continuous-time fourier transform. content introduction fourier integral fourier transform...

68
Continuous-Time Fourier Transform 主主主 主主主

Upload: shane-wellings

Post on 29-Mar-2015

282 views

Category:

Documents


10 download

TRANSCRIPT

Page 1: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

Continuous-Time Fourier Transform

主講者:虞台文

Page 2: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

ContentIntroductionFourier IntegralFourier TransformProperties of Fourier TransformConvolutionParseval’s Theorem

Page 3: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

Continuous-Time Fourier Transform

Introduction

Page 4: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

The Topic

FourierSeries

FourierSeries

DiscreteFourier

Transform

DiscreteFourier

Transform

ContinuousFourier

Transform

ContinuousFourier

Transform

FourierTransform

FourierTransform

ContinuousTime

DiscreteTime

Per

iodi

cA

peri

odic

Page 5: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

Review of Fourier Series

Deal with continuous-time periodic signals. Discrete frequency spectra.

A Periodic SignalA Periodic Signal

T 2T 3T

t

f(t)

Page 6: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

Two Forms for Fourier Series

T

ntb

T

nta

atf

nn

nn

2sin

2cos

2)(

11

0

T

ntb

T

nta

atf

nn

nn

2sin

2cos

2)(

11

0SinusoidalForm

ComplexForm:

n

tjnnectf 0)(

n

tjnnectf 0)( dtetf

Tc

T

T

tjnn

2/

2/

0)(1

dttfT

aT

T2/

2/0 )(2

tdtntfT

aT

Tn 0

2/

2/cos)(

2

tdtntfT

bT

Tn 0

2/

2/sin)(

2

Page 7: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

How to Deal with Aperiodic Signal?

A Periodic SignalA Periodic Signal

T

t

f(t)

If T, what happens?

Page 8: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

Continuous-Time Fourier Transform

Fourier Integral

Page 9: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

tjn

nnT ectf 0)(

Fourier Integral

n

tjnT

T

jnT edef

T00

2/

2/)(

1

dtetfT

cT

T

tjnTn

2/

2/

0)(1

T

20

2

1 0

T

n

tjnT

T

jnT edef 00

0

2/

2/)(

2

1

LetT

20

0 dT

n

tjnT

T

jnT edef 00

2/

2/)(

2

1

dedef tjjT )(

2

1

Page 10: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

dedeftf tjj)(2

1)(

Fourier Integral

F(j)

dtetfjF tj

)()(

dejFtf tj)(2

1)( Synthesis

Analysis

Page 11: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

Fourier Series vs. Fourier Integral

n

tjnnectf 0)(

n

tjnnectf 0)(

FourierSeries:

FourierIntegral:

dtetfT

cT

T

tjnTn

2/

2/

0)(1 dtetf

Tc

T

T

tjnTn

2/

2/

0)(1

dtetfjF tj

)()( dtetfjF tj

)()(

dejFtf tj)(2

1)(

dejFtf tj)(2

1)(

Period Function

Discrete Spectra

Non-PeriodFunction

Continuous Spectra

Page 12: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

Continuous-Time Fourier Transform

Fourier Transform

Page 13: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

Fourier Transform Pair

dtetfjF tj

)()( dtetfjF tj

)()(

dejFtf tj)(2

1)(

dejFtf tj)(2

1)( Synthesis

Analysis

Fourier Transform:

Inverse Fourier Transform:

Page 14: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

Existence of the Fourier Transform

dttf |)(|

dttf |)(|

Sufficient Condition:

f(t) is absolutely integrable, i.e.,

Page 15: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

dtetfjF tj

)()(

Continuous Spectra

)()()( jjFjFjF IR

)(|)(| jejF FR(j)

FI(j)

|F(j)|

()

MagnitudePhase

Page 16: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

Example

1-1

1

t

f(t)

dtetfjF tj

)()( dte tj

1

1

1

1

1

tje

j

)(

jj eej

sin2

Page 17: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

Example

1-1

1

t

f(t)

dtetfjF tj

)()( dte tj

1

1

1

1

1

tje

j

)(

jj eej

sin2

-10 -5 0 5 10-1

0

1

2

3

F(

)-10 -5 0 5 10

0

1

2

3

|F(

)|

-10 -5 0 5 100

2

4ar

g[F

()]

-10 -5 0 5 10-1

0

1

2

3

F(

)-10 -5 0 5 10

0

1

2

3

|F(

)|

-10 -5 0 5 100

2

4ar

g[F

()]

Page 18: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

Example

dtetfjF tj

)()( dtee tjt

0

t

f(t)

et

dte tj

0

)(

j

1

Page 19: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

Example

dtetfjF tj

)()( dtee tjt

0

t

f(t)

et

dte tj

0

)(

j

1

-10 -5 0 5 100

0.5

1

|F(j

)|

-10 -5 0 5 10-2

0

2

arg[

F(j

)]

=2

-10 -5 0 5 100

0.5

1

|F(j

)|

-10 -5 0 5 10-2

0

2

arg[

F(j

)]

=2

Page 20: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

Continuous-Time Fourier Transform

Properties of

Fourier Transform

Page 21: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

Notation

)()( jFtf F )()( jFtf F

)()]([ jFtfF )()]([ jFtfF

)()]([1 tfjF- F )()]([1 tfjF- F

Page 22: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

Linearity

)()()()( 22112211 jFajFatfatfa F )()()()( 22112211 jFajFatfatfa F

Proved by yourselves

Proved by yourselves

Page 23: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

Time Scaling

a

jFa

atf||

1)( F

a

jFa

atf||

1)( F

Proved by yourselves

Proved by yourselves

Page 24: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

Time Reversal

jFtf F)( jFtf F)(

Pf) dtetftf tj

)()]([F dtetft

t

tj

)(

)()( tdetft

t

tj

)()( tdetft

t

tj

dtetft

t

tj

)( dtetft

t

tj

)(

dtetf tj

)( )( jF

Page 25: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

Time Shifting

0)( 0tjejFttf F 0)( 0

tjejFttf F

Pf) dtettfttf tj

)()]([ 00F dtettft

t

tj

)( 0

)()( 0)(0

0

0 ttdetftt

tt

ttj

dtetfet

t

tjtj

)(0

dtetfe tjtj

)(0 tjejF 0)(

Page 26: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

Frequency Shifting (Modulation)

)()( 00 jFetf j F )()( 0

0 jFetf j F

Pf)dteetfetf tjtjtj

00 )(])([F

dtetf tj

)( 0)(

)( 0 jF

Page 27: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

Symmetry Property

)(2)]([ fjtFF )(2)]([ fjtFF

Pf)

dejFtf tj)()(2

dejFtf tj)()(2

dtejtFf tj

)()(2

Interchange symbols and t

)]([ jtFF

Page 28: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

Fourier Transform for Real Functions

If f(t) is a real function, and F(j) = FR(j) + jFI(j)

F(j) = F*(j)

dtetfjF tj

)()(

dtetfjF tj

)()(* )( jF

Page 29: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

Fourier Transform for Real FunctionsFourier Transform for Real Functions

If f(t) is a real function, and F(j) = FR(j) + jFI(j)

F(j) = F*(j)

FR(j) is even, and FI(j) is odd.

F R( j) = F R(j) F I( j) = F I(j)

Magnitude spectrum |F(j)| is even, and phase spectrum () is odd.

Page 30: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

Fourier Transform for Real FunctionsFourier Transform for Real Functions

If f(t) is real and even

F(j) is real

If f(t) is real and odd

F(j) is pure imaginary

Pf))()( tftf

Pf)Even

)()( jFjF

)(*)( jFjFReal

)(*)( jFjF

)()( tftf Odd

)()( jFjF

)(*)( jFjFReal

)(*)( jFjF

Page 31: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

Example:

)()]([ jFtfF ?]cos)([ 0 ttfF

Sol)

))((2

1cos)( 00

0tjtj eetfttf

])([2

1])([

2

1]cos)([ 00

0tjtj etfetfttf FFF

)]([2

1)]([

2

100 jFjF

Page 32: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

Example:

d/2d/2

1

t

wd(t)

d/2d/2t

f(t)=wd(t)cos0t

2sin

2)]([)(

2/

2/

ddtetwjW

d

d

tjdd F

]cos)([)( 0ttwjF d F0

0

0

0 )(2

sin)(2

sin

dd

Page 33: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

Example:

d/2d/2

1

t

wd(t)

d/2d/2t

f(t)=wd(t)cos0t

2sin

2)]([)(

2/

2/

ddtetwjW

d

d

tjdd F

]cos)([)( 0ttwjF d F0

0

0

0 )(2

sin)(2

sin

dd

-60 -40 -20 0 20 40 60-0.5

0

0.5

1

1.5

F(j

)

d=2

0=5

-60 -40 -20 0 20 40 60-0.5

0

0.5

1

1.5

F(j

)

d=2

0=5

Page 34: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

Example:

t

attf

sin)( ?)( jF

Sol)

d/2d/2

1

t

wd(t)

2sin

2)(

djWd

)(22

sin2

)]([

dd w

td

tjtW FF

)(sin

)]([ 2

aw

t

attf FF

||1

||0

a

a

Page 35: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

Fourier Transform of f’(t)

0)(lim and )(

tfjFtft

F 0)(lim and )(

tfjFtft

F

Pf) dtetftf tj

)(')]('[F

dtetfjetf tjtj )()(

)()(' jFjtf F )()(' jFjtf F

)( jFj

Page 36: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

Fourier Transform of f (n)(t)

0)(lim and )(

tfjFtft

F 0)(lim and )(

tfjFtft

F

)()()()( jFjtf nn F )()()()( jFjtf nn F

Proved by yourselves

Proved by yourselves

Page 37: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

Fourier Transform of f (n)(t)

0)(lim and )(

tfjFtft

F 0)(lim and )(

tfjFtft

F

)()()()( jFjtf nn F )()()()( jFjtf nn F

Proved by yourselves

Proved by yourselves

Page 38: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

Fourier Transform of Integral

00)( and )(

FdttfjFtf F 00)( and )(

FdttfjFtf F

jFj

dxxft 1

)(F

jFj

dxxft 1

)(F

Let dxxftt

)()( 0)(lim

t

t

)()()]([)]('[ jjjFtft FF

)(1

)(

jFj

j

Page 39: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

The Derivative of Fourier Transform

d

jdFtjtf FF )]([

d

jdFtjtf FF )]([

Pf)dtetfjF tj

)()(

dtetfd

d

d

jdF tj

)()(

dtetf tj

)(

dtetjtf tj

)]([ )]([ tjtfF

Page 40: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

Continuous-Time Fourier Transform

Convolution

Page 41: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

Basic Concept

Linear SystemLinear Systemfi(t) fo(t)=L[fi(t)]

fi(t)=a1 fi1(t) + a2 fi2(t) fo(t)=L[a1 fi1(t) + a2 fi2(t)]

A linear system satisfies fo(t) = a1L[fi1(t)] + a2L[fi2(t)]

= a1fo1(t) + a2fo2(t)

Page 42: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

Basic Concept

Time InvariantSystem

Time InvariantSystem

fi(t) fo(t)

fi(t +t0) fo(t + t0)fi(t t0) fo(t t0)

tfi(t)

tfo(t)

tfi(t+t0)

tfo(t+t0)

tfi(tt0)

tfo(tt0)

Page 43: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

Basic Concept

CausalSystemCausalSystem

fi(t) fo(t)

A causal system satisfies

fi(t) = 0 for t < t0 fo(t) = 0 for t < t0

Page 44: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

Basic Concept

CausalSystemCausalSystem

fi(t) fo(t)

tfi(t)

tfo(t)

t0t0

t0

tfi(t)

tfo(t)

t0fi(t)

t tfo(t)

t0t0

Which of the following systems are causal?

Which of the following systems are causal?

Page 45: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

Unit Impulse Response

LTISystem

LTISystem

(t) h(t)=L[(t)]

f(t) L[f(t)]=?

Facts: )()()()()( tfdtfdtf

dtfLtfL )()()]([

dtLf )]([)(

dthf )()( Convolution

Page 46: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

Unit Impulse Response

LTISystem

LTISystem

(t) h(t)=L[(t)]

f(t) L[f(t)]=?

Facts: )()()()()( tfdtfdtf

dtfLtfL )()()]([

dtLf )]([)(

dthf )()( Convolution

)(*)()]([ thtftfL )(*)()]([ thtftfL

Page 47: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

Unit Impulse Response

Impulse ResponseLTI System

h(t)

Impulse ResponseLTI System

h(t)f(t) f(t)*h(t)

Page 48: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

Convolution Definition

dtfftf )()()( 21

The convolution of two functions f1(t) and f2(t) is defined as:

)(*)( 21 tftf

Page 49: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

Properties of Convolution

)(*)()(*)( 1221 tftftftf )(*)()(*)( 1221 tftftftf

dtfftftf )()()(*)( 2121

dtff )()( 21

)(])([)( 21

tdttftf

t

t

dftf )()( 21

dftf )()( 21 )(*)( 12 tftf

Page 50: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

Impulse ResponseLTI System

h(t)

Impulse ResponseLTI System

h(t)

f(t) f(t)*h(t)

Properties of Convolution

)(*)()(*)( 1221 tftftftf )(*)()(*)( 1221 tftftftf

Impulse ResponseLTI System

f(t)

Impulse ResponseLTI System

f(t)

h(t) h(t)*f(t)

Page 51: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

Properties of Convolution

)](*)([*)()(*)](*)([ 321321 tftftftftftf )](*)([*)()(*)](*)([ 321321 tftftftftftf

Prove by yourselves

Prove by yourselves

Page 52: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

Properties of Convolution

)](*)([*)()(*)](*)([ 321321 tftftftftftf )](*)([*)()(*)](*)([ 321321 tftftftftftf

h1(t)h1(t) h2(t)h2(t) h3(t)h3(t)

h2(t)h2(t) h3(t)h3(t) h1(t)h1(t)

The following two systems are identical

The following two systems are identical

Page 53: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

Properties of Convolution

)()(*)( tfttf )()(*)( tfttf (t)(t)f(t) f(t)

dtfttf )()()(*)(

dtf )()(

)(tf

Page 54: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

Properties of Convolution

)()(*)( tfttf )()(*)( tfttf (t)(t)f(t) f(t)

)()(*)( TtfTttf )()(*)( TtfTttf

dTtfTttf )()()(*)(

dTtf )()(

)( Ttf

Page 55: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

Properties of Convolution

f(t) f(t T)

)()(*)( TtfTttf )()(*)( TtfTttf

0 T

(tT)

tf (t)

0t

f (t)

0 T

Page 56: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

Properties of Convolution

f(t) f(t T)

)()(*)( TtfTttf )()(*)( TtfTttf

0 T

(tT)

tf (t)

0t

f (t)

0 T

System function (tT) serves as an ideal delay or a copier.System function (tT) serves as an ideal delay or a copier.

Page 57: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

Properties of Convolution

)()()(*)( 2121 jFjFtftf F )()()(*)( 2121 jFjFtftf F

dtedtfftftfF tj

)()()](*)([ 2121

ddtetff tj)()( 21

dejFf j)()( 21

defjF j)()( 12 )()( 21 jFjF

Page 58: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

Properties of Convolution

)()()(*)( 2121 jFjFtftf F )()()(*)( 2121 jFjFtftf F

dtedtfftftfF tj

)()()](*)([ 2121

ddtetff tj)()( 21

dejFf j)()( 21

defjF j)()( 12 )()( 21 jFjF

Time Domain Frequency Domain

convolution multiplication

Page 59: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

Properties of Convolution

)()()(*)( 2121 jFjFtftf F )()()(*)( 2121 jFjFtftf F

Time Domain Frequency Domain

convolution multiplication

Impulse ResponseLTI System

h(t)

Impulse ResponseLTI System

h(t)f(t) f(t)*h(t)

Impulse ResponseLTI System

H(j)

Impulse ResponseLTI System

H(j)F(j) F(j)H(j)

Page 60: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

Properties of Convolution

)()()(*)( 2121 jFjFtftf F )()()(*)( 2121 jFjFtftf F

Time Domain Frequency Domain

convolution multiplication

F(j)

F(j)H1(j)

H2(j)H2(j)H1(j)H1(j) H3(j)H3(j)

F(j)H1(j)H2(j)

F(j)H1(j)H2(j)H3(j)

Page 61: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

Properties of Convolution

)()()(*)( 2121 jFjFtftf F )()()(*)( 2121 jFjFtftf F

An Ideal Low-Pass Filter

0

Fi(j)

0

Fo(j)

0

H(j)

pp

1

Page 62: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

Properties of Convolution

)()()(*)( 2121 jFjFtftf F )()()(*)( 2121 jFjFtftf F

An Ideal High-Pass Filter

0

Fi(j)

0

H(j)

pp

1

0

Fo(j)

Page 63: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

Properties of Convolution

)(*)(2

1)()( 2121

jFjFtftf F )(*)(

2

1)()( 2121

jFjFtftf F

djFjFtftf )]([)(

2

1)()( 2121

F

djFjFtftf )]([)(

2

1)()( 2121

F

Prove by yourselvesProve by yourselves

Page 64: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

Properties of Convolution

)(*)(2

1)()( 2121

jFjFtftf F )(*)(

2

1)()( 2121

jFjFtftf F

djFjFtftf )]([)(

2

1)()( 2121

F

djFjFtftf )]([)(

2

1)()( 2121

F

Prove by yourselvesProve by yourselves

Time Domain Frequency Domain

multiplication convolution

Page 65: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

Continuous-Time Fourier Transform

Parseval’s Theorem

Page 66: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

Properties of Convolution

djFjFdttftf ][)(

2

1)]()([ 2121

djFjFdttftf ][)(

2

1)]()([ 2121

djFjFtftf )]([)(

2

1)()( 2121

F

djFjFtftf )]([)(

2

1)()( 2121

F

djFjFdtetftf tj )]([)(

2

1)]()([ 2121

djFjFdttftf )]([)(

2

1)]()([ 2121=0=0

Page 67: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

Properties of Convolution

djFjFdttftf ][)(

2

1)]()([ 2121

djFjFdttftf ][)(

2

1)]()([ 2121

If f1(t) and f2(t) are real functions,

djFjFdttftf ][)(

2

1)]()([ *

2121

djFjFdttftf ][)(

2

1)]()([ *

2121

f2(t) real ][][ *22 jFjF

Page 68: Continuous-Time Fourier Transform. Content Introduction Fourier Integral Fourier Transform Properties of Fourier Transform Convolution Parseval s Theorem

Parseval’s Theorem:Energy Preserving

djFdttf 22 |)(|

2

1|)(|

djFdttf 22 |)(|

2

1|)(|

dtetftf tj

)(*)](*[F

djFjF )]([*)(

2

1

dttftfdttf

)(*)(|)(| 2

*

)(

dtetf tj )(* jF

djF 2|)(|

2

1