contents of the section: citation records and selection of ...sestak/yyx/citations-cronicle.pdf ·...

47
Contents of the section: Citation records and selection of useful citations CITATION RECORDS AND SOME FORGOTTEN ANNIVERSARIES IN THERMAL ANALYSIS Jaroslav Šesták J Thermal Anal Calor, 2012; 109: 1-5 TEN YEARS SINCE ROBERT C. MACKENZIE’S DEATH. A TRIBUTE TO THE ICTA FOUNDER Gianni Lombardi , Jaroslav Šesták Journal of Thermal Analysis and Calorimetry, Vol. 105 (2011) 783-701 PREFACE FOR THE BOOK „THERMAL ANALYSIS OF MICRO-, NANO- AMD NONCRYSTALLINE MATERIALS“ Jaroslav Šesták Springer 2013, ISBN 978-90-481-3149-5. IMAPACT OF CZECH AND SLOVAK THERMOANALYSTS TOWARD THE EARLY PROMOTION OF THERMOMETRY, CALORIMETRY AND THERMAL PHYSICS Jaroslav Šesták, Pavel Holba International calorimetry seminary in Harrachov 2012, proceedings by Pardubice University 2012 DISTINCTIVE ANNIVERSARIES, PAPERS AND CITATION RECORDS IN THE TOPIC OF GLASS CRYSTALLIZATION Jaroslav Šesták, Sklář a keramik 11–12 / 2011 – 265 (published in Prague) DATABASES IN MATERIALS SCIENCE: CONTEMPORARY STATE AND FUTURE J. Fiala and J. Šesták Journal of Thermal Analysis and Calorimetry 60 (2000) 1101-1110.

Upload: others

Post on 21-Oct-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

  • Contents of the section: Citation records and selection of useful citations CITATION RECORDS AND SOME FORGOTTEN ANNIVERSARIES IN THERMAL ANALYSIS Jaroslav Šesták J Thermal Anal Calor, 2012; 109: 1-5 TEN YEARS SINCE ROBERT C. MACKENZIE’S DEATH. A TRIBUTE TO THE ICTA FOUNDER Gianni Lombardi , Jaroslav Šesták Journal of Thermal Analysis and Calorimetry, Vol. 105 (2011) 783-701 PREFACE FOR THE BOOK „THERMAL ANALYSIS OF MICRO-, NANO- AMD NONCRYSTALLINE MATERIALS“ Jaroslav Šesták Springer 2013, ISBN 978-90-481-3149-5. IMAPACT OF CZECH AND SLOVAK THERMOANALYSTS TOWARD THE EARLY PROMOTION OF THERMOMETRY, CALORIMETRY AND THERMAL PHYSICS Jaroslav Šesták, Pavel Holba International calorimetry seminary in Harrachov 2012, proceedings by Pardubice University 2012 DISTINCTIVE ANNIVERSARIES, PAPERS AND CITATION RECORDS IN THE TOPIC OF GLASS CRYSTALLIZATION Jaroslav Šesták, Sklář a keramik 11–12 / 2011 – 265 (published in Prague)

    DATABASES IN MATERIALS SCIENCE: CONTEMPORARY STATE AND FUTURE

    J. Fiala and J. Šesták Journal of Thermal Analysis and Calorimetry 60 (2000) 1101-1110.

  • Citation records and some forgotten anniversaries in thermalanalysis

    Jaroslav Šesták

    Received: 29 April 2011 / Accepted: 2 May 2011

    � Akadémiai Kiadó, Budapest, Hungary 2011

    Abstract Extent of citation is analysed and the best citied

    papers mentioned accentuating Journal of Thermal analysis

    and Thermochimica Acta. The relevant scope of papers is

    uncovered and some viewpoints are shown. The sphere of

    kinetics appears the most cited subject matter.

    Keywords Impact factor � Quotation responses � Bestcited papers � Thermoanalytical journals � Kinetics

    Preface

    Ten years ago we published an assay describing the storage

    and citation manners utilized in the sphere of scientific

    literature [1] noting if the aim of science is pursuit of truth,

    then the pursuit of information may even drive people from

    science. In 1978, American E. Garfield became a founder

    of the Institute for Scientific Information (ISI) and insti-

    gated an associated launching the citation and co-citation

    (‘scientometric’) databasing. Since that the demand for a

    more extensive data dissemination accelerated because

    most scientific evaluations account on ‘publicability’,

    which is rated according to the so-called journals’ impact

    factors (IF) and the authors’ citation feedback (respon-

    siveness).1 Specific databases have been established and

    the available records are attentively followed to provide

    basis for a more unprejudiced scientific appraisal though

    the absolutely objective assessment is yet unreachable.

    Most common is the ISI Web of Science (WOS) which is

    standard in providing easy accessible data on a searched

    journal, paper, and/or author yielding figures on the total

    citation and annual citation record as well as partial data on

    the yearly mean responsiveness (including IF and

    H-index). However, for older data (\1972) WOS requestsapplication of a more specific search. In addition there is

    another database SCOPUS which needs somehow more

    concern in the process of searching and is mostly preferred

    when exploring more recant data ([1990). SCOPUS wasfactually used for finding the theme citation responsiveness

    in the sisters’ journal [2]. For the below ascertainment of

    citation responses we used a caring service of the Docu-

    mentation Department of the Prague Institute of Physics

    and its well-established links to various databases giving,

    nevertheless, the preference to the certificated WOS (tun-

    ing disqualification of so-called self-citations).

    Written on the occasion of the April 2011 death of Joseph H Flynn, a

    great pioneer in the field of nonisothermal kinetics, to whom this

    paper is dedicated.

    J. Šesták (&)New Technology—Research Centre in the Westbohemian

    Region, West Bohemian University, Universitnı́ 8, 30114 Pilsen,

    Czech Republic

    e-mail: [email protected]

    1 Journal IF is from Journal Citation Report (JCR), being a product

    of Thomson ISI providing thus quantitative tools for evaluating

    journals. The IF is a measure of the frequency with which the so

    called ‘average article’ in a given journal has been cited within an

    agreed period of time (a three-year interval). Thus, IF can be

    considered to be the average number of times published papers are

    cited up to 2 years after publication (and in the below account we

    show the contemporary last year IF). The newly introduced H-index

    (by American physicists J. Hirsch at 2005) is used to measure the

    productivity of an individual (or group or institution) and is calculated

    by taking into account the balance between the number of publica-

    tions and the number of citations per publication. For example, the

    author’s H-index of 22 tells us that he has 22 publications which

    received 22 citations on each paper or more. One can trace a certain

    regularity that the larger number of a paper co-authors often generate

    improved IF increasing subsequently H-index so that the single and

    double authored papers are herewith more respected.

    123

    J Therm Anal Calorim

    DOI 10.1007/s10973-011-1625-3

  • In the contribution we also took in account that in the

    meantime some anniversaries have taken place occurring

    roughly within similar years such as was the foundation of

    two thermoanalytical periodicals, i.e., Journal of Thermal

    Analysis and Calorimetry (JTA-1969, JTAC-1998) and

    Thermochimica Acta (TCA-1970) as well as the institu-

    tionalization of thermoanalytical confederation (ICTA-

    1968 and ICTAC-1994) [3–5]. Similar anniversaries are

    associated with the two most highly cited papers [6, 7]

    published in the respective journal which are the basis of

    following citation analysis and theme correlativeness. As a

    matter of curiosity the most best cited papers were related

    to the topic of reaction kinetics studied by means of ther-

    mal analysis.

    Some tangible data and comparisons

    For the JTAC (IF = 1.59) the outmost quotation reveals

    the paper by T. Ozawa [7] with as many as 1,053 citations,

    which is comparable with his other papers in the Bulletin of

    Chemical Society of Japan (IF = 1.63) [8] with 2096

    citations or in Polymer (IF = 3.57) [9] with 1,097 cita-

    tions. This is still far below the responses to the famous

    kinetic paper by H. E. Kissinger [10] with as many as 4,461

    citations or M. Avrami [11] with 5223 citations published,

    respectively, in the renowned Analytical Chemistry

    (IF = 5.63) and Journal of Chemical Physics (IF = 3.1).

    The kinetic theme is followed in JTAC by the second best

    cited paper [12] with 444 citations, which is one of hun-

    dreds papers modifying the Kissinger method (e.g., [13]).

    Only the third position keeps the paper from a different

    area of novel techniques [14] with 301 citations (becoming

    widely functional, e.g., [15]), but encompassing only third

    time of its comparable quotation existence. Certainly we

    should not forget another in that time inventive instru-

    mental paper by the brothers F. Paulik (1922–2005) and J.

    Paulik (1927–1988) [16] with 151 citations.

    These citation figures are comparable with the output of

    TCA (IF = 1.74), namely with the so-called SB equation

    [6] exhibiting uppermost 562 responses followed by

    methodically oriented papers on thermoporometry [17]

    with 345 citations which is comparable with papers [18]

    and [19] with 530 and 626 citations, respectively. The third

    TCA place holds modulated DSC [20] with 336 citations

    (see also [15] with 231 citations) authored by B. Wun-

    derlich (1932-), who is one of the most influential authors

    in wide spectrum of interests mostly within amorphous

    polymers (e.g. [21] with 317 citations). His total record of

    *16000 citations and H-index *67 is comparable withanother American glass-physicists C.A. Angel (1933-) with

    *21000 citations and H-index *80.

    The above two kinetic-like feedbacks [6, 7] correlate, for

    example, with the quotation of the widespread Jander dif-

    fusion equation [22] from Zeitschrift für anorg, Chemie

    (IF = 1.23) revealing 550 citations. It follows that the best

    cited kinetic-oriented articles [6–9, 12] have formed a rea-

    sonable basis for creation of certain kinetic school within the

    field of thermal analysis as showed in respective journals,

    e.g., JTAC [23–28] and TCA [29–33] (cited *1009 andassociated with high H-factors). Moreover it reveals that

    Takeo Ozawa (1932-) is likely the best cited personality

    within the field of thermal analysis kinetics (when also

    accounting his wide-ranging activity in material sciences,

    providing his total citation record approaching ten thou-

    sand). Certainly the above figures should be correlated to the

    time lapse since the paper publication (i.e., early papers

    published before 1985) as well as with the number of overall

    publications, i.e., JTAC-5769 and TCA-21557 and partici-

    pation of kinetic oriented articles (JTAC-1248 and TCA-

    1838) as well as with the mutual impact factors. Nonetheless,

    the entire IF values do not seemingly play a more significant

    function in the inherent papers’ responsiveness.

    For a comparison we can adopt data from another

    journal with a matching impact factor (IF = 1.43) and

    overall number of publications (17,043), which is the

    Journal of Non-crystalline Solids. This JNCS has also been

    subjecting lot of data related to reaction kinetics (equiva-

    lent portion 1033), namely to the thermal processes on

    nucleation and crystal growth. Here, however, the best

    cited paper authored by famous N. F. Mott (1906–1995)

    [34] was related to glass conductivity with 1,396 citations

    followed by structural studies [35] with 602 citations and

    only the third paper was related to the study of thermal

    properties [36] with 593 citations. This again is comparable

    with the early findings by the Czech-American author J.

    Tauc (1922-2010) [37] related to the structural subject of

    optical band in tetrahedral semiconductors being again one

    of the best cited papers of Physica Status Solids

    (IF = 1.15) with 1375 citations. Thermal conductivity

    oriented papers [34] were also revealed in the thematically

    related journal Physics and Chemistry of Glasses

    (IF = 0.58) such as the best cited papers [38, 39] with 771

    and 582 citations, respectively. This PCG provided, how-

    ever, highly cited papers on crystallization kinetics, for

    example [40–43] with 291, 243, 199, and 155 citations,

    respectively as well as similarly related papers in JNCS

    [13, 44–46] with 231, 288, 417, and 445 citations,

    respectively. Temperature plaid a specific role in the best

    cited articles in Journal of American Ceramic Society

    (IF = 1.94) with the historical record by the paper on

    viscosity [47] by Fulcher (1884–1959) exhibiting as many

    as 1,798 citations. In JACS there are worth noting ther-

    moanalytically influential papers [48, 49] with 609 and 109

    citations, respectively.

    J. Šesták

    123

  • Thermal analysis became also the topic for utmost

    quotations in some leading national journals such the

    Czechoslovak Journal of Physics (IF = 0.57) exhibiting

    another record of 372 citations for the paper by A. Hrubý

    (1919-) [50] who applied characteristic temperatures

    determined by DTA for the specification of glass-forming

    capability of various materials. Curiously, this criterion

    was subjected to various modification (e.g. [51]) showing,

    however, their fewer correctness than the original form

    [50]. J. Šesták (1938-) [52] analyzed various methods of

    kinetic data evaluation in another local Czech journal Sil-

    ikaty-Ceramics (IF = 0.66) which received another his-

    torical citation record of 61 responses and befall the basis

    of the consequent paper [6] becoming thus the target of

    various evaluations [28–32]. Another paper by M.

    C. Weinberg (1941–2002) [53] published in the Serbian

    Journal of Mining and Metallurgy (IF = 0.55) was dealing

    with transient nucleation and its overlapping with growth

    curves and exhibited maximum of 27 citations.

    There are some other journals that cared to publish

    papers on thermoanalytical kinetics, such as in Talanta [54]

    (IF = 3.29 with 119 citations), Solid State Ionics [55]

    (IF = 2.16 with 141 citations), Journal of Computational

    Chemistry [56] (IF = 3.77, with 263 citations], Annual

    Review of Physical Chemistry [57] (IF = 17.4 with 158

    citations), Nature [58] (IF = 34.48 with 161 citations),

    Science [59] (IF = 29.7 with 479 citations), Acta Metal-

    lurgica [60] with 471 citations) and historically famous

    paper by J. H. Flynn (1922–2011) in Journal of Research of

    the National Bureau of Standards [61] (with 769 citations).

    In order to have a comparison with other level of citation

    responses while completing this overview on the best cited

    papers we include some selected journals of a related

    scope, for example [62] (IF = 0.69), [63] (IF = 0.7), [64]

    (IF = 1.97), [65] (IF = 1.77), [66] (IF = 1.23), [67] (IF =

    1.62), [68] (IF = 0.8), [69] (IF = 1.63) [70] (IF = 2.34)

    and [71] (IF = 4.39) with 319, 136, 397, 180, 274, 323, 785,

    317, 571 and 243 citations, respectively.

    Such citation records would be unthinkable without the

    diligent exertion of the editors-in-chief of thermoanalytical

    journals, being sorry that the society has somehow forgotten

    their anniversaries. The originator and long-lasting editor of

    Thermochimica Acta, W. W. Wendlandt (1927–2000) [72],

    the founder of the European Symposia on Thermal Analysis

    and Calorimetry and associated proceeding books ‘‘Thermal

    Analysis’’, D. Dollimore (1927–2000) as well as the early

    thermoanalytical ground-worker P. D. Garn (1920–1999)

    [73] are worth of a particular noting. They and many others

    [5] also contributed good reputation of the Journal of

    Thermal Analysis orchestrated by its lifelong editor Judit

    Simon (1937-). Alternatively, we did not care to seek the

    extreme number of citations (e.g., [74] with as many as

    30,606 citations) as well as we did not try to enumerate all

    doyens of reaction kinetics (such as V. Šatava,1922-, C.

    Várhelyi, 1925-, Z. Adonyi, 1926-, V. V. Boldyrev, 1927-,

    H. Suga, 1930-, B. V. L’vov, L. Stoch, 1931-, E. Segal,

    1932-, E. Koch, J. R. MacCallum, R. K. Agrawal, A.

    K. Galway, or J. Pysiak, 1933-). However, special compli-

    ments are due to the middle age generation of thermoana-

    lysts who achieved the captivating level of 200 citation per a

    single paper published not more than 20 years ago (e.g., A.

    K. Burnham (USA), 1951- [71] (3,696 citations, Hindex =

    31), M. Reading (UK), 1956- [15] (2,314 citations, H-index

    = 24), J. Málek (Czechia), 1959- [32] (2,166 citations,

    Hindex = 25), S. Vyazovkin (USA), 1960- [56] (4,350

    citations, H-index = 35) or forthcoming N. Koga (Japan),

    1963- [30] (*1000 citations, H-index *17).Curiously one of highly quoted paper [45] dealing with

    the application of nonisothermal kinetics to crystallization

    (priced by as many as 417 citations] is unfortunately

    revealing a misinterpretation toward the dominant respon-

    sibility of partial derivatives of rate equation and resultant

    kinetic constitutiveness (already beforehand discussed

    comprehensively in JTAC [75]). Article’s rightness would

    also generate a question what would be a best approach in

    achieving a highest citation response. Even assuming a

    well-done manuscript matching passable for referees it, in

    many cases, becomes sensitive to various unwritten factors

    (such as interior rules, mutual reverence between the

    authors and referees, instantaneous actuality and perspec-

    tives of the subject, its impact and understandability, etc.).

    In most journals there is a large excess of manuscripts

    supply over their demand, which is far overcoming the

    journals’ capability to absorb all what is offered so that

    some genius ideas may be overlooked. Publication boom is

    driven by the pressure on the authors to publish as much as

    possible in order to survive the competition due to assorted

    financing. A possibility is presumed as to create an alter-

    native publication forum for (often refused) articles in, e.g.,

    framework of internet, which might be likewise to a curi-

    ous state of the so-called dissident physics. This unusual

    forum for distributing physical theories often impassable

    for publication in the regular journals (most common

    ‘Physica’) are consequently publishable on internet and

    even printed in a somehow unofficial journal such as A-

    peiron, Galilean Electrodynamics, Tired Light, Physics

    Assays, etc.

    It again calls attention in the direction of the most

    attractive topics within the frame of thermal analysis,

    which besides kinetics [76] may be novel, but already well-

    developing special techniques [14, 15, 20]. Though diffi-

    cult to predict, we can meet on the road toward new

    interdisciplinary targets and thus across-boundary issues

    somewhat inquisitive new endeavors such as thermal

    quantum diffusion [77, 78] or alternative caloric-based

    innovative thermodynamics [79, 80] which, however, not

    Citation records and some forgotten anniversaries

    123

  • yet digested are used not to bring any citation responses so

    far. In this light we may be thankful to the journals editors

    to challenge the publications of special journal issues to

    exclusively devoted to the burning themes such boundless

    topic of thermoanalytical studies of glass crystallization

    [81, 82] or the book series made available by publication

    house Springer, such as the hot topics in thermal analysis

    (edited by J. Simon) [83, 84].

    The above reviewed papers represent, however, a neg-

    ligible portion of overall published papers in the field of

    thermal analysis, which in its broader view covers other

    thermophysical measurements (such as conductivity [34,

    38, 39], viscosity [47, 49], and relaxation [36]) so that this

    short communication should be merely accepted as brief

    data revelation approached under a certain personal rec-

    ollection and vision for better thermal science [85].

    Acknowledgements The results were developed within the CEN-TEM project, reg. no. CZ.1.05/2.1.00/03.0088 that is co-funded from

    the ERDF within the OP RDI program of the Ministry of Education,

    Youth and Sports.

    References

    1. Fiala J, Šesták J. Databases in material science: contemporary

    state and future. J Thermal Anal Calor. 2000;60:1101–10.

    2. Vyazovkin S, Rives V, Schick C. Making impact in thermal

    sciences: overview of highly cited papers published in Thermo-

    chimica Acta. Thermochim Acta. 2010;500:1–5.

    3. Šesták J. Some historical aspects of thermal analysis: origins of

    Termanal, CalCon and ICTA. In: Klein E, Smrčková E, Šimon P,

    editors. Proceedings of the International Conference on Thermal

    Analysis ‘‘Termanal’’. Bratislava: Publishing House of the Slovak

    Technical University; 2005.

    4. Šesták J. Science of heat, thermophysical studies a generalized

    approach to thermal analysis. Amsterdam: Elsevier; 2005.

    5. Lombardi G, Šesták J. Ten years since Robert C. Mackenzie’s

    death: a tribute to the ICTA founder. J Thermal Anal Calorim.

    2011. doi:10.1007/s10973-010-1215-9.

    6. Šesták J, Berggren G. Study of the kinetics of the mechanism of

    solid- state reactions at increasing temperatures. Thermochim

    Acta. 1971;3:1–12.

    7. Ozawa T. Kinetic analysis of derivative curves in thermal anal-

    ysis. J Thermal Anal. 1970;2:301–24.

    8. Ozawa T. A new method of analyzing thermogravimetric data.

    Bull Chem Soc Jpn. 1965;38:1881–6.

    9. Ozawa T. Kinetics of nonisothermal crystallization. Polymer.

    1971;12:150.

    10. Kissinger HE. Reaction kinetics in differential thermal analysis.

    Anal Chem. 1957;29:1702–6.

    11. Avrami M. Kinetics of phase changes: general theory. J Phys

    Chem. 1939;7:1103–12.

    12. Augis JA, Bennet JE. Calculation of Avrami parameters for

    heterogeneous solid-state reactions using a modification of Kis-

    singer method. J Thermal Anal. 1978;13:283–92.

    13. Criado JM, Ortega A. Nonisothermal transformation kinetics in

    relation to Kissinger method. J Noncryst Sol. 1988;87:302–11.

    14. Reading M, Elliot D, Hill VL. A new approach to the calorimetric

    investigations of physical and chemical transitions. J Thermal

    Anal Calorim. 1993;40:949–55.

    15. Reading M, Luget A, Wilson R. Modulated differential scanning

    calorimetry. Thermochim Acta. 1994;238:295–307.

    16. Paulik F, Paulik J. Investigations under quasiisothermal and

    qiuasiisobaric conditions by means of derivatograph. J Thermal

    Anal. 1973;5:253–70.

    17. Brun M, Lallemand A, Quinson JF, Eyraud C. New method for

    simultaneous determination of size and shape of pores–ther-

    moporometry. Thermochim Acta. 1977;21:59–88.

    18. Rouquerol J, Avnir D, Fairbridge CW. Recommendation for the

    characterization of porous solids. Pure Appl Chem. 1984;66:

    1738–58.

    19. Dollimore D, Heal GR. Improved method for calculation of pore

    size distribution from adsorption data. J Appl Chem USSR.

    1964;14:109–19.

    20. Wunderlich B, Jin YM, Boller A. Mathematical description of

    DSC based on periodic temperature modulations. Thermochim

    Acta. 1994;238:277–93.

    21. Wunderlich B. Specific heat changes of glasses during glass

    transition. J Phys Chem. 1960;7:475–8.

    22. Jander W. Reactions in the solid state at high temperature.

    Z Anorg Allg Chem. 1927;163:1–11 (in German).

    23. Ozawa T. A modified method for kinetic analysis of thermoan-

    alytical data. J Thermal Anal. 1976;9:369–73.

    24. Ozawa T. Non-isothermal kinetics of diffusion and its application

    to thermal analysis. J Thermal Anal. 1973;5:563–9.

    25. Ozawa T. Kinetics of growth from pre-existing surface nuclei.

    J Thermal Anal Calorim. 2005;82:687–90.

    26. Šesták J. Philosophy of nonisothermal kinetics. J Thermal Anal.

    1979;16:503–20.

    27. Šesták J. Diagnostic limits of phenomenological kinetic models

    introducing the accommodation function. J Therm Anal. 1990;

    36:1997–2007.

    28. Gorbachev VM. Some aspects of Šesták’s generalized kinetic

    equation in thermal analysis. J Therm Anal. 1980;18:193–7.

    29. Málek J, Criado JM. Is the Šesták-Berggren equation a general

    expression of kinetic models? Thermochim Acta. 1991;175:

    305–9.

    30. Koga N. Kinetic analysis of thermoanalytical data by extrapo-

    lating to infinite temperature. Thermochim Acta. 1995;2158:

    145–159.

    31. Criado JM, Málek J, Gotor FJ. The applicability of the SB kinetic

    equation in constant rate thermal analysis. Thermochim Acta.

    1990;158:205–13.

    32. Málek J. Kinetic analysis of crystallization processes in amor-

    phous materials. Thermochim Acta. 2000;355:239–53.

    33. Šimon P. Forty years of Šestak-Berggren equation. Thermochim

    Acta. 2011. doi:org/10.1016/j.tca.2011.03.030.

    34. Mott NF. Conduction in noncrystalline materials. J Noncryst

    Solids. 1968;1:1–18.

    35. Phillps JC. Topology of covalent noncrystalline solids: medium-

    range order in chalcogenide alloys. J Noncryst Solids. 1981;43:

    37–77.

    36. Hodge IM. Enthalpy relaxation, recovery in amorphous materials.

    J Noncryst Solids. 1994;169:211–66.

    37. Tauc J, Grigorovici R, Vancu A. Optical properties and electronic

    structure of amorphous germanium. Phys Stat Sol. 1966;15:

    627–37.

    38. Macedo PB, Moynihan CT, Bose R. Role of ionic diffusion in

    polarization vitreous conductors. Phys Chem Glass. 1972;13:

    171–9.

    39. Ingraham MD. Ionic-condutivity in glass. Phys Chem Glass. 1987;

    28:215–34.

    40. Davies HA. Formation of metallic glasses. Phys Chem Glass.

    1976;17:159–73.

    41. Matusita K, Sakka S. Kinetic study of crystallization by DSC.

    Phys Chem Glass. 1979;20:81–4.

    J. Šesták

    123

    http://dx.doi.org/10.1007/s10973-010-1215-9http://dx.doi.org/org/10.1016/j.tca.2011.03.030

  • 42. James PF. Kinetics of crystal nucleation in lithium silicate glas-

    ses. Phys Chem Glass. 1974;15:95–105.

    43. Šesták J. Applicability of DTA to study crystallization kinetics of

    glasses. Phys Chem Glass. 1974;15:137–40.

    44. Matusita K, Sakka S. Kinetic study of crystallization by DTA:

    criterion and application of Kissinger plot. J Noncryst Sol. 1980;

    3(/39):741–6.

    45. Yinnon H, Uhlmann DR. Application of thermoananlytical

    techniques to the study of crystallization kinetics in galssforming

    solids. J Noncrystal Solids. 1983;54:253–75.

    46. Henderson DW. Thermal analysis of nonisothermal crystalliza-

    tion kinetics in glass forming liquids. J Noncrystal Solids. 1979;

    30:291–6.

    47. Fulcher GS. Analysis of recent measurement of viscosity of

    glasses. J Amer Cer Soc. 1925;8:1487–510.

    48. Moynihan CT, Eastel AJ, Debolt TMA. Dependence of fictive

    temperatures of glass on cooling rate. J Amer Cer Soc. 1976;59:

    12–6.

    49. Moynihan CT. Correlation between the width of the glass-tran-

    sition region and the temperature dependence of glass viscosity.

    J Amer Cer Soc. 1993;76:1081–7.

    50. Hrubý A. Evaluation of glass-forming tendency by means of

    DTA. Czech J Phys. 1972;B 22:1187–93.

    51. Kozmidis-Petrovic A, Šesták J. Forty years of the Hrubý glass-

    forming criterion via DTA figures regarding the vitrification

    ability and glass stability. J Thermal Anal Calor. 2011 (in press).

    52. Šesták J. Review of kinetic data evaluation from nonisothermal

    and isothermal TG data. Silikáty-Ceramics 11. 1967;11:153–90

    (in Czech).

    53. Weinberg MC. Examination of the temperature dependencies of

    crystal nucleation and growth using DTA/DSC. J Mining Metal.

    1999;35:197–210.

    54. Šesták J. Errors of kinetic data obtained from TG curves at

    increasing temperature. Talanta. 1966;13:567–85.

    55. Šesták J, Málek J. Diagnostic limits of phenomenological models

    of heterogeneous reactions and thermal analysis kinetics. Solid

    State Ion. 1993;63(/65):245–54.

    56. Vyazovkin S. Modification of the integral isoconversional

    method to account for variation in the activation energy. J Com-

    put Chem. 2001;22:178–83.

    57. Vyazovkin S, Wight CA. Kinetics in solids. Ann Rev Phys Chem.

    1997;48:125–49.

    58. Doyle CD. Series approximations to equation of TG data. Nature.

    1965;207:290292.

    59. Kopelman R. Fractal reaction kinetics. Science. 1988;241:

    1620–6.

    60. Atkinson HV. Theories of normal grain-growth in pure single-

    phase systems. Acta Metall. 1988;36:469–91.

    61. Flynn JH, Wall LA. General treatment of thermogravimetry of

    polymers. J Res Nat Bureau Stand. 1966;A70:487–98.

    62. Wang XW, Xu XF, Choi SUS. Thermal conductivity of nano-

    particles. J Thermophys Heat Trans. 1999;13:503–20.

    63. Sengers JV. Transport properties of fluid near critical points. Inter

    J Thermphys. 1985;6:203–31.

    64. Picker P, Leduc PA, Philip PR. Heat capacity of solutions by flow

    calorimetry. J Chem Thermodyn. 1971;3:631–9.

    65. Wantg XQ, Mujumdar AS. Heat transfer characteristics of

    nanofluids. Int J Thermal Sci. 2007;46:1–19.

    66. Chen LG, Wu C, Sun FR. Finite time thermodynamic optimiza-

    tion or entropy minimization of energy system. J Non-equil

    Thermodyn. 1999;24:327–59.

    67. Braun W, Herron JT, Kahaner DK. A computer program for

    modelling complex chemical reactions. Int J Chem Kinetics.

    1988;20:51–62.

    68. Tsai SW, Wu EM. General theory of strength for anisotropic

    materials. J Compos Mater. 1971;5:58–69.

    69. Sugusaki M, Suga H, Seki S. Calorimetric study of glassy state:

    heat capacity of glassy water and cubic ice. Bull Chem Soc Jap.

    1968;41:2591–604.

    70. O’Keeffe M, Eddaudi M, Ki HL. Framework for extended solids:

    geometrical design principles. J Solid State Chem. 2000;152:

    2–20.

    71. Burnham AK. Chemical kinetic model of vitrinite maturation and

    reflectance. Geochim Cosmochim Acta. 1989;53:2649–2657.

    72. Wendlandt WW. Thermal methods of analysis. New York: Wiley;

    1964.

    73. Garn PD. Thermoanalytical methods of investigation. New York:

    Academic; 1962.

    74. Necke AD. Density functional thermochemistry. J Chem Phys.

    1993;98:5648–652. Cit 30606.

    75. Šesták J, Kratochvı́l J. Rational approach to thermodynamic

    processes and constitutive equations in kinetics. J Thermal Anal.

    1973;5:193–201.

    76. Šimon P. The single-step approximation: attributes, strong and

    weak sides of kinetics. JTherm Anal Calorim. 2007;88:709–15.

    77. Mareš JJ, Stávek J, Šesták J. Quantum aspects of self-organized

    periodical chemical reactions. J Chem Phys. 2004;121:1499.

    78. Mareš JJ, Šesták J. An attempt at quantum thermal physics.

    J Thermal Anal Calor. 2005;82:681.

    79. Mareš JJ, Hubı́k P, Šesták J, Špička V, Krištofik J, Stávek J.

    Phenomenological approach to the caloric theory of heat. Ther-

    mochim Acta. 2008;474:16.

    80. Šesták J, Mareš JJ, Hubı́k P, Proks I. Contribution by Lazare and

    Sadi Carnot to the caloric theory of heat and its inspiration role in

    an alternative thermodynamics. J Thermal Anal Calorim. 2009;

    97(2):679.

    81. Šesták J editor. Vitrification, transformation and crystallization of

    glasses. Special issue of Thermochimica Acta, vol. 280/281.

    Amsterdam: Elsevier; 1996.

    82. Höhne CWH, Schick C, editors. Interplay between nucleation,

    crystallization and the glass transition. Special issue of Thermo-

    chimica Acta, vol. 502. Amsterdam: Elsevier; 2011.

    83. Šesták J, Mareš JJ, Hubı́k P, editors. Glassy, amorphous and

    nanocrystalline materials I: thermal physics, analysis, structure

    and properties. Berlin: Springer; 2011.

    84. Šesták J, Šimon P, editors. Glassy, amorphous and nanocrystal-

    line materials II: reaction kinetics, thermodynamics and thermal

    analysis. Berlin: Springer; 2012.

    85. Šesták J. The man and science. Chem. Listy (Prague). 2010;104:

    267-269 (in Czech).

    Citation records and some forgotten anniversaries

    123

  • Ten years since Robert C. Mackenzie’s death. A tributeto the ICTA founder

    Gianni Lombardi • Jaroslav Šesták

    ESTAC2010 Conference Special Issue

    � Akadémiai Kiadó, Budapest, Hungary 2010

    Abstract Dr. Robert Cameron Mackenzie was an emi-

    nent scientist who gave a major contribution to the progress

    of science in the fields of thermal analysis and clay min-

    erals. He was a leading figure in the East–West cooperation

    at times when these relations were politically very difficult.

    The authors give an outline of his achievements and some

    personal recollections of his activity.

    Keywords Thermal analysis � Clay minerals � ICTA �DTA

    ‘‘whoever desires to build a future may not neglect the past’’ [1].

    Fig. 1

    Introduction

    Robert Cameron Mackenzie was a pioneer in establishing

    thermal analysis as a novel and accepted technique applied

    to a wide array of materials in many different areas [1–4].

    He was a leader in the establishment of the ICTA organi-

    zation and always upfront in its development. He was also

    internationally recognized as an outstanding figure in the

    clay minerals world.

    Shortly after his passing away in 2000, obituaries

    describing his activity were published [5, 6]. The authors of

    this tribute are two old friends of him, who are thankful for

    all what they learnt from his example and scientific per-

    sonality and who wish to remind the young generations of

    thermoanalysts of his achievements, of his former co-

    workers and of some less-known aspects of his life (Fig. 2).

    Robert and the world of clay minerals

    His impact on thermal analysis is well known, but it should

    be stressed that he also gave a substantial contribution to

    the international clay minerals community. Robert’s

    investigations in the 1950s dealt with the pre-treatments

    and thermal behaviour of clays and their products [7–14].

    He applied what was then an uncommon technique, Dif-

    ferential thermal analysis (DTA), and X-ray diffraction

    (XRD) in the study of dehydration and rehydration of

    thermally treated raw materials, sesquioxides and amor-

    phous components. He was a groundbreaker in the inves-

    tigation of the effect of temperature on water adsorption by

    organo-clays (e.g. ethylene glycol complexes with mont-

    morillonite or saponite). He also worked on thermo-

    chemical reactions of clay minerals with other components

    (e.g. clays with carbonates), while cooperating with B.

    D. Mitchell, R. Glentworth (a first-class agricultural sur-

    veyor in NE Scotland) and A. A. Milne.

    Robert was very good at instrumentation and, for his

    laboratory, he built a DTA apparatus working under con-

    trolled atmosphere [15]. He applied this technique to the

    G. Lombardi (&)Former Sapienza Università di Roma, Via D. Chelini 5,

    00197 Rome, Italy

    e-mail: [email protected]

    J. Šesták

    New Technology—Research Centre in the West Bohemian

    Region, West Bohemian University, Universitnı́ 8,

    30114 Pilsen, Czech Republic

    e-mail: [email protected]

    J. Šesták

    Institute of Physics, Cukrovarnicka 10, 16200 Praha,

    Czech Republic

    123

    J Therm Anal Calorim (2011) 105:783–791

    DOI 10.1007/s10973-010-1215-9

  • study of soils, where the organic matter is so closely bound

    to the clay fraction that it is hard to separate them com-

    pletely and with simple methods. He also used an oxygen

    flow to study oxidation and combustion reactions and this

    method became applicable to a much broader range of

    materials. In 1959, he described his apparatus in a paper,

    which inspired further instrumental developments in sev-

    eral countries [16–18]. Later, it was commercially pro-

    duced and used in many British laboratories.

    The results of Robert’s leading-edge mineralogical

    investigations were the source for significant papers and

    stimulated the publication (in 1957, when he was only in

    his 30s) of ‘The differential thermal investigation of clays’

    [19]. Robert wrote three of the 17 chapters of the book:

    ‘Thermal methods’, ‘Apparatus and technique for differ-

    ential thermal analysis’ (jointly with B. D. Mitchell) and

    ‘The oxides of iron, aluminium and manganese’. Despite

    its age, the book is still used all over the world by clay

    mineralogists.

    Robert not only opened new ground in thermal evalua-

    tion of clays, but also stands as a maestro in cooperating

    with and providing guidance to many foreign scientists,

    who attended his Macaulay Institute for Soil Research to

    learn and make progress in the field of clays and thermal

    analysis, among them, G. Berggrenn from Sweden, S.

    Yariv from Israel, S. Warne from Australia, N. Yoshinaga

    from Japan, G. Lombardi, N. Morandi and A. Negro from

    Italy.

    In the 1950s, supported by his knowledge of Russian

    and German, Robert became aware of the progress made in

    the eastern countries in the field of clay mineralogy and

    thermal analysis. He knew the work of Prague O. Kallauner

    and J. Matějka [20, 21], who conducted an extensive

    investigation on kaolinite transformations under heating.

    Their study was influenced by the results of the French H.

    Le Chatelier and their interactions with K. Friedrich and B.

    Wohlin (Polish Royal Technical University of Wroclaw),

    who were investigating the thermal behaviour of bauxitic

    soils and also built their own apparatus for thermal

    analysis.

    In the early 1960s, contacts between western and eastern

    scientists were impaired by restrictions not only on travel,

    but also on correspondence and telephones. Nevertheless,

    Robert managed to keep in touch with Prague R. Bárta and

    Polish clay scientists such as A. Kuźniarowa. In 1961,

    Robert was invited to give a lecture at the Prague Geology

    Conference and awarded with the distinguished Centenary

    Medal of the historical Charles University. Then, in 1983,

    he received the Emanuel Boricky Medal from the Faculty

    of Science of the Charles University during one of the

    meetings of the European Clay Groups.

    Robert’s work on clays was well known at international

    scale. He was instrumental in the organisation of AIPEA

    (Association Internationale pour l’Étude des Argiles), its

    President in 1980–1984 and founder of the Clay Mineral

    Bulletin (today named Clay minerals, the Journal of the

    European Clay Society). In 1972, he was elected Chairman

    of the British Clay Minerals Group and, in 1983, he was

    appointed Distinguished Member. In 1978, he was the

    convenor of the scientific committee for the 1978 Sixth

    International Clay Conference and in 1987 Honorary

    Member of the Sociedad Española de Arcillas.

    Fig. 2 Personalities with whom Robert (first from the left) collaborated in various areas: Canadian H. G. Mc Adie, Scottish B. D. Mitchell,Swedish G. Berggrenn, English J. P. Redfern, Hungarians L. Erdey and G. Liptay and Czechoslovak I. Proks

    Fig. 1 *Geologist Gianni Lombardi and thermodynamist JaroslavŠesták were Robert’s friends until his last days. They have similar

    stories in ICTA. Lombardi (*1939), early member of ICTA (1965), of its

    Standardization Committee (1968–1976), of the editorial board of J.

    Thermal Analysis (1969) and of Thermal Analysis Abstracts (1970);

    ICTA Council (1968–1971), Secretary (1971–1977), Vice and President

    (1977–1982); Editor ‘For Better TA’ (1977–1980); ICTA Award (1980);

    discontinued ICTA 1985. Šesták (*1938), groundwork for ICTA (1965),

    co-founder of Thermochimica Acta (1970), ICTA Councillor-at-large

    (1977–1982), member of ICTA Nomenclature and Kinetic Committees

    and the chair of Advanced Inorganic Materials (1984–1996), ICTA

    Program Chairman (Bratislava 1985), ICTA Award (1992), Affiliated

    Councillor (1992–2000), discontinued ICTAC 2006

    784 G. Lombardi, J. Šesták

    123

  • Impact on thermal analysis

    In the early 1960s, many western and eastern laboratories

    used thermal methods for the analysis of both inorganic

    and organic materials. Based on his international contacts

    and on the experience gained with the 1957 book on DTA

    of clays, Robert thought that it would be a great scientific

    advance if investigators in many fields of thermal analysis

    could share their experiences within the framework of a

    multidisciplinary society. His foresight gave birth to ICTA.

    Robert was in contact with thermoanalysts L. Erdey and

    the Paulik brothers in Budapest, the Russian L. G. Berg, the

    Polish W. Świętosławski and Czech R. Bárta of the Prague

    Institute of Chemical Technology. Already in the early

    1950s, Bárta had organised conferences on thermal anal-

    ysis, namely Thermography discussions (Prague 1955), the

    first Thermography day (Prague 1956) and the second

    conference on Thermography (Prague 1958). After that,

    Robert was an invited speaker at the 1961 third conference

    on thermal analysis. He was impressed by the quantity and

    quality of the results presented at the meetings and got to

    know the work of Bárta’s co-workers, e.g. V. Šatava, S.

    Procházka, I. Proks and postgraduate student J. Šesták. He

    also co-authored Bárta’s obituary [22].

    In the early 1960s, Robert visited the United States and

    his friend C. B. Murphy (an internationally renowned

    personality in the field of thermal analysis [23]) encour-

    aged him to organise a large-scale international conference

    on thermal analysis. Robert began to work on the project,

    assisted by the Russian L. G. Berg, author of two books on

    thermal analysis [24, 25], the Hungarian L. Erdey, the

    Czech R. Bárta, the Japanese T. Sudo, the Canadian H.

    McAdie and the Swedish G. Berggrenn of Studsvik Ac-

    tiobolaget Atomenergi (who suggested Sweden as the

    venue of the first ICTA).

    A first Symposium on thermal analysis with scientists

    from various countries was held at the Northern Poly-

    technic in London in April 1965. It was organized by B.

    R. Currell and participants included R. C. Mackenzie, the

    British D. A. Smith, J. P. Redfern, W. Gerrard, P. D. Garn

    [26] and W. W. Wendlandt [27] from the US, as well as the

    Swedish G. Berggrenn. F. Paulik from Hungary and J.

    Šesták from Czechoslovakia were invited to give plenary

    lectures, a way to introduce eastern scientists to the inter-

    national scientific community. The program is a witness of

    the state of the art of the instrumentation and applications

    of thermal analysis (Fig. 3).

    Soon after there followed a great success. Robert, J.

    P. Redfern and B. D. Mitchell undertook the organisation

    of the first International Conference on Thermal Analysis,

    which was held in Scotland, at Aberdeen, in September

    1965 [28] (the registration fees was as low as 15 US $!).

    Almost 3,000 copies of the First Announcement were

    distributed, with a final attendance of 300 scientists from

    29 countries, including Czechoslovakia, Hungary, Poland

    and USSR.

    Robert’s merits for the subsequent creation and further

    development of ICTA are invaluable. The Aberdeen

    meeting opened the way to the formal establishment of

    ICTA in 1968 (Fig. 4), during the Business meeting held at

    the second ICTA in Worcester, Massachussets (USA).

    Several ICTAs followed at regular four-year intervals with

    a large number of attendees and, beginning 1980, inter-

    mediate European meetings (ESTAC), promoted by D.

    D. Dollimore, were also held.

    The authors would like to recall two anecdotes which

    occurred 17 years apart, both with Robert’s involvement.

    At the 1968 Worcester second ICTA, in the evening of 20

    August, several delegates were watching the TV news.

    Suddenly, images of Soviet armoured trucks invading

    Prague appeared. The three Czech delegates R. Bárta, P.

    Kralik and J. Šesták were shocked and furious. Šesták

    attacked the Russian delegate E. I. Yarembash, who was

    saying that the images were old ones, taken during the

    1945 liberation. Robert had to use all his weight and

    diplomacy to solve a very difficult situation, though tension

    pervaded the last days of the conference.

    In 1985, the eight ICTA was held in Bratislava. The

    participants were over 400 from 33 countries (and the

    registration fee had already reached 200 US $). Robert was

    invited to give a plenary lecture, together with the Slovak I.

    Proks, regarding the life of the Czech thinker Comenius

    and the Scottish scientist Black, two precursors of thermal

    analysis who lived between the sixteenth and seventeenth

    century. He not only gave an important scientific contri-

    bution, but also helped the conference acting chairman V.

    Balek and scientific chairman J. Šesták to solve a sensitive

    political problem. The Czech police had refused the visa to

    the ICTA Secretary, the Israeli S. Yariv, and to the South

    African M. E. Brown, because of their ‘unfriendly’

    nationality. US participants were ready to boycott the

    Conference if the visa was not granted. The result of

    Robert’s diplomatic efforts was that, for the first time in

    many years, two citizens from the ‘hostile capitalist

    countries’, Israel and South Africa, were allowed to visit

    communist-ruled Czechoslovakia.

    A rare case among the British, Robert had not only a

    splendid command of English, but also reading and

    speaking skills in Gaelic, French, Italian, Spanish, German

    and Russian. In 1965, he made the introductory welcome to

    the International Conference in Aberdeen in English and

    Russian and, in the same way, he surprised the audience in

    1985 with his acceptance speech for a USSR award

    (Fig. 5).

    He never became ICTA president, but until retirement

    he remained a very active and influential member of ICTA

    A tribute to the ICTA founder 785

    123

  • and a basic point of reference for all Council and ordinary

    members. Treasurer more than 15 years, he created a sound

    financial basis for ICTA and gave a great scientific con-

    tribution as chairman of the Nomenclature and member of

    the Publication and Standardization Committees. From

    1986 to 1997, he was editor of ICTA News.

    Though not many were aware of it, the Scottish and Irish

    ‘mafia’ occupied the dominant ICTA positions for a long

    period. In addition to the obvious Mackenzie and McAdie,

    there were others (Fig. 6). Gallagher and Murphy were

    members of well known Irish Clans and Lombardi has

    solid roots in the Clan McGillivray (Fig. 9).

    Robert’s major contribution to thermal analysis was

    scientific, with over 100 papers and review articles [2], as

    well as the editorship of three books, which stand as

    milestones in their field. He was particularly concerned

    with the improvement of thermoanalytical techniques and

    theory and their wider applications. In later years, the

    nomenclature and history of thermal analysis became his

    main interests. In a fundamental paper of 1974 [1], he

    summarised his ideas about the future development and the

    classification of thermal analysis methods, a subject cov-

    ered in other papers.

    The first book that he edited, ‘The differential thermal

    investigation of clays’, leads back to 1957 [19]. The second

    was ‘A handbook on DTA’ in 1966 [29]. The two volumes

    of his third book, ‘Differential Thermal Analysis’, were

    published by Academic Press in 1970 and 1972 [30]. There

    are 25 chapters and he is the author of four of them:

    ‘Simple phyllosilicates based on gibbsite- and brucite-like

    sheets’, ‘Oxides and hydroxides of higher-valence ele-

    ments’ (with G. Berggrren), ‘Basic principles and historical

    development’ and ‘Instrumentation’ (with B. D. Mitchell).

    The book still represents a bible on DTA applications,

    dealing with different problems such as theory, experi-

    ments, geosciences, nomenclature and history.

    Fig. 3 The program of theLondon International

    symposium on thermal analysis,

    held in April 1965, the first

    meeting on the subject with

    scientists from western and

    eastern Countries. On the left,

    B. R. Currell, on the right P.

    D. Garn

    786 G. Lombardi, J. Šesták

    123

  • He helped to improve the DTA theory [30–34] and his

    fine usage of English, together with extreme care for details

    and forward-looking considerations, made him a prominent

    figure in the nomenclature field. For many years, he was

    the soul of the nomenclature activity of both AIPEA and

    ICTA and strongly influenced the preparation of widely

    accepted complex documents on the subject [e.g. 35–41].

    He had the great merit of creating derived nomenclatures,

    even in different languages [42, 43].

    The vast knowledge of the field led him to devote the

    last part of his scientific life to the many aspects of the

    history of thermal analysis [44–50]. He is credited with

    new findings on the impact of G. Martine as a very early

    thermoanalyst, on the responsibility of J. Comenius in the

    earliest use of the term ‘caloric’ and on the role of G.

    A. Charpy in the development of electric furnaces. These

    studies produced an excellent compendium of thermoana-

    lytical history [45], a source for many subsequent studies.

    He kept close contacts with the Slovak I. Proks from

    Bratislava and inspired his work, which resulted into var-

    ious papers on the history of thermodynamics [51–55].

    With J. Šesták, he prepared an article on a thermoanalytical

    Fig. 4 The composition ofICTA Council in the first

    12 years of its life. In the

    photos, from the left: R.

    C. Mackenzie, L. G. Berg, C.

    B. Murphy, R. Bárta and H.

    Kambe

    Fig. 5 Bratislava 1985. Dr. Mackenzie receives the USSR KurnakovMedal from the hands of Prof. V. B. Lazarev

    A tribute to the ICTA founder 787

    123

  • journey from prehistory to the third millennium; its com-

    pletion was interrupted by his death, but anyhow it was

    published in JTAC [56].

    Robert was very much aware of the need to have an easy

    access to the thermoanalytical data dispersed in the litera-

    ture. As early as 1965, he collected and ordered the results of

    DTA of minerals and other substances and prepared a pun-

    ched-card data index named SCIFAX, published by Cleaver-

    Hume Press. The index was based on the temperatures of the

    DTA peaks and with its help it was much easier to identify

    the products obtained during the decomposition processes.

    Jointly with J. P. Redfern, in 1972 he then started

    Thermal Analysis Abstracts (TAA), a periodical with

    abstracts of papers dealing with thermal analysis and cal-

    orimetry prepared by a team of reviewers covering eastern

    and western countries. There was a 25% contribution from

    abstractors of periodicals from the eastern countries (Bul-

    garia, Czechoslovakia, German Democratic Republic,

    Hungary, Poland, Romania, USSR and Yugoslavia) and

    their payment in foreign currency was a great help to them.

    They could travel abroad to participate in conferences

    organized by western countries, in times when scientists of

    the countries behind the iron curtain could get only a very

    limited amount of money in foreign currency. For all the

    TAA life (1972–1991), the regional editor for eastern

    European territories was G. Liptay, the author of the five-

    volume Atlas of Thermal Analysis Curves [57]. After

    20 years, TAA was stopped in 1991, due to the spread of

    computers.

    Robert contributed to the launching of the Journal of

    Thermal Analysis (JTA), the first journal devoted to the

    subject. It was started in 1969 with Judit Simon as editor

    (still nowadays its editor-in-chief), under the supervision of

    the Hungarian Academy of Sciences (Académia Kiadó)

    and the support of the F. and J. Paulik brothers, G. Liptay,

    L. Erdey and E. Buzagh. Since the beginning, it had a truly

    international editorial board and was published jointly with

    the British Heyden and Son. It was a good example of

    western–eastern countries cooperation in a difficult politi-

    cal period. Soon after, in 1970, Elsevier put on the market

    Thermochimica Acta (TCA), for a long time edited by W.

    W. Wendlandt [58] assisted by a wide-ranging interna-

    tional board including J. Šesták (Fig. 7).

    Fig. 6 July 1977. ICTA executives at the fifth ICTA of Kyoto(Japan). Upper row H. R. Oswald, P. K. Gallagher, H. G. McAdie, S.St. J. Warne, J. P. Redfern, R. C. Mackenzie and F. Paulik. Middlerow C. B. Murphy, S. Seki, W. D. Emmerich, G. Lombardi and H.Kambe. Lower row P. D. Garn, Mrs. Kambe, Mrs. Lombardi, Mrs.Murphy, Mrs. Warne and Mrs. Gallagher. In the long period when

    Robert was ICTA treasurer, Murphy and Gallagher (US with Irish

    roots), Canadian McAdie and Italian Lombardi (Scot roots) were

    elected ICTA Presidents

    Fig. 7 The internationaleditorial board in the first years

    of Journal of Thermal Analysis

    and Thermochimica Acta.

    Photos of W. W. Wendlandt and

    J. Simon

    788 G. Lombardi, J. Šesták

    123

  • Many people are indebted to Robert for all what he

    contributed to the many fields of thermal analysis. He also

    received official recognitions for his activity, e.g.: Fellow

    of the Royal Society of Edinburgh (1961), Fellow of the

    Royal Society of Chemistry (1961), Mettler NATAS

    Award (1968), SAC Gold Medal Royal Society (1980),

    Netzsch GEFTA Award (1982), ICTA/TA Award (1985),

    NATAS Fellow (USA 1985), Kurnakov medal (USSR

    1985) and First Honorary Member of ICTA (1988).

    Some personal notes

    Robert was born on 7 May 1920 from a family of farmers

    living in the Portmahomack area, a lovely small village on

    the eastern coast of Northern Scotland, beautifully pre-

    served. He attended first the Tain Royal Academy and then

    the Edinburgh University. In 1942, he obtained a B.Sc.

    with First Class Honours in Chemistry and, in 1944, he

    completed his Ph.D. thesis dealing with gas-phase reaction

    kinetics. In the same year, he joined the Aberdeen

    Macaulay Institute for Soil Research, where he remained

    throughout his scientific life, becoming the head of the

    Physical Chemistry Section and then of the Department of

    Pedology, until his retirement in 1983.

    In 1950, he married Hilda Bruce, a fellow member of

    the Macaulay, and it was a very happy marriage. They were

    always very close to each other, though she seldom trav-

    elled with him to professional commitments. They had a

    son, Bruce, now a retired reservoir engineer and consultant

    in the oil industry, living in Edinburgh, and a daughter,

    Morag, married with a farmer and living on a large estate

    close to the Aberdeen airport with a son and a daughter

    (Fig. 8).

    He liked to travel and had many experiences abroad as

    visiting professor, or for lectures and meetings. He was a

    keen and fast driver and for many years, in the 1960s and

    1970s, he used to drive his Bentley to Positano (southern

    Italy) for a family holiday.

    No better words can be used to describe his personality

    than those in the obituary written by J. Wilson, a colleague

    of him at the Macaulay [6]: ‘To many, he embodied the

    very essence of the ‘‘English’’ gentleman (despite being a

    true Highland Scot), unfailingly courteous and fair-minded,

    but with a patrician demeanour which invested his lectures

    and pronouncements with an aura of authority’.

    The Macaulay was attended by visitors from all over the

    world and Robert was always very, very polite, though

    often shuddering at the quality of the English language

    spoken by some foreigners. Many Italians worked at the

    Macaulay with him and one of them (F. Palmieri) was sent

    to the ceremony for his retirement. He handed him a set of

    tiles (Fig. 9) with a dedication which well expresses the

    feeling of the many Macaulay visitors:

    On the occasion of the retirement of Dr. Robert C.

    Mackenzie, the Italian visitors to the Macaulay

    Institute for Soil Research present this plaque to

    ‘‘Mac’’, with heartfelt thanks for all what he con-

    tributed to their professional background. We join all

    those who admire his stature in the field of thermal

    analysis, clay mineralogy and soil science, but we are

    also very grateful for his interest in our scientific and

    personal problems, that he shared with us throughout

    the years and for his stoic patience in bearing with

    Fig. 8 Dr. Mackenzie in a picture of August 1999 with his daughter,grandchildren, G. Lombardi and his wife

    Fig. 9 Handmade tiles given to Dr. Mackenzie on his retirement bythe Italian visitors of the Macaulay and G. McGillivray Lombardi (onthe right) at a 2009 party in Inverness

    A tribute to the ICTA founder 789

    123

  • our continuous murdering of the English language,

    for which we publicly apologise. We went to the

    Macaulay as young researchers, we have grown to

    become Professors, but we will never forget the

    stimulating periods of research and study we had in

    lovely Aberdeen. Thanks Mac and arrivederci a pre-

    sto. Gianni Lombardi, Noris Morandi, Alfredo Negro,

    Francesco Palmieri, Pietro Violante, November 1983.

    After leaving the Macaulay, Robert continued to work

    and keep a keen interest in the history of thermal analysis,

    maintaining pen contact with his many friends. Then, his

    wife’s health declined and he patiently assisted her for

    many difficult years, always in the same home in Aber-

    deen, up to when she died in 1998.

    Robert’s funeral was held in Aberdeen on a Monday, a

    few days after his death in July 2000. There were his old

    Macaulay colleagues and many friends of the family. One

    of the authors (G. L.) was the only ICTA representative.

    Together with the family, he went north to Portmahomack

    and had the moving privilege to help him lie down in his

    grave (Fig. 10). Still visiting Scotland every one or two

    years, Gianni feels a duty to bring a flower to the grave, on

    behalf of his many friends and in memory of a gentleman

    who gave so much to the world of science.

    Acknowledgements The authors thank Brian Currell, Georgy Lip-tay, Morag Mackenzie, Judit Simon and Shmuel Yariv for their col-

    laboration in preparing this article. The grant support in the field of

    geopolymers No FR-TI 1/335 is appreciated.

    References

    1. Mackenzie RC. Highways and byways in thermal analysis.

    Analyst. 1974;99:900–12.

    2. Publications of RC. Mackenzie. Scientific papers and review

    articles. J Therm Anal. 1997;48:13–8.

    3. Smykatz-Kloss W. Meeting Robert C. Mackenzie: instead of a

    preface. J Therm Anal. 1997;48:3–6.

    4. Morgan D. Robert Mackenzie. J Therm Anal. 1997;48:7–9.

    5. Langier-Kuźniarowa A. Obituary–Robert Cameron Mackenzie.

    J Therm Anal. 2000;62:595–7.

    6. Wilson MJ. Obituary. Robert Cameron Mackenzie 1920–2000.

    Clay Miner. 2000;35:859–60.

    7. Mackenzie RC. Investigations on soil clays at the Macaulay

    Institute for Soil Research. Clay Miner Bull. 1947;1:8–9.

    8. Mackenzie RC. DTA and its use in soil-clay mineralogy. Geol

    Fören Stockh. 1956;78:508–25.

    9. Mackenzie RC, Milne AA. The effect of grinding on micas. Clay

    Miner Bull. 1953;2:57–62.

    10. Mackenzie RC. Free iron-oxide removal from soils. J Soil Sci.

    1954;5:167–72.

    11. Mackenzie RC. The thermal investigation of soil clays. Agro-

    chimica. 1956;1:1–22.

    12. Mackenzie RC. Some unsolved problems in clay mineralogy.

    Geol Fören Stockh. 1956;78:558–60.

    13. Mackenzie RC. Modern methods for studying clays. Agrochi-

    mica. 1957;1:305–7.

    14. Mackenzie RC. Hydration and hydroxylation with special refer-

    ence to montmorillonite. Geol Fören Stockh. 1957;79:58–60.

    15. Mitchell BD, Mackenzie RC. An apparatus for differential ther-

    mal analysis under controlled atmosphere conditions. Clay Miner

    Bull. 1959;4:31–4.

    16. Šesták J, Burda E, Holba P, Bergstein A. Apparatus for DTA in

    controlled atmospheres. Chemické listy. 1969;63:785.

    17. Brown A, Šesták J, Kronberg A. Vertical tungsten furnace for

    thermal studies up to 2700 �C. Czech J Phys. 1973;A23:612.18. Mackenzie RC. An early Swiss commercial instrument. Ther-

    mochim Acta. 1985;85:251–4.

    19. Mackenzie RC, editor. The differential thermal investigation of

    clays. London: Mineral Society; 1957.

    20. Kallauner O, Matějka J. Beitrag zu der rationellen analyse.

    Sprechsaal. 1914;47:423.

    21. Matějka J. Chemical changes of kaolinite on firing. Chemické

    listy 1919;13:164–166 and 182–185.

    22. Šesták J, Mackenzie RC. Rudolf Bàrta (1897–1985). J Therm

    Anal. 1986;31:3–4.

    23. Murphy CB. Thermal analysis progress. Anal Chem.

    1958;30:867, 1960;32:168R, 1962;34:298R.

    24. Berg LA. Introduction to thermography. Moscow: Nauka; 1964.

    (in Russian).

    25. Berg LA. Introduction to thermal analysis. Moscow: Akad Nauk

    USSR; 1961. (in Russian).

    26. Garn PD. Thermoanalytical methods of investigation. New York:

    Academic Press; 1962.

    27. Wendlandt WW. Thermal methods of analysis. New York:

    Wiley; 1964.

    28. Mackenzie RC. Origin and development of the international

    conference for thermal analysis (ICTA). J Therm Anal.

    1993;40:5–28.

    29. Mackenzie RC, editor. Handbook of DTA. New York: Chemical

    Publishing; 1966.

    30. Mackenzie RC, editor. Differential thermal analysis. London:

    Academic Press, 1970 vol. 1, 1972 vol. 2.

    31. Mackenzie RC. Differential Thermoanalyse und ihre Anwendung

    auf technische Stäube. Tonindustr Ztg. 1951;75:334–40.

    32. Mackenzie RC, Farmer VC. Some notes on Arens’ theory of

    differential thermal analysis. Clay Miner Bull. 1952;1:262–5.

    33. Šesták J. Thermophysical properties of solids: theoretical thermal

    analysis. Amsterdam: Elsevier; 1984.

    34. Šesták J. Těoretičeskij těrmičeskij analyz. Moscow: Mir; 1988.

    (in Russian).

    Fig. 10 On the right Dr. Mackenzie’s family grave in the cemeteryof the Portmahomack church and his tombstone

    790 G. Lombardi, J. Šesták

    123

  • 35. Mackenzie RC. Nomenclature in thermal analysis. In: Kolthoff IM,

    Elving PJ, Murphy CB, editors. Treatise on analytical chemistry.

    2nd ed. New York: Wiley 1983. Part I, vol. 12. p. 1–16.

    36. Mackenzie RC, Keattch CJ, Hodgson AA, Redfern JE. Abbre-

    viations in thermal analysis. Chem Ind. 1970;272–275.

    37. Mackenzie RC. Recommendations for nomenclature in thermal

    analysis. In: Schwenker RE, Garn ED, editors. Thermal analysis.

    New York: Academic Press; 1969. p. 685–91.

    38. Mackenzie RC. Nomenclature in thermal analysis. Talanta. 1969;

    16:1227–30.

    39. Mackenzie RC. How is an acceptable nomenclature system

    achieved? J Thermal Anal. 1972;4:215–21.

    40. Mackenzie RC. Nomenclature in thermal analysis. Part IV.

    Thermochim Acta. 1979;28:1–6.

    41. Mackenzie RC, et al. Nomenclature in thermal analysis. Part V.

    Symbols. Thermochim Acta. 1981;46:333–5.

    42. Šesták J, Holba P, Fajnor V. Proposal of the Czech-Slovak

    nomenclature in thermal analysis. Chemické listy. 1983;77:

    1292–308. (published under the supervision of RC Mackenzie).

    43. Šesták J, Holba P, Fajnor V, Kuzniarová A, Logviněnko VA,

    Metlin JuG, Pelovský Y, Živkovič Z., Mackenzie RC. Proposition

    for English based thermoanalytical terminology in Bulgarian,

    Czech, Polish, Russian, Serbian and Slovak languages. ICTA

    report completed under the Slavic international cooperation.

    44. Mackenzie RC. The story of the platimun-wounded electric

    resistance furnace. Platinum Met Rev. 1982;26:175–83.

    45. Mackenzie RC. De Calore: prelude to thermal analysis. Ther-

    mochim Acta. 1984;73:251–306.

    46. Mackenzie RC. Origin and development of thermal analysis.

    Thermochim Acta. 1984;73:307–67.

    47. Mackenzie RC, Proks I. Comenius and Black: progenitors of

    thermal analysis. Thermochim Acta. 1985;92:3–14.

    48. Mackenzie RC. George Martine, M.D., F.R.S. (1700–1741): an

    early thermal analyst? J Thermal Anal. 1989;95:1823–36.

    49. Mackenzie RC. Early thermometry and differential thermometry.

    Thermochim Acta. 1989;148:57–62.

    50. Mackenzie RC. The first quarter century. J Thermal Anal. 1994;

    42:295–9.

    51. Šesták J. Some historical aspects of thermal analysis: origins of

    Termanal, CalCon and ICTA. In: Klein E, Smrčková E, Šimon P,

    editors. Proceedings of the International Conference on Thermal

    Analysis ‘‘Termanal’’. Bratislava: Publishing House of the Slovak

    Technical University; 2005. p. 3–11.

    52. Proks I. Evaluation of the knowledge of phase equilibria. In:

    Chvoj Z, Šesták J, Třı́ska A, editors. Kinetic phase diagrams.

    Amsterdam: Elsevier; 1991. p. 1–53.

    53. Proks I. Celok je jednoduššı́ než jeho části. (Whole is simpler

    than its parts). Bratislava: Publishing House of Slovak Academy

    of Sciences; 2010 (in Slovak).

    54. Šesták J, Proks I, Šatava V, Habersberger K, Brandštetr J, Koráb

    O, Pekárek V, Rosický J, Vaniš M, Velı́šek J. The history of

    thermoanalytical and related methods in the territory of present-

    day Czechoslovakia. Thermochim Acta. 1986;100:255–70.

    55. Šesták J, Hubı́k P, Mareš JJ. Historical roots and development of

    thermal analysis and calorimetry. In: Šesták J, Mareš JJ, Hubı́k P,

    editors. Glassy, amorphous and nano-crystalline materials. Ber-

    lin: Springer; 2011. p. 347–70.

    56. Šesták J, Mackenzie RC. The heat/fire concept and its journey

    from prehistoric time into the third millennium. J Therm Anal

    Calorim. 2001;64:129–47.

    57. Liptay G, editor. Atlas of thermoanalytical curves: (TG, DTG,

    DTA curves measured simultaneously). London, New York:

    Heyden and Son; 1971.

    58. Wendlandt WW. How Thermochmica Acta began: some recol-

    lections. Thermochim Acta. 1981;50:1–5.

    A tribute to the ICTA founder 791

    123

  • Jaroslav Šesták - Peter Šimon

    Thermal analysis

    of micro-, nano- and non-crystalline materials

    Transformation, crystallization, kinetics and thermodynamics

    Springer

  • Preface Nucleation, glass crystallization and nonisothermal kinetics There are thousands of worth mentioning researches, scientists and engineers who contributed to better understanding of the glass science; we are able to present only some. Already in 1830 M. Faraday noted that “glass is a solution of different substances one in another rather than a strong chemical compound”. S. Arrhenius (1889) and then H. Eyring (1935) gave the requisite meaning to the reaction rate constant. Among significant scientific achievements worth mentioning are Griffith's theory of the strength of brittle materials (1921) and X-ray diffraction analysis showing the way for W.H. Zachariesen (1932) to consider his principles how the nearest neighbor coordination was maintained without imposing an exact long range order so far common for crystalline materials. Not less important were studies pertaining to vitrification and crystallization studies the inspiration of which can be found in the early books by G. Tammann (States of Aggregation, 1925) or G.O. Jones (Glass, 1956) and assorted fundamental research impacts by e.g. D.H. Vogel, S. Fulcher, W. Kauzman, A.Q. Tool, E.A. DiMarzio, D. Turnbull, W.E.S. Turner, J. Frenkel, R.O. Davis, H.A. Davies, J.H. Gibbs , M. Cohen, R.W. Douglas, M. Cable, P. F. McMillan, C.A. Angel, J.C. Fisher, J. Tauc, B.T. Kolomiets, N.F. Mott, A. Hruby, L.L. Hench, N.J. Kreidl, H. Schaeffer, G. Frischat, J.C. Maxwell, H. Rawson, R.S. Elliot, R. Roy, P.K. Gupta, J. E. Shelby, O.V. Mazurin, E.A. Porai-Koshitz, S.V. Nemilov, G.P. Johari, W. Götze, C.T. Moynihan, E. Donth, A.R. Cooper, G.N. Greaves, A.L. Greer, K.F. Kelton, A. Feltz, D.R. Uhlmann, J.D. Mackenzie, R.E. Moore, R.K. Brow, P.C. Schultz, E.N. Boulos, C.R. Kurkjan, C. Rüssel, R.H. Doremus, F.I. Gutzow, I. Avramov, W. Vogel, J.C. Philips, C.G. Pantano, C.A. Wright, M. Tatsumisago, F. Speapan, R. Conrat, A. Inoue, P.K. Gupta, K. Hirao, D.E. Day, W. Höland, M. Poulain, P.F. James, W.P.J. Schmelzer, B.P. Macedo, M.C. Weinberg, H. Suga, S.L. Simon, B. Wunderlich, L.D. Pye, M.D. Ingraham, A.V. Tobolsky, K.J. Rao, M.H. Fernandes, A.K. Varshneya, K.A. Jackson, W.A. Philips, M.E. Glicksman, F.E. Luborski, J.H. Simmons and many others . It is c1ear that a considerable amount of rapidly expanding data on glass-formation as a result of enhanced understanding of (often controlled) melt enhanced cooling and consequent re-crystallization of glasses has required certain taxonomy leading to the early foundation of specific journals and symposia. Associated theoretical studies on nucleation, crystallization and crystal growth have also escalated being viewed from both limiting sides: on the one hand it was the solidification upon a slow (self-cooling) of melts and on the other hand the purposefully suppressed crystallization of quenched (freeze-in) melts. Thermal analysis, particularly differential thermal analysis (DTA), became effectively involved from the very beginning, simply discriminating, e.g., bulk and surface nucleation by mere comparing thermal behavior of the as-cast and subsequently powdered samples (already R.L. Thakur in the 1960s). Some other fundamental and complementary methods of thermal physics arrived at sophisticated levels of research as was exposed in the previous volume entitled “Glassy, amorphous and nanocrystalline materials: thermal physics, analysis, structure and properties” published by Springer, 2011 (ISBN 978-90-481-2881-5 and DOI 10.1007/978-90-481-2882-2) containing 21 chapters with 380 pp. The best theoretical endeavor, however, was made in the field of oxide glasses where the traditional symposia on advances in nucleation and crystal growth were originally held every ten years resulting in the valuable proceedings, beginning the early seventies by compendium "Advances in nuc1eation and crystallization of glasses" edited by L.L. Hench and S.W. Freiman and published by the American Ceramic Society (Columbus, Ohio 1972) and followed by "Nuc1eation and crystallization of glasses" edited by J.H. Simmons, D.R. Uhlmann and G.H. Beall and published in "Advances of Ceramics" (Amer. Cer. Soc.,

  • Columbus, Ohio 1982) as well as by "Nuc1eation and crystallization in liquids and glasses" edited by M.C. Weinberg and published in "Ceramic Transactions" (Amer. Cer. Soc., Westerville, Ohio 1993) and finally by “Crystallization in glasses and liquids” (the symposium in Vaduz, Liechtenstein 2000), edited by W. Höland, M. Schweiger and V. Rheinberger and published in Glastech. Ber. Glass. Sci. Tech. 73 C, 2000 (with 425 pp.). In this respect, the presented book is supposed to portray a certain continuation of such a traditional publication activity particularly mentioning our previous monograph, which received abundant citation feedback responses. Namely, it was a 1996 special issue of the journal Thermochimica Acta (Vol. 280/281) entitled ”Vitrification, transformation and crystallization of glasses” (Elsevier, Amsterdam), edited by J. Šesták (and dedicated to the life anniversaries of H. Suga, V. Šatava and D.R. Uhlmann). Compendium arrangement was initiated upon the cooperation with N.J. Kreidl, D.R. Uhlmann and M.C. Weinberg during the Šesták´s 1993 visiting professorship at the University of Arizona in Tucson (see the end photo). The final book compilation was made possible by help of the most renowned US glass scientist such as C.A. Angel, D.E. Day, L.L. Hench, P.M. Mehl, C.T. Moynihan, C.S. Ray, J.H. Flynn and S.H. Risbud who considered contributing the inherent text. The resulted softbound book contained as many as 40 chapters on 533 pp. coauthored by other recognized scientists, such as Argentinean C.J.R. Gonzales-Oliver, O.F. Martinez; Brazilian E.D. Zanotto; Czech Z. Kožíšek, Z. Chvoj, B. Hlaváček, J. Málek, P. Demo; British P.F. James, M.J. Richardson; Bulgarian I. Avramov, A. Dobreva, I.B. Gugov, I. Gutzov; Canadiend H.D. Gollf; French M. Poulain; German K. Heide, R. Müller; Hungarian L. Granasy; Indian K.S. Dubey, P. Ramachandrarao; Italian A. Buri, F. Branda; Liechtenstein W. Höland, V. Rheinberger; Japanese T. Kokubo, T. Komatsu, M. Matusita, M. Tatsumisago, M. Koide, Y.Masaki; Liechtenstein W. Hölland; Russian V. Filipovich, V. Fokin, G. Moiseev, A. Kalinina, I. Tomilin or Spanish J.M. Barandiarán and I. Tellería. Recently this tradition has been followed by a similarly anticipated compendium entitled "Interplay between nucleation, crystallization and the glass transition" with almost 30 contributed papers published as a special issue of Thermochimica Acta (Vol. 503, 2011) under the editorial care of C. Schick and C.W. Höhne. The idea of collecting broader viewpoints toward the formation and devitrification of glasses, particular1y aimed at the confrontation of various aspects of descriptive theories, evaluative treatments and applied technologies were repetitively the entire subject during the series of renowned Kreidl’s memorial conferences. The one on “Advances of glasses” was held in Liechtenstein 1994 (proceedings edited D.R. Uhlmann and W. Hölland). The subsequent (last) meeting “Building the bridges between glass science and glass technology” was held in Slovak Trenčín 2004 (proceedings published in Glass. Ber. Glass. Sci. Tech. 77C, 2004, and edited by J. Šesták and M. Liška). Worth noting is the compendium “Reaction kinetics by thermal analysis” published as a special issue of Thermochimica Acta (Volume 203, 1992, with 530 pp., edited by J. Šesták and dedicated to the chairman of Kinetic Committee of ICTAC, late J.H. Flynn at the occasion of his seventies). Another collection, entitled “Thermal studies beyond 2000”, is also noteworthy as published as a special issue of the Journal of Thermal Analysis and Calorimetry (Volume 60, 2000 by Kiado, Budapest and Kluwer, Dordrecht with 402 pp) and edited by M.E. Brown, J. Málek, N. Koga and J. Mimkes (and dedicated to the J. Šesták’s sixties). There are also two recent monographs: “Glass: the challenge for the 21st century” (published by Trans Tech Publications, Switzerland 2008, 692 pp. and edited by M. Liška, D. Galusek, R. Klement as the proceedings of the international IX. ESG/ICG conference held in Trenčín, Slovakia 2008) and “Some thermodynamic, structural and behavioral aspects of materials accentuating non-crystalline states” (published as a university internal booklet by

  • the Public Weal Society. OPS, at the West Bohemian University - ZČU Pilsen 2009 and 2011, with 620 pp. and edited by J. Šesták, J. Málek and M. Holeček). The are quite a few recent books on the topic among others quoting those responsive to nucleation, such as by S. Kaschiev “Nucleation: basic theory with application” (Butterworth 2000), D. Jürn, J.W.P. Schmelzer: “Nucleation: theory and application” (Wiley 2005), H. Vehkamäki „Classical Nucleation Theory in Multicomponent Systems“ (Springer 2006), K.F. Kelton, A.L. Greer „Nucleation in Condensed Matter: applications in materials and biology” (Elsevier 2010) or V.I. Kalikhmanov “Nucleation Theory” (Springer 2011). Other influential are books on glass formation such as Donth E.J: Glass Transition, Relaxation Dynamics and Disordered States, Springer, Berlin (2001); Egami T, Greer A. L, Inoue A, Ranganathan S, (eds): Supercooled Liquids, Glass Transition and Bulk Metallic Glasses, Cambridge (2003); Wunderlich B: Thermal Analysis of Polymeric Materials, Springer, Berlin (2005); Henkel M,; Pleimling M, Sanctuary R, (eds): Ageing and the Glass Transition, Springer, Berlin (2007); Schmelzer J. W. P, Gutzow I.S, Mazurin O. V, Priven A. I, Todorova S. V, Petroff B. P, (eds): Glasses and the glass transition, Wiley, New York (2011). Concerning the field continuous upgrading a particular attention should be paid to the Committee on Glass Nucleation and Crystallization (abbreviated ‘CT 7’) as a part of the ICG (International Commission on Glass) cf. Fig 1.

    Fig. 1. The 2001 composition of TC7 committee (of ICG) working in the historical configuration (from right) G. Völksch (Germany), V.M. Fokin (Russia), M. Davis (USA), R. Müller (Germany), late P. James (UK), kneeing E. Zanotto (present chairman,, Brazil), late M.C. Weinberg (USA), W. Hölland (past chairman, Liechtenstein), T. Kokubo (Japon), late I. Szabo (Hungary), I. Donald (UK), L. Pinckney (USA), W. Panhorst (former chairman, Germany) and J. Šesták (Czech Republic). Notable element of randomness is the variation of bond angles sometime assumed to be crucial in auxiliary distinguishing of constrained states of glassy and amorphous materials. The flexibility of covalent bond is largest for the two-fold coordination groups of VI-elements and is lowest for the tetrahedrally coordinated groups of IV-elements. For instance, in the SiO2 glasses the oxygen atoms are bridging the Si-tetrahedral providing the essential flexibility, which is considered necessary to form a random covalent network (without exhibiting excess of strain). However, if such a covalent random network is formed without the flexing bridges of the group VI-elements, the structure becomes amorphous (as the deposited strain-confined films of, e.g., As2S3), which can exist in many various forms of non-crystalline configurations (often experimentally irreproducible). The glass-forming tendency

  • occurs greatest when the short-range order imposed by bond stretching and bending forces is just sufficient to exhaust the local degrees of freedom. The internal strain increases with the average coordination number, m, while the entropy follows the opposite trend because the non-crystalline state becomes insufficiently interconnected (i.e., ‘cross-linked’). Therefore, the conventionally “stable” state of chalcogenide glasses is typically restricted to lie in the region ~3.3 > m > 2; while with m > 3.3 glass becomes over-constrained amorphous (shown by J.C. Phillips already in 1970s); yet higher, with m > 4.3, associates with unusual state of non-crystalline metals obtained by ultrafast quenching. On the other hand, those having the lower connectivity (m < 2) are assumed to be under-cross-linked amorphous materials, such as typically thin films. The highly constrained nature of variously obtained amorphous films suggests that defects might not be randomly distributed but could be predominantly located as internal blocks, voids and strain-relief interfaces between low-strain regions. In contrast to glasses, the amorphous films can thus exist in many non-crystalline configurational states the thermal annealing of which can lower their tense energy, however, cannot transform the over-constrained amorphous configuration from one ranking to another. A drastic atomic rearrangement would be enforced as to accomplish such an ‘unstructured’ reconstruction, which would, instead, materialize overlapping by more pertinent as well as unprompted crystallization. However, a possible interference of so the called ‘medium-range order’ (or ‘modulated structures’) becomes particularly common in resolving various non-crystalline materials, pertinent typically semiconductors, where the concept of homogeneously random network and its heterogeneity was most extensively studied. It is closely connected with the fashionable use of adjective ‘nano’ (nano-technology or nano-materials) touching the limits where the ordered and disordered states transpire factually a guaranteed threshold (‘delimitability’). The standard observations, based on measuring crystallographic characteristics and the amount of crystalline phases (such as typical XRD) are capable to detect the crystalline phase down to about 2 % within the glassy matrix, certainly under certain crystal-size discrimination (‘detectability’). If not assuming here the capability to distinguish a minimum of neither ‘yet-crystal-magnitude’ nor we account for a specialized diffraction measurement at low diffraction angles (radial distribution function); we can concentrate toward the critical amount of crystalline phase in the glassy sample. This issue is yet befitting the crucial question of how to relevantly define the limit of yet ‘true glassiness’ and already ‘nano-crystallinity’. A few proposals became known but the generally accepted figure is, for long, the value of 10-6 vol. % (less common 10-3 %), of crystallites to exist within glass matrix not yet disturbing its non-crystalline portrayal and consequent characterization of glassines. The appropriateness of this value, however, is difficult to authorize persisting in its maintenance on the basis of acute convenience and reiteration. Regarding the process of crystallization the early theories of solid-state reactions (D.A. Young, K. Haufe, H. Schmelzried, J.P. Tretyakov, C.S. Smith, F.C. Tompkins, R.F. Mehl, V.V. Boldyrev, E.A. Prodan, B.V. L’vov, S.F. Hulbert , A.K. Galwey, D. Dollimore, M.E. Brown) should be mentioned performing an important grounding for generalized kinetic studies. It was preceded by diffusion controlled kinetics (E. Kirkendall, W. Jander. C. Kroger, V.F. Zhuravlev, A.M. Ginstling, B.I.Brounshtein,R.E. Carter, W. Komatsu, M.E. Fine). A specific role played the methods of kinetic evaluation by means of thermal analysis, specifically DTA, which was inaugurated to the study of reaction kinetics by H.J. Borchard and F. Daniels (1950) and H.E. Kissiner (1957) and introduced in the practice of solid-state reactions in1960s (L. Reich, C.D. Doyle, E.S. Freeman, H.L. Friedman, J. Zsako, P.D. Garn, J.H. Flynn, T. Ozawa, E. Segal, V. Šatava or J. Šesták). It was preceded by the traditionally calculated mode of so called “isothermal” crystallization kinetics using the comprehensive form of Johnson-Mehl-Avrami-Yerofeeyev-Kolmogorov equation (abbreviated as JMAYK

  • and pioneered in the turn of the forties). Its validity extension came by means of its derivation mode under a more general (“non-isothermal”) conditions respecting thus the standardized thermal regime of the temperature linear increase (common, e.g., during DTA measurements). It was necessary to introduce the temperature-dependent integration (D.W. Henderson, T.J.W. DeBroijn, W.A. DeJong, T. Kemeny, J. Šesták) yielding the concealed but anticipated fact that that the non-isothermal equivalent of the isothermally derived JMAYK relation is almost indistinguishable. It enabled one to simplify the kinetic rate equation to all types of interface-controlled and/or diffusion-controlled crystallization in a comprehensive form of ln (1-α) = - kT tr where the general exponent, r, can be seen as a multipart number of a robust analysis of the basic JMAYK equation effortlessly analyzable in terms of DTA measurements. It reveals that the apparent (overall) values of activation energies, Eapp is frequently correlated to the partial activation energies of nucleation, EN, growth, EG and/or diffusion, ED (J. Šesták, M.C. Weinberg, C.T. Moynihan, J.W. Christian). In a brief wrapping up it should be stressed out that numerous variously adapted methods of kinetic analysis and evaluation cannot be easily covered in a single communication. These manners have been treated repeatedly yielding thus plentiful publications, which were dealt with by a range of well known kineticists, cf. Fig. 2. The editors and authors are optimistic that this compendium of distinctive chapters would facilitate kinetic proficiency of readers enhancing associated citation feedback, which became important in the appraisal of scientific work. Let us point out that the topic of nucleation-crystallization kinetics has been extensively quoted in the literature, for example (according to WOS 2011); Avrami fundamental paper on general kinetics of phase changes (1939) received 5368, Kissinger’s reaction kinetics by DTA (1957) 4461 and Ozawa’s kinetic method of analyzing thermogravimetry data (1965) 2096 respective responses. Correspondingly the renowned kinetic equations by Jander (1927) on diffusion received 551, that by Šesták-Berggrenn (1971) on fractal (autocatalytic) kinetics 566 responses, mentioning also the Uhlmann kinetic treatment (1972) with 473 responses. These figures are comparable with 1913 and 1396 citations for the basic papers on glass behavior by Fulcher (viscosity 1925) and Mott (conduction 1968), respectively. The citation data illustrates that the theme of reaction kinetics is one of the best denoted focuses within the literature on solid-state reactions, which is the reason why this subject was chosen to prevail in the text of following chapters. Fig. 2. Numerous researches have been involved in studying reaction kinetics and particularly in the development of nucleation theory and associated nonisothermal evaluations, some of them are listed below which is, certainly, restricted by the availability of individual portraits. First raw: Svante A. Arrhenius, Henry Eyring, Andrey N. Kolmogorov, Robert F. Mehl, Raoul Kopelman, Andrew K. Galwey, Paul D. Garn; below Erwad M.D. Karhanavala, Joseph H. Flynn, David Dollimore, Vladimir V. Boldyrev, Janus Zsako, Boris L. L'vov, Vladimír Šatava; below Eugene Segal, Ari Varschavski, Viktor Jesenák, Delbert D. Day, Cornelius T. Moynihan, Takeo Ozawa, Donald R. Uhlmann; below Julia Sempere, Rosa Nomen, Judith Simon, Barbara Malecka, Andrzej L. Malecki, Alan K. Burnham, Michael E. Brown; below Marek Maciejewski, Zdeněk Kožíšek, Jerzy Czarnecki, Nobuyoshi Koga, Petru Budrugeac, Nae-Lih Wu, Emília Illeková; below Peter Šimon, Jaroslav Šesták, Jiří Málek, Vladimir M. Fokin, José M. Criado, Sergey Vyazovkin, Bertrand Roduit; below John M. Hutchinson, Klaus Heide, Isaac Avramov, Lindsay A. Greer, Kenneth F. Kelton, Edgar D. Zanotto, Takayuki Komatsu; bottom raw Živan Živkovič, Jurn W.P. Schmelzer, Pavel Hrma, Pavel Holba, Paul S. Thomas, Pavel Demo, Vladimir A. Logvinenko.

  • Jaroslav Šesták Emeritus scientist of the Academy of Science of the Czech Republic; Program auspice of the West Bohemian University in Pilsen and ‘Doctor Honoris Causa’ of Pardubice University. He is a co-founding professor of both the School of Energy Science of the Kyoto University in Japan, the Faculty of Humanities of the Charles University in Prague and the New York University, branch in Prague authoring numerous books (the most cited “Thermophysical Properties of Solids”); shown (upper left) with th