable, however D and A are

not conformable.

• B and C are conformable, also C and B are con-

formable.

Page 111: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 6. MATRICES 110

• C and D are not conformable, also D and C are

not conformable.

Exercise 6.17 A =

(2 2

1 3

), B =

(2 5

5 4

), C =

(2 1 3

3 4 2

),

D =

2 5

2 1

0 2

, E =

2 1 0

2 −1 9

0 3 2

and F =

0 1 0

1 0 2

1 1 3

.

For the matrices A, B, C, D, E and F , Which pairs of

matrices are conformable?

Let A be an n × p matrix and B be a p × m matrix.

Clearly A and B are conformable. When we multi-

ply the matrix A by the matrix B (AB), the resulting

matrix is a n × m matrix. To find the (i, j)th-entry

of AB, we single out row i from matrix A and col-

umn j from matrix B. Multiply the corresponding

Page 112: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 6. MATRICES 111

entries from the row and columns and add the re-

sulting products.

Example 6.18 Let A =

(2 2

1 3

), B =

(2 5

−5 4

).

Calculate AB.

Clearly AB is a 2×2 matrix. Thus we have 4 entries in

AB, one in (1st row, 1st column), one in (1st row, 2nd column),

one in (2nd row, 1st column) and one in (2nd row, 2nd column).

(1st row, 1st column)

Take the 1st row in A and the 1st column in B and

multiply corresponding entries and add these together.

i.e. (2)(2) + (2)(−5) = 4− 10 = −6.

(1st row, 2nd column)

Take the 1st row in A and the 2nd column in B and

multiply corresponding entries and add these together.

i.e. (2)(5) + (2)(4) = 10 + 8 = 18.

Page 113: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 6. MATRICES 112

(2nd row, 1st column)

Take the 2nd row in A and the 1st column in B and

multiply corresponding entries and add these together.

i.e. (1)(2) + (3)(−5) = 2− 15 = −13.

(2nd row, 2nd column)

Take the 2nd row in A and the 2nd column in B

and multiply corresponding entries and add these to-

gether. i.e. (1)(5) + (3)(4) = 5 + 12 = 17.

∴ AB =

(−6 18

−13 17

).

Note that BA =

((2)(2) + (5)(1) (2)(2) + (5)(3)

(−5)(2) + (4)(1) (−5)(2) + (4)(3)

)=(

9 19

−6 2

)6= AB. Thus if A and B are conformable

and B and A are conformable, it is not necessarily

true that AB = BA.

Example 6.19 Let A =

(2 5

3 1

), B =

(3 5 7

−1 3 1

).

Page 114: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 6. MATRICES 113

Calculate AB.

AB =

((2)(3) + (5)(−1) (2)(5) + (5)(3) (2)(7) + (5)(1)

(3)(3) + (1)(−1) (3)(5) + (1)(3) (3)(7) + (1)(1)

)

=

(6− 5 10 + 15 14 + 5

9− 1 15 + 3 21 + 1

)

=

(1 25 19

8 18 22

)

Example 6.20 Let A =

(2 5

1 1

), B =

(3

−2

).

Calculate AB.

AB =

((2)(3) + (5)(−2)

(1)(3) + (1)(−2)

)

=

(6− 10

3− 2

)

=

(−4

1

).

Example 6.21 Let A =

1 5 1

1 −1 7

9 3 2

, B =

5 2 3

1 2 3

1 1 −1

.

Calculate AB. AB =

Page 115: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 6. MATRICES 1141(5) + 5(1) + 1(1) 1(2) + 5(2) + 1(1) 1(3) + 5(3) + 1(−1)

1(5) +−1(1) + 7(1) 1(2) +−1(2) + 7(1) 1(3) +−1(3) + 7(−1)

9(5) + 3(1) + 2(1) 9(2) + 3(2) + 2(1) 9(3) + 3(3) + 2(−1)

=

5 + 5 + 1 2 + 10 + 1 3 + 15− 1

5− 1 + 7 2− 2 + 7 3− 3− 7

45 + 3 + 2 18 + 6 + 2 27 + 9− 2

=

11 13 17

11 7 −7

50 26 34

.

Example 6.22 Let A =

1 5 1

1 −1 7

9 3 −2

, B =

5 2

1 2

1 1

.

Calculate AB. AB =

Page 116: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 6. MATRICES 115

=

1(5) + 5(1) + 1(1) 1(2) + 5(2) + 1(1)

1(5) +−1(1) + 7(1) 1(2) +−1(2) + 7(1)

9(5) + 3(1) +−2(1) 9(2) + 3(2) +−2(1)

=

5 + 5 + 1 2 + 10 + 1

5− 1 + 7 2− 2 + 7

45 + 3− 2 18 + 6− 2

=

11 13

11 7

46 22

.

Exercise 6.23 Let A =

(3

−3

), B =

(1 7

−2 3

), C =

(−2 −1

5 3

), D =

(0 4 3

−6 2 −7

), E =

3 4

2 −7

8 10

, F =

1 −1 2

2 −7 5

8 10 1

, G =

5 0 1

3 −2 3

1 2 −4

and H =

1 0 2 3

2 −7 1 1

8 1 1 −1

.

(a) For the matrices {A, B, C,D,E, F, G, H}, decide which

pairs are conformable.

(b) For each of the pairs of matrices that are conformable,

calculate their product.

Page 117: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 6. MATRICES 116

6.6 Transpose of a Matrix

Definition 6.24 The transpose of a matrix A denoted by

AT is obtained by converting the rows of A into columns

one at a time in sequence.

Example 6.25 Let A =

1 0 2

2 −7 1

8 1 1

. Then AT =

1 2 8

0 −7 1

2 1 1

.

In general for two conformable matrices A and B:

• (AB)T = BTAT .

Also if A is any matrix, then (AT )T = A .

Exercise 6.26 Let A =

(3

−3

), B =

(1 7

−2 3

), C =

(−2 −1

5 3

), D =

(0 4 3

−6 2 −7

), E =

3 4

2 −7

8 10

, F =

1 −1 2

2 −7 5

8 10 1

, G =

5 0 1

3 −2 3

1 2 −4

and H =

1 0 2 3

2 −7 1 1

8 1 1 −1

.

Page 118: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 6. MATRICES 117

(a) For the matrices {A, B, C,D,E, F, G, H}, find the

transpose of each matrix.

(b) Show (BC)T = CTBT .

(c) Show (FG)T = GTF T .

6.7 Identity Matrix

Definition 6.27 The Identity Matrix (In) is an n × n

matrix where each diagonal entry is 1 and each off diagonal

entry is 0.

Example 6.28 I2 =

(1 0

0 1

), I3 =

1 0 0

0 1 0

0 0 1

and I4 =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

.

Let A be any n× n matrix, then

A · In = A = In · A .

Page 119: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 6. MATRICES 118

6.8 The Inverse of a 2× 2 matrix

The determinant of a matrix is denoted by |A| and

the adjoint matrix by A∗. Let A =

(a1,1 a1,2

a2,1 a2,2

), then

|A| = a1,1a2,2 − a1,2a2,1 and A∗ =

(a2,2 −a1,2

−a2,1 a1,1

).

Example 6.29 Let A =

(1 5

−7 1

)and B =

(5 1

3 −5

).

Investigate if (i) |AB| = |A||B| (ii) (A + B)∗ = A∗ + B∗

(iii) (AB)∗ = B∗A∗.

(i) |A| = (1)(1)− (5)(−7) = 1+35 = 36. |B| = (5)(−5)−(3)(1) = −25 − 3 = −28 and |A||B| = (36)(−28) =

−1008.

AB =

(1 5

−7 1

)(5 1

3 −5

)=

(5 + 15 1− 25

−35 + 3 −7− 5

)=

(20 −24

−32 −12

).

Thus |AB| = (20)(−12) − (−32)(−24) = −1008. There-

fore |AB| = |A||B| .

(ii) A + B =

(6 6

−4 −4

), ∴ (A + B)∗ =

(−4 −6

4 6

).

Page 120: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 6. MATRICES 119

A∗ =

(1 −5

7 1

), B∗ =

(−5 −1

−3 5

). ∴ A∗+B∗ =

(−4 −6

4 6

).

Therefore (A + B)∗ = A∗ + B∗ .

(iii) AB =

(20 −24

−32 −12

). ∴ (AB)∗ =

(−12 24

32 20

).

B∗A∗ =

(−5 −1

−3 5

)(1 −5

7 1

)=

(−5− 7 25− 1

−3 + 35 15 + 5

)=(

−12 24

32 20

). Therefore (AB)∗ = B∗A∗ .

In general if A and B are square matrices of the same

type, then

• |AB| = |A||B|

In general if A and B are matrices of the same type,

then

• (A + B)∗ = A∗ + B∗

In general if A and B are conformable matrices, then

• (AB)∗ = B∗A∗ .

Page 121: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 6. MATRICES 120

Also if A is any matrix, then (A∗)∗ = A .

Exercise 6.30 Let A =

(2 3

1 4

), B =

(−1 −3

3 5

)and

C =

(1 2

3 4

). Show that (i) |AB| = |A||B| (ii) |BC| =

|B||C| (iii) (A + C)∗ = A∗ + C∗ (iv) (A + B)∗ =

A∗ + B∗ (v) (AC)∗ = C∗A∗ (vi) (BC)∗ = C∗B∗

(vii) (A∗)∗ = A (viii) (B∗)∗ = B.

We only try to invert square matrices. In general

not every square matrix is invertible. If a square ma-

trix has an inverse, it is said to be invertible or non−singular otherwise it is said to be non− invertible or

singular. If a matrix has an inverse, we denote it by

A−1. The inverse matrix has the property:

A · A−1 = In = A−1 · A .

In general the formula for the inverse of an n×n ma-

trix is :

A−1 =1

|A|A∗ .

Page 122: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 6. MATRICES 121

Thus

A−1 =1

a1,1a2,2 − a1,2a2,1

(a2,2 −a1,2

−a2,1 a1,1

).

where |A| is the determinant of A and A∗ is the ad-

joint matrix of A. Thus if |A| = 0, A is non−invertible.

Also if |A| 6= 0, A is invertible.

Example 6.31 Let A =

(5 3

4 2

). Find A−1.

|A| = 10 − 12 = −2. Also A∗ =

(2 −3

−4 5

). Therefore

A−1 =1

−2

(2 −3

−4 5

).

Example 6.32 Let A =

(3 2

6 4

).

Find |A|. Does A−1 exist?

|A| = (3)(4)− (2)(6) = 12− 12 = 0.

Therefore A−1 does not exist.

Exercise 6.33 Let A =

(7 3

4 2

), B =

(7 1

3

63 3

), C =

Page 123: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 6. MATRICES 122(1 −1

5 0

)and D =

(2 6

1 3

). For the matrices {A, B, C,D},

calculate (where possible) their inverses.

6.9 The inverse of a 3× 3 matrix

Let A =

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

. Then |A| = a1,1

∣∣∣∣∣a2,2 a2,3

a3,2 a3,3

∣∣∣∣∣−a1,2

∣∣∣∣∣a2,1 a2,3

a3,1 a3,3

∣∣∣∣∣ + a1,3

∣∣∣∣∣a2,1 a2,2

a3,1 a3,2

∣∣∣∣∣= a1,1[a2,2a3,3−a2,3a3,2]−a1,2[a2,1a3,3−a2,3a3,1]+a1,3[a2,1a3,2−a2,2a3,1] and

A∗ =

+

∣∣∣∣∣a2,2 a2,3

a3,2 a3,3

∣∣∣∣∣ −∣∣∣∣∣a2,1 a2,3

a3,1 a3,3

∣∣∣∣∣ +

∣∣∣∣∣a2,1 a2,2

a3,1 a3,2

∣∣∣∣∣−

∣∣∣∣∣a1,2 a1,3

a3,2 a3,3

∣∣∣∣∣ +

∣∣∣∣∣a1,1 a1,3

a3,1 a3,3

∣∣∣∣∣ −∣∣∣∣∣a1,1 a1,2

a3,1 a3,2

∣∣∣∣∣+

∣∣∣∣∣a1,2 a1,3

a2,2 a2,3

∣∣∣∣∣ −∣∣∣∣∣a1,1 a1,3

a2,1 a2,3

∣∣∣∣∣ +

∣∣∣∣∣a1,1 a1,2

a2,1 a2,2

∣∣∣∣∣

T

.

Note that A−1 = 1|A|A

∗.

Page 124: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 6. MATRICES 123

Example 6.34 Let A =

−1 1 2

3 0 5

1 7 2

. Find A−1.

|A| = (−1)

∣∣∣∣∣0 −5

7 2

∣∣∣∣∣− (1)

∣∣∣∣∣3 −5

1 2

∣∣∣∣∣ + (2)

∣∣∣∣∣3 0

1 7

∣∣∣∣∣= (−1)[0(2)−−5(7)]−(1)[3(2)−(−5)(1)]+(2)[3(7)−0(2)]

= −35− 11 + 42 = −4.

A∗ =

+

∣∣∣∣∣0 5

7 2

∣∣∣∣∣ −

∣∣∣∣∣3 5

1 2

∣∣∣∣∣ +

∣∣∣∣∣3 0

1 7

∣∣∣∣∣−

∣∣∣∣∣1 2

7 2

∣∣∣∣∣ +

∣∣∣∣∣−1 2

1 2

∣∣∣∣∣ −∣∣∣∣∣−1 1

1 7

∣∣∣∣∣+

∣∣∣∣∣1 2

0 5

∣∣∣∣∣ −∣∣∣∣∣−1 2

3 5

∣∣∣∣∣ +

∣∣∣∣∣−1 1

3 0

∣∣∣∣∣

T

=

+[(0)(2)− (5)(7)] −[(3)(2)− (5)(1)] +[(3)(7)− (0)(2)]

−[(1)(2)− (2)(7)] +[(−1)(2)− (2)(1)] −[(−1)(7)− (1)(1)]

+[(1)(5)− (0)(2)] −[(−1)(5)− (2)(3)] +[(−1)(0)− (1)(3)]

T

=

−35 −1 21

12 −4 8

5 11 −3

T

=

−35 12 5

−1 −4 11

21 8 −3

.

Page 125: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 6. MATRICES 124

A−1 =1

|A|A∗. Therefore A−1 =

1

−4

−35 12 5

−1 −4 11

21 8 −3

.

Example 6.35 Let A =

−2 7 6

5 1 −2

3 8 4

. Find |A|.

Does A−1 exist ? Explain ?

|A| = (−2)

∣∣∣∣∣1 −2

8 4

∣∣∣∣∣− (7)

∣∣∣∣∣5 −2

3 4

∣∣∣∣∣ + (6)

∣∣∣∣∣5 1

3 8

∣∣∣∣∣= (−2)[(1)(4)−(−2)(8)]−(7)[(5)(4)−(−2)(3)]+(6)[(5)(8)−(3)(1)]

= (−2)[20]− (7)[26] + (6)[37] = −40− 182 + 222 = 0.

∴ |A| = 0, so A−1 doesn’t exist.

Exercise 6.36 Let A =

2 3 4

−5 5 6

7 8 9

, B =

1 2 3

2 4 4

1 2 5

and C =

−2 1 4

3 5 −7

1 6 2

.

(i) Find |A|, |B| and |C|. (ii) For the matrices {A, B, C},

calculate their inverses where possible.

Page 126: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 6. MATRICES 125

6.10 Solving equations involving Matrices

If you want to solve the linear equation ax + b = 0,

you calculate that x = −b

a. However to solve AX =

B where A, X and B are matrices, you cannot say

that X = −B

Asince we cannot divide matrices. There-

fore we must solve equations involving matrices a

different way.

Example 6.37 Let A =

(5 2

1 3

), B =

(7 1

−1 0

), C =(

0 1

−1 1

), D =

(1

−1

)and X be a matrix. Solve the

following matrix equations for X :

(i) AX = B

(ii) XB = C

(iii) BX = D

(iv) ABX = C

(v) BXA = C

(vi) XA = B + 2C.

Page 127: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 6. MATRICES 126

(i) AX = B .

We first pre-multiply (multiply on left) by A−1 on

both sides of the equation.

A−1AX = A−1B

Thus

I2X = A−1B

∴ X = A−1B

We are now ready to calculate X .

X = A−1B = 113

(3 −2

−1 5

)(7 1

−1 0

)= 1

13

(23 3

−12 −1

)= 23

13313

−1213

−113

.

(ii) XB = C .

XB = C

XBB−1 = CB−1 (post-multiply by B−1)

XI2 = CB−1 (BB−1 = I2)

X = CB−1 (XI2 = X)

X = CB−1 =

(0 1

−1 1

)1

1

(0 −1

1 7

)=

(0 1

−1 1

)(0 −1

1 7

)=

1 7

1 8

.

Page 128: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 6. MATRICES 127

(iii) BX = D .

BX = D

B−1BX = B−1D pre-multiply by B−1

I2X = B−1D BB−1 = I2

X = B−1D I2X = X

X = B−1D =

(0 −1

1 7

)(1

−1

)=

(1

−6

).

(iv) ABX = C .

ABX = C

A−1ABX = A−1C pre-multiply by A−1

I2BX = B−1C AA−1 = I2

BX = A−1D I2B = B

B−1BX = B−1A−1C pre-multiply by B−1

I2X = B−1A−1C BB−1 = I2

X = B−1A−1C I2X = X

Page 129: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 6. MATRICES 128

X = B−1A−1C =

(0 −1

1 7

)113

(3 −2

−1 5

)(0 1

−1 1

)=

113

(1 −5

−2 33

)(0 1

−1 1

)= 1

13

(5 −4

−33 29

)=

513

−413

−3313

2913

.

(v) BXA = C .

BXA = C

B−1BXA = B−1C pre-multiply by B−1

I2XA = B−1C

XA = B−1C

XAA−1 = B−1CA−1 post-multiply by A−1

XI2 = B−1CA−1

X = B−1CA−1

X = B−1CA−1 =

(0 −1

1 7

)(0 1

−1 1

)113

(3 −2

−1 5

)=

113

(1 −1

−7 8

)(3 −2

−1 5

)= 1

13

(4 −7

−29 54

)=

413

−713

−2913

5413

.

Page 130: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 6. MATRICES 129

(vi) XA = B + 2C .

XA = B + 2C

XAA−1 = (B + 2C)A−1 post-multiply by A−1

XI2 = (B + 2C)A−1

X = (B + 2C)A−1

X = (B+2C)A−1 =

[(7 1

−1 0

)+

(0 2

−2 2

)]113

(3 −2

−1 5

)=

113

(7 3

−3 2

)(3 −2

−1 5

)= 1

13

(18 1

−11 16

)=

1813

113

−1113

1613

.

Example 6.38 Let A =

−1 1 2

3 0 5

1 7 2

and B =

1

0

−1

.

Solve AX = B for X where X is a matrix.

AX = B

A−1AX = A−1B

I3X = A−1B

X = A−1B

Page 131: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 6. MATRICES 130

X = A−1B = 1−4

−35 12 5

−1 −4 11

21 8 −3

1

0

−1

= 1−4

−40

−12

24

=

10

3

−6

.

Exercise 6.39 Let A =

(7 3

4 2

), B =

(1 −1

5 0

), C =

(1 0

1 3

), D =

(1

−2

), E =

2 3 4

−5 5 6

7 8 9

, F =

1

1

−1

and X be a matrix. Solve the following equations for X :

(i) AX = B

(ii) AX = D

(iii) BX = D

(iv) XAB = C

(v) AXB = C

(vi) AX = B + 2C

(vii) EX = F .

Page 132: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 6. MATRICES 131

Example 6.40 Solve the following simultaneous equations

x + y = 1

x− y = 7

We can rewrite this system of equations as an equa-

tion with matrices as follows:(1 1

1 −1

)(x

y

)=

(1

7

)

Let A =

(1 1

1 −1

), X =

(x

y

)and B =

(1

7

), so we

have AX = B. So solving the original system of

equations is equivalent to solving this matrix equa-

tion for the matrix X .

AX = B

A−1AX = A−1B

I2X = A−1B

X = A−1B

Page 133: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 6. MATRICES 132

X =

(x

y

)= A−1B = 1

−2

(−1 −1

−1 1

)(1

7

)= −1

2

(−8

6

)=(

4

−3

). Therefore x = 4 and y = −3.

Example 6.41 Solve the following simultaneous equations

3x− y = 11

3x− 2y = 13

(3 −1

3 −2

)(x

y

)=

(11

13

)=⇒ AX = B

where A =

(3 −1

3 −2

), X =

(x

y

)and B =

(11

13

).

AX = B

A−1AX = A−1B

I2X = A−1B

X = A−1B

X =

(x

y

)= A−1B = 1

−3

(−2 1

−3 3

)(11

13

)= −1

3

(−9

6

)=(

3

−2

). Therefore x = 3 and y = −2.

Page 134: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 6. MATRICES 133

Example 6.42 Solve the following equations

2x + y + z = 8

5x− 3y + 2z = 3

7x + y + 3z = 20

2 1 1

5 −3 2

7 1 3

x

y

z

=

8

3

20

=⇒ AX = B

where A =

2 1 1

5 −3 2

7 1 3

, X =

x

y

z

and B =

8

3

20

.

AX = B

A−1AX = A−1B

I3X = A−1B

X = A−1B

Page 135: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 6. MATRICES 134

X =

x

y

z

= A−1B = 13

−11 −2 5

−1 −1 1

26 5 −11

8

3

20

=

13

6

9

3

=

2

3

1

. Therefore x = 2 and y = 3 and z = 1.

Exercise 6.43 Solve the following systems of equations

using matrix methods.

(i) 3x− 2y = 7

4x + y = 13

(ii) 2x + 3y = 5

5x− y = −16

(iii) x + y + 2z = 3

4x + 2y + z = 13

2x + y − 2z = 9

(iv) x + y + z = 2

2x + 3y + z = 7

3x− y + 2z = 4

Page 136: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 6. MATRICES 135

6.11 Cramer’s Rule

Suppose we want to solve a system of n linear equa-

tions in n unknowns:

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

...

an1x1 + an2x2 + · · · + annxn = bn

We can rewrite this in matrix form as AX = B, where

A =

a11 a12 . . . a1n

a21 a22 . . . a2n

... ... ...

an1 an2 . . . ann

, X =

x1

x2

...

xn

and B =

b1

b2

...

bn

.

We want to solve AX = B, to find X .

Definition 6.44 Given a matrix A =

a11 a12 . . . a1n

a21 a22 . . . a2n

... ... ...

an1 an2 . . . ann

,

its i, j-cofactor matrix Cij is the matrix you get when you

remove the ith row and the jth column. This gives us an

n− 1× n− 1 matrix.

Page 137: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 6. MATRICES 136

For example C11 =

a22 . . . a2n

...

an2 . . . ann

and

C2n =

a11 a12 . . . a1,n−1

a31 a32 . . . a3,n−1

... ... ...

an1 an2 . . . an,n−1

.

Definition 6.45 Given the matrix A above, its determi-

nant is det(A) = |A| =

(−1)1+1a11det(C11)+(−1)1+2a12det(C12)+· · ·+(−1)1+na1ndet(C1n).

Example 6.46 If A =

(a11 a12

a21 a22

)then

det(A) = a11a22 − a12a21.

Example 6.47 Let A =

1 2 3

4 5 6

7 8 9

. Then det(A) = |A| =

1det(C11)− 2det(C12) + 3det(C13) =

1det

(5 6

8 9

)− 2

(4 6

7 9

)+ 3

(4 5

7 8

)=

1(45−48)−2(36−42)+3(32−35) = −3−2(−6)+3(−3) =

−3 + 12− 9 = 0.

Thus det(A) = 0, so A−1 = A∗

det(A) does not exist.

Page 138: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 6. MATRICES 137

Exercise 6.48 Find det(A), where A =

1 2 −4

1 0 3

2 −1 0

.

det(A) = 1det(C11)− 2det(C12) + (−4)det(C13) =

1(0+3)− 2(0− 6)− 4(−1− 0) = 1(3)− 2(−6)− 4(−1) =

3 + 12 + 4 = 19.

Using determinants we are now ready to state

Cramer’s Rule

Let AX = B be a system of n linear equations in n

unknowns. Let A =

a11 a12 . . . a1n

a21 a22 . . . a2n

... ... ...

an1 an2 . . . ann

, X =

x1

x2

...

xn

and B =

b1

b2

...

bn

. The jth component of X is

xj =det(Bj)

det(A) , where Bj =

a11 a12 . . . b1 . . . a1n

... ... ... ...

an1 an2 . . . bn . . . ann

.

(In Bj, the vector B replaces the jth column of A).

Page 139: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 6. MATRICES 138

Proof: Omit.

Example 6.49 Use Cramer’s Rule to solve:

x1 + 3x2 = 0

2x1 + 4x2 = 6.

Here AX = B, with A =

(1 3

2 4

), X =

(x1

x2

)and B =(

0

6

). Now B1 =

(0 3

6 4

)and B2 =

(1 0

2 6

)(recall that Bj is just A with the vector B replacing the jth

column of A).

∴ x1 = det(B1)det(A) =

det

0 3

6 4

det

1 3

2 4

= 0−18

4−6 = −18−2 = 9 = x1.

Also, x2 = det(B2)det(A) =

det

1 0

2 6

−2 = 6−0

−2 = −3 = x2.

Example 6.50 Use Cramer’s Rule to solve

x + 3y − 2z = 3

2x + 5y + 2z = 5

3x− y + 4z = 8.

Page 140: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 6. MATRICES 139

Here AX = B, where A =

1 3 −2

2 5 2

3 −1 4

, X =

x

y

z

and B =

3

5

8

. Write x = x1, y = x2 and z = x3. Now

B1 =

3 3 −2

5 5 2

8 −1 4

, B2 =

1 3 −2

2 5 2

3 8 4

and

B3 =

1 3 3

2 5 5

3 −1 8

.

∴ x = x1 = det(B1)det(A) =

3det

5 2

−1 4

−3det

5 2

8 4

+(−2)det

5 5

8 −1

1det

5 2

−1 4

−3det

2 2

3 4

+(−2)det

2 5

3 −1

= 3(20+2)−3(20−16)−2(−5−40)

(20−(−2))−3(8−6)−2(−2−15) = 3(22)−3(4)−2(−45)22−3(2)−2(−17) = 66−12+90

22−6+34 =14450 = 72

25 = x1 = x.

Also, y = x2 = det(B2)det(A) =

1det

5 2

8 4

−3det

2 2

3 4

+(−2)det

2 5

3 8

50

Page 141: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 6. MATRICES 140

= (20−16)−3(8−6)−2(16−15)50 = 4−6−2

50 = −450 = −2

25 = x2 = y.

Lastly, we could show that x3 = z = −950 (check).

Exercise 6.51 Use Cramer’s Rule to solve

x + y − 2z = 1

x− y + 3z = 0

2x− y + z = 2.

(You should get that x = 45, y = −5

5 and z = −35 ).

Exercise 6.52 Use Cramer’s Rule to find x

x + 2z = 0

−x + z = 1

2w + x− y + 2z = −1.

3w + x− 2y + z = 3.

(You should get that x = −23).

6.12 Eigenvalues and Eigenvectors

Let A = [aij] be a square n× n matrix.

Let X =

x1

x2

...

xn

6=

0

0...

0

be an n × 1 column vector.

Let λ be a number. Can we have AX = λX ? ∗

Page 142: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 6. MATRICES 141

If there is a number λ and a vector X which satis-

fies ∗, then we say that λ is an eigenvalue of A and

X is an eigenvector of A. These have important ap-

plications for coupled oscillations and vibrations and

image processing.

How do we find the eigenvalues of A ?

We must have AX = λX , so

AX − λX = On×1 = AX − λIX = (A− λI)X = On×1.

This happens when A− λI is not invertible

(otherwise X = (A− λI)−1.O = O)

i.e. when det(A− λI) = O.

Thus to find the eigenvalues of A we must solve

det(A− λI) = O for λ.

Example 6.53 Find the eigenvalues of A =

(4 −1

2 1

).

|A−λI| = |

(4 −1

2 1

)−

(λ 0

0 λ

)| = |

(4− λ −1

2 1− λ

)| =

(4−λ)(1−λ)−(−1)2 = 4−4λ−λ+λ2+2 = λ2−5λ+6 =

0 = (λ− 2)(λ− 3).

∴ λ = 2 and λ = 3 are the eigenvalues of A.

Check: |A−2λI| = |

(4 −1

2 1

)−

(2 0

0 2

)| = |

(2 −1

2 −1

)| =

Page 143: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 6. MATRICES 142

2(−1)− (−1)2 = 0 as required. Thus 2 is an eigenvalue of

A.

Exercise 6.54 Find the eigenvalues of A =

(3 1

−1 2

).

Thus λ = 52 +

√3

2 i and λ = 52 −

√3

2 i are the eigencalues

of A.

Exercise 6.55 Find the eigenvalues of A =

8 −2 0

4 2 1

3 2 −1

.

Page 144: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 6. MATRICES 143

⇒ λ3 − 9λ2 + 12λ + 46 = 0. Using numerical tech-

niques the roots can be shown to be λ = −1.593055586,

λ = 5.296527793− 0.9067081753i and λ = 5.296527793 +

0.9067081753i.

Example 6.56 Find the eigenvectors of A =

(4 −1

2 1

).

Recall that in a previous example we saw that the eigen-

values of A are 2 and 3.

Case 1: λ = 2. Find the eigenvector X associated with the

eigenvector λ = 2.

(A − λI)X = 0, i.e. AX − λIX = 0 ⇒ AX = λX ⇒AX = 2X .

Page 145: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 6. MATRICES 144

(4 −1

2 1

)X = 2X ⇒

(4 −1

2 1

)(x1

x2

)=

(2x1

2x2

)

⇒4x1 − x2 = 2x1

2x1 + x2 = 2x2

⇒2x1 = x2

2x1 = x2

.

Thus the eigenvector X is

(x1

x2

)=

(x1

2x1

)= x1

(1

2

).

Case 2: λ = 3. Find the eigenvector X associated with the

eigenvector λ = 3.

AX = λX ⇒

(4 −1

2 1

)(x1

x2

)=

(3x1

3x2

)

⇒4x1 − x2 = 3x1

2x1 + x2 = 3x2

⇒x1 = x2

x2 = x1

.

Thus the eigenvector X is

(x1

x2

)=

(x1

x1

)= x1

(1

1

).

∴ A =

(4 −1

2 1

)has eigenvalue 2 with associated eigen-

vector

(1

2

)(and its scalar multiples) and has eigenvalue

3 with associated eigenvector

(1

1

)(and its scalar multi-

ples).

Page 146: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 6. MATRICES 145

Exercise 6.57 Find the eigenvalues of A =

(1 2

1 0

)and

their associated eigenvectors.

Page 147: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 6. MATRICES 146

∴ A =

(1 2

1 0

)has eigenvalue 2 with associated eigen-

vector

(2

1

)(and its scalar multiples) and has eigenvalue

−1 with associated eigenvector

(1

−1

)(and its scalar mul-

tiples).

Page 148: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

Chapter 7

Partial Differentiation

147

Page 149: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 7. PARTIAL DIFFERENTIATION 148

Example 7.1 A cylinder with radius r and height h has

volume V = πr2h. Thus V depends on r and h, so V

is a function of two variables. If we keep r constant and

increase h, then V will increase. The rate of change of V

with respect to h is written as[

dVdh

]r

or more commonly as∂V∂h . This is called the partial derivative of V with respect

to h.

∴ ∂V∂h = ∂

∂h(πr2h) = πr2 since we treat r as a constant.

Also, ∂V∂r = ∂

∂r(πr2h) = πh ∂∂r(r

2)

(since we treat h as a constant) = πh2r.

Example 7.2 Let z = f (x, y) = x3 + xy − y2.

Note that z is a function from two variables to a third vari-

able, so it represents a surface in three dimensions.∂z∂x = ∂

∂x(x3 + xy − y2) = 3x2 + y − 0 and∂z∂y = ∂

∂y(x3 + xy − y2) = 0 + x− 2y.

∴ ∂∂x(∂z

∂x) = ∂2z∂x2 = 6x and

∂∂y(

∂z∂y) = ∂2z

∂y2 = −2 .

Also, ∂∂x(∂z

∂y) = ∂2z∂x∂y = 1 and

∂∂y(

∂z∂x) = ∂2z

∂y∂x = 1.

Note: for almost all functions, ∂2z∂x∂y = ∂2z

∂y∂x.

Exercise 7.3 Let z = f (x, y) = x cos y − 3√

x2y + x.

Page 150: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 7. PARTIAL DIFFERENTIATION 149

Find ∂z∂x, ∂z

∂y , ∂2z∂x2 , ∂2z

∂y2 , ∂2z∂x∂y and ∂2z

∂y∂x.

Exercise 7.4 Let z = f (x, y) = sin(3xy + ey). Find ∂z∂x

and ∂z∂y .

Page 151: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 7. PARTIAL DIFFERENTIATION 150

Example 7.5 Let z = f (x2 + y2).

Show that x∂z∂y − y ∂z

∂x = 0 ∗∂z∂x = ∂z

∂(x2+y2)∂(x2+y2)

∂x = 2x ∂z∂(x2+y2)

.

Similarly, ∂z∂y = ∂z

∂(x2+y2)∂(x2+y2)

∂y = 2y ∂z∂(x2+y2)

.

Thus the LHS of ∗ equals

x∂z∂y − y ∂z

∂x = 2xy ∂z∂(x2+y2)

− 2xy ∂z∂(x2+y2)

= 0 as required.

Exercise 7.6 Let z = f (yx). Show that x∂z

∂x + y ∂z∂y = 0.

∂z∂x = ∂z

∂(yx)

∂(yx)

∂x = ∂z∂(y

x)y(−1)x−2 = −y

x2∂z

∂(yx)

.∂z∂y = . . .

Exercise 7.7 Let z = f (ax + by), where a and b are con-

stants. Show that b∂z∂x − a∂z

∂y = 0.

Page 152: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 7. PARTIAL DIFFERENTIATION 151

Example 7.8 Let z = 1x2+y2−1

.

Show that x∂z∂x + y ∂z

∂y = −2z(1 + z) ∗∂z∂x = ∂

∂x((x2 + y2 − 1)−1) =

(−1)(x2 + y2 − 1)−2 ∂∂x(x2 + y2 − 1) =

(−1)(x2 + y2 − 1)−2(2x) = −2x(x2+y2−1)−2 = ∂z

∂x.

Also,∂z∂y = ∂

∂y((x2 + y2 − 1)−1) =

(−1)(x2 + y2 − 1)−2 ∂∂y(x

2 + y2 − 1) = −2y(x2+y2−1)−2 = ∂z

∂y .

∴ x∂z∂x + y ∂z

∂y = −2x2

(x2+y2−1)2+ −2y2

(x2+y2−1)2= LHS of ∗.

RHS of ∗ = −2z(1 + z) = −2(x2+y2−1)

(x2+y2−1x2+y2−1

+ 1x2+y2−1

) =

−2(x2+y2−1)

( x2+y2

x2+y2−1) = −2x2−2y2

(x2+y2−1)2.

∴ LHS = RHS of ∗.

Exercise 7.9 Let z = xyx−y .

Show that x∂z∂x + y ∂z

∂y = z ∗

Page 153: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 7. PARTIAL DIFFERENTIATION 152

Show also that x2 ∂2z∂x2 − y2∂2z

∂y2 = 0 ∗ ∗

Next show that z ∂2z∂x∂y = 2∂z

∂x∂z∂y ∗ ∗∗

Definition 7.10 Let z = f (x, y).

Then fx = fx(x, y) = ∂z∂x = zx, fy = fy(x, y) = ∂z

∂y = zy,

Page 154: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 7. PARTIAL DIFFERENTIATION 153

fxx = fxx(x, y) = ∂2z∂x2 = zxx, fyy = fyy(x, y) = ∂2z

∂y2 = zyy,

fxy = fxy(x, y) = ∂2z∂x∂y = zxy and fyx = fyx(x, y) =

∂2z∂y∂x = zyx.

For example fx(1, 2) = ∂z∂x evaluated at x = 1, y = 2.

Example 7.11 Let z = f (x, y) = x3 + 2xy + 2y2.

Find fx(1, 2) and fy(1, 2).

fx = ∂z∂x = 3x2 + 2y, so fx(1, 2) = 3(12) + 2(2) = 7.

fy = ∂z∂y = 2x + 4y, so fy(1, 2) = 2(1) + 4(2) = 10.

Exercise 7.12 Let z = f (x, y) = x sin(xy) + 3.

Find fx(1,π2) and fy(1,

π2).

Exercise 7.13 Let z = f (x, y) = xx2+y2 .

Page 155: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 7. PARTIAL DIFFERENTIATION 154

Find fx(1, 0) and fy(2, 1).

Example 7.14 Let w = f (x, y, z) = x3y2 + 3 sin(yz) + 2.

Find the first order partial derivatives at (1, 0, π2).

fx = ∂w∂x = 3x2y2 + 0 + 0 = 3x2y2.

∴ fx(1, 0,π2) = 3(12)(02) = 0.

fy = ∂w∂y = x32y + 3 cos(yz)z + 0 = 2x3y + 3z cos(yz).

∴ fy(1, 0,π2) = 2(13)(0) + 3π

2 cos(0π2) = 0 + 3π

2 cos(0) = 3π2 .

fz = ∂w∂z = 0 + 3 cos(yz)y + 0 = 3 cos(yz)y.

∴ fz(1, 0,π2) = 3 cos(0π

2)0 = 0.

Note: dydx = 1

dxdy

but ∂y∂x 6=

1∂x∂y

.

Example 7.15 Here we show that d2xdy2 =

−d2y

dx2

(dydx)3

(6= 1

d2y

dx2

).

d2xdy2 = d

dy(dxdy ) = d

dy

(1dydx

)= dx

dyddx

(1dydx

)(by the Chain Rule)

Page 156: staffweb.itsligo.ie · Contents 1 Mathematics Review CE1H 2 1.1 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Integration using Trigonometric Substitutions

CHAPTER 7. PARTIAL DIFFERENTIATION 155

= dxdy

ddx[(dy

dx)−1] = dxdy (−1)(dy

dx)−2 d2ydx2 = 1

(dydx)

(−1) 1

(dydx)2

d2ydx2 =

−d2y

dx2

(dydx)3

as required.

Example 7.16 Let x = t + 2 sin t and y = cos t.

Find dydx and d2y

dx2 and find their values at t = 0.dydx = dy

dtdtdx (by the Chain Rule) = dy

dt

(1dxdt

)= d

dt(cos t) 1ddt(t+2 sin t)

=

− sin t 11+2 cos t = − sin t

1+2 cos t = dydx.

Thus at t = 0 we get dydx = − sin 0

1+2 cos 0 = −01+2 = 0.

Now d2ydx2 = d

dx(dydx) = d

dx( − sin t1+2 cos t) = d

dt(− sin t

1+2 cos t)dtdx

(by the Cain Rule) = 1

(dxdt )

(1+2 cos t)(− cos t)−(− sin t)(0−2 sin t)(1+2 cos t)2

by the quotient rule.