control of vehicular platoons: limitations and tradeoffs

29
Control of vehicular platoons: limitations and tradeoffs Mihailo Jovanovi´ c www.umn.edu/mihailo E LECTRICAL AND C OMPUTER E NGINEERING U NIVERSITY OF M INNESOTA CDC-ECC’05 Workshop – December 11, 2005

Upload: others

Post on 03-May-2022

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Control of vehicular platoons: limitations and tradeoffs

Control of vehicular platoons:limitations and tradeoffs

Mihailo Jovanovicwww.umn.edu/∼mihailo

ELECTRICAL AND COMPUTER ENGINEERING

UNIVERSITY OF MINNESOTA

CDC-ECC’05 Workshop – December 11, 2005

Page 2: Control of vehicular platoons: limitations and tradeoffs

M. JOVANOVIC, UMN 1

Control of vehicular platoons

• ACTIVE RESEARCH AREA FOR ≈ 40 YEARS

(Levine & Athans, Melzer & Kuo, Chu, Ioannou, Varaiya, Hedrick, Swaroop, etc.)

• SPATIO-TEMPORAL SYSTEMSsignals depend on time & discrete spatial variable n

arrays of micro-cantileversarrays of micro-mirrorsunmanned aerial vehicle formationssatellite constellations

• INTERACTIONS CAUSE COMPLEX BEHAVIOR‘string instability’ in vehicular platoons

• SPECIAL STRUCTUREevery unit has sensors and actuators

Page 3: Control of vehicular platoons: limitations and tradeoffs

M. JOVANOVIC, UMN 2

Controller architectures: platoonsCENTRALIZED:

G0 G1 G2

K

6

?

6

?

6

?

BEST PERFORMANCEEXCESSIVE COMMUNICATION

FULLY DECENTRALIZED:

G0 G1 G2

K0 K1 K2

6

?

6

?

6

?

NOT SAFE!

LOCALIZED:

G0 G1 G2

-K0

-K1

-K2

-����

6

?

6

?

6

?

MANY POSSIBLE ARCHITECTURES

Page 4: Control of vehicular platoons: limitations and tradeoffs

M. JOVANOVIC, UMN 3

IssuesCENTRALIZED:

G0 G1 G2

K

6

?

6

?

6

?

PERFORMANCE VS. SIZE

FUNDAMENTAL LIMITATIONS/TRADEOFFS

LOCALIZED:

G0 G1 G2

-K0

-K1

-K2

-����

6

?

6

?

6

?

IS IT ENOUGH TO LOOK ONLY

AT NEAREST NEIGHBORS?

Page 5: Control of vehicular platoons: limitations and tradeoffs

M. JOVANOVIC, UMN 4

Outline

¶ ILL-POSEDNESS OF SEVERAL WIDELY CITED RESULTS

? small scale GAP−−→ large scale ≈ infinite

FORMULATION OF WELL-POSED CONTROL PROBLEMS

? spatially invariant theory

· PEAKING IN VEHICULAR PLATOONS

large platoonsuniform convergence rates

⇒ large transient peaks

CONTROL IN THE PRESENCE OF SATURATION

? explicit constraints on feedback gains to avoid magnitude and rate saturation

¸ CONCLUDING REMARKS

Page 6: Control of vehicular platoons: limitations and tradeoffs

M. JOVANOVIC, UMN 5

Optimal control of vehicular platoons

• FINITE PLATOONS

Levine & Athans (LA), IEEE TAC’66Melzer & Kuo (MK1), IEEE TAC’71

• INFINITE PLATOONS

Melzer & Kuo (MK2), Automatica’71

Page 7: Control of vehicular platoons: limitations and tradeoffs

M. JOVANOVIC, UMN 6

Control objective

DYNAMICS OF n-TH VEHICLE: xn = un

CONTROL OBJECTIVE:desired cruising velocity vd := const.inter-vehicular distance L := const.

+ COUPLING ONLY THROUGH FEEDBACK CONTROLS

ABSOLUTE DESIRED TRAJECTORYxnd(t) := vdt − nL

Page 8: Control of vehicular platoons: limitations and tradeoffs

M. JOVANOVIC, UMN 7

Control of finite platoons

absolute position error: ψn(t) := xn(t) − vdt + nL

absolute velocity error: φn(t) := xn(t) − vd

}n ∈ {1, . . . ,M}

MK1:

[ΨΦ

]=[

0 I

0 0

] [ΨΦ

]+[

0I

]U

relative position error: ζn(t) := xn(t) − xn−1(t) + L

= ψn(t) − ψn−1(t)

}n ∈ {2, . . . ,M}

LA:

[ZΦ

]=[

0 A12

0 0

] [ZΦ

]+[

0I

]U

Page 9: Control of vehicular platoons: limitations and tradeoffs

M. JOVANOVIC, UMN 8

Optimal control of finite platoons

LA:

[ZΦ

]=

[0 A12

0 0

] [ZΦ

]+[

0I

]U

J :=12

∫ ∞

0

(ZT (t)Z(t) + ΦT (t)Φ(t) + UT (t)U(t)

)dt

maxRe(λ{Acl}) :

0 10 20 30 40 50 60 70 80 90

−1

−0.8

−0.6

−0.4

−0.2

0

M

max

Re

( λ {

Acl

} )

Page 10: Control of vehicular platoons: limitations and tradeoffs

M. JOVANOVIC, UMN 9

MK1:

[ΨΦ

]=[

0 I

0 0

] [ΨΦ

]+[

0I

]U

J :=12

∫ ∞

0

(M+1∑n=1

(ψn(t) − ψn−1(t))2 +M∑

n=1

(φ2n(t) + u2

n(t))

)dt

maxRe(λ{Acl}) :

0 50 100 150

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

M

max

Re

( λ {

Acl

} )

Page 11: Control of vehicular platoons: limitations and tradeoffs

M. JOVANOVIC, UMN 10

• LEVINE & ATHANS:maxRe(λ{Acl}) :

0 10 20 30 40 50 60 70 80 90

−1

−0.8

−0.6

−0.4

−0.2

0

Mm

ax R

e (

λ {

Acl

} )

• MELZER & KUO:maxRe(λ{Acl}) :

0 50 100 150

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

M

max

Re

( λ

{ A

cl }

)

Page 12: Control of vehicular platoons: limitations and tradeoffs

M. JOVANOVIC, UMN 11

Optimal control of infinite platoons+ GOOD APPROXIMATION OF LARGE-BUT-FINITE PLATOONS

MAIN IDEA: EXPLOIT SPATIAL INVARIANCE

LA:

[ζn

φn

]=

[0 1 − T−1

0 0

] [ζnφn

]+[

01

]un, n ∈ Z

ySPATIAL Zθ-TRANSFORM[ζθ

φθ

]=[

0 1 − e−jθ

0 0

] [ζθφθ

]+[

01

]uθ, 0 ≤ θ < 2π

+ NOT STABILIZABLE AT θ = 0

Page 13: Control of vehicular platoons: limitations and tradeoffs

M. JOVANOVIC, UMN 12

MK2:

[ψn

φn

]=

[0 10 0

] [ψn

φn

]+[

01

]un, n ∈ Z

J :=12

∫ ∞

0

∑n∈Z

((ψn(t) − ψn−1(t))2 + φ2

n(t) + u2n(t)

)dt

ySPATIAL Zθ-TRANSFORM

Aθ =[

0 10 0

], Qθ =

[2(1 − cos θ) 0

0 1

], 0 ≤ θ < 2π

+ PAIR (Qθ, Aθ) NOT DETECTABLE AT θ = 0

+ A FIX: PENALIZE ABSOLUTE POSITION ERRORS IN J

J :=12

∫ ∞

0

∑n∈Z

(qψ2

n(t) + (ψn(t) − ψn−1(t))2 + φ2n(t) + u2

n(t))

dt

Page 14: Control of vehicular platoons: limitations and tradeoffs

M. JOVANOVIC, UMN 13

[ψn

φn

]=

[0 10 0

] [ψn

φn

]+[

01

]un, n ∈ Z

J :=12

∫ ∞

0

∑n∈Z

(qψ2

n(t) + (ψn(t) − ψn−1(t))2 + φ2n(t) + u2

n(t))

dt

CLOSED-LOOP SPECTRUM:

q = 0: q = 1:

-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 -1

-0.5

0

0.5

1

Re ( λ { A cl

})

Im (

λ { A

cl }

)

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 -1

-0.5

0

0.5

1

Re ( λ { A cl

})

Im (

λ {

A cl

})

Page 15: Control of vehicular platoons: limitations and tradeoffs

M. JOVANOVIC, UMN 14

M = 20, q = 0: M = 50, q = 0:

0 10 20 30 40 500

0.5

1

1.5

2

t

ψ n(t)

0 10 20 30 40 500

0.5

1

1.5

2

t

ψ n(t)

M = 20, q = 1: M = 50, q = 1:

0 2 4 6 8 10 -0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

t

ψ n(t)

0 2 4 6 8 10 -0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

t

ψ n(t)

Page 16: Control of vehicular platoons: limitations and tradeoffs

M. JOVANOVIC, UMN 15

‘Problematic’ initial conditions for LA & MK• LA & MK FOR INFINITE PLATOONS:

non-zero mean initial conditions cannot be driven to zero!

MK:

∑n∈Z

ψn(0) 6= 0 ⇒ limt→∞

∑n∈Z

ψn(t) 6= 0

+ MANY MODES HAVE VERY SLOW RATES OF CONVERGENCE

-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 -1

-0.5

0

0.5

1

Re ( λ { A cl

})

Im (

λ { A

cl }

)

Page 17: Control of vehicular platoons: limitations and tradeoffs

M. JOVANOVIC, UMN 16

Remarks

• CONTROL OF VEHICULAR PLATOONS

Jovanovic & Bamieh, IEEE TAC’05:

? analytically showed ill-posedness of several widely cited results

? formulated well-posed control problems

SMALL SCALECAREFUL−−−−−→ LARGE SCALE

SMALL SCALE 6= LARGE SCALE ≈ INFINITE DIMENSIONAL

large-but-finite systems ⇒ large scale computations

infinite dimensional abstractionswith spatial invariance ⇒ almost analytical results

Page 18: Control of vehicular platoons: limitations and tradeoffs

M. JOVANOVIC, UMN 17

Outline

¶ ILL-POSEDNESS OF SEVERAL WIDELY CITED RESULTS

? small scale GAP−−→ large scale ≈ infinite

FORMULATION OF WELL-POSED CONTROL PROBLEMS

? spatially invariant theory

· PEAKING IN VEHICULAR PLATOONS

large platoonsuniform convergence rates

⇒ large transient peaks

CONTROL IN THE PRESENCE OF SATURATION

? explicit constraints on feedback gains to avoid magnitude and rate saturation

¸ CONCLUDING REMARKS

Page 19: Control of vehicular platoons: limitations and tradeoffs

M. JOVANOVIC, UMN 18

LQR design

absolute position error: ψn(t) := xn(t) − vdt + nL

absolute velocity error: φn(t) := xn(t) − vd

⇓[ψn

φn

]=[

0 10 0

] [ψn

φn

]+[

01

]un

n ∈ {0, . . . ,M − 1}

PERFORMANCE INDEX:

J :=12

∫ ∞

0

(M−1∑n=1

(ψn(t) − ψn−1(t))2 +M−1∑n=0

(ψ2n(t) + φ2

n(t) + u2n(t))

)dt

Page 20: Control of vehicular platoons: limitations and tradeoffs

M. JOVANOVIC, UMN 19

Example

+ PEAKING: CERTAIN INITIAL CONDITIONS CAN LEAD TO LARGE CONTROLS

xn(0) = −n(L + S) ⇒ ψn(0) = −nSxn(0) = vd ⇒ φn(0) = 0

Page 21: Control of vehicular platoons: limitations and tradeoffs

M. JOVANOVIC, UMN 20

POSITION: VELOCITY:

0 2 4 6 8 10

-25

-20

-15

-10

-5

0

t

ψ n (t)

0 2 4 6 8 10

0

2

4

6

8

10

t

φ n (t

)

CONTROL: supt un(t):

0 2 4 6 8 10−5

0

5

10

15

20

25

t

u n(t)

0 10 20 30 40 500

5

10

15

20

25

n

sup t u

n(t)

Page 22: Control of vehicular platoons: limitations and tradeoffs

M. JOVANOVIC, UMN 21

LQR design for a platoon on a circle

[ψn

φn

]=

[0 10 0

] [ψn

φn

]+[

01

]un

=: Anξn + Bnun

SPATIALLY INVARIANT PERFORMANCE INDEX:

J :=12

∫ ∞

0

M−1∑n=0

M−1∑m=0

(ξ∗n(t)Qn−mξm(t) + u∗n(t)Rn−mum(t)) dt

MAIN IDEA: EXPLOIT SPATIAL INVARIANCE

Page 23: Control of vehicular platoons: limitations and tradeoffs

M. JOVANOVIC, UMN 22

LARGE SCALE PROBLEM:[ψn

φn

]=[

0 10 0

] [ψn

φn

]+[

01

]un =: Anξn + Bnun

J :=12

∫ ∞

0

M−1∑n=0

M−1∑m=0

(ξ∗n(t)Qn−mξm(t) + u∗n(t)Rn−mum(t)) dt

ySPATIAL DFT

BLOCK DIAGONAL PROBLEM:[ ˙ψk

˙φk

]=[

0 10 0

][ψk

φk

]+[

01

]uk =: Akξk + Bkuk

J =√M

2

∫ ∞

0

M−1∑k=0

(ξ∗k(t)Qkξk(t) + u∗k(t)Rkuk(t)

)dt

Rk > 0, Qk :=[q11k q∗21k

q21k q22k

]≥ 0, k ∈ {0, . . . ,M − 1}

Page 24: Control of vehicular platoons: limitations and tradeoffs

M. JOVANOVIC, UMN 23

[ψn

φn

]=

[0 10 0

] [ψn

φn

]+[

01

]un

=: Anξn + Bnun

{ψn(0) = −nS, 0 < S < L; xn(0) ≡ vd}ymagnitude saturation unless

umax ≥ S2

6(M − 1)(2M − 1) inf

k

q11k

Rk

IMPORTANT:

DETECTABILITY ⇔ q11k > 0

Page 25: Control of vehicular platoons: limitations and tradeoffs

M. JOVANOVIC, UMN 24

Trajectory generation

¨xn = un

rn(t) := xn(t) − vdt + nL

}⇒ rn = un

un = − p2nrn − 2pnrn ⇒

rn(t) = (cn + dnt)e−pnt

rn(t) = (dn − cnpn − dnpnt)e−pnt

un(t) = (cnp2n − 2dnpn + dnp

2nt)e

−pnt

+ DERIVED EXPLICIT CONSTRAINTS ON pn TO GUARANTEE:

|rn(t)| ≤ rmax

|rn(t)| ≤ vmax

|un(t)| ≤ umax

Page 26: Control of vehicular platoons: limitations and tradeoffs

M. JOVANOVIC, UMN 25

FUNDAMENTAL TRADEOFFS:large pn’s ⇒

{fast stabilizationsmall position overshoots

small pn’s ⇒

slow stabilizationsmall velocity overshootssmall control effort

CONTROL AROUND GENERATED TRAJECTORIES:

ηn(t) := xn(t) − vdt + nL − rn(t)

ηn = un − un =: un

un = un + un

↓ ↓from trajectory generation from e.g. LQR design

PERFECT KNOWLEDGE OF INITIAL CONDITIONS: un = un

Page 27: Control of vehicular platoons: limitations and tradeoffs

M. JOVANOVIC, UMN 26

POSITION: VELOCITY:

0 10 20 30 40 50 60

-25

-20

-15

-10

-5

0

t

ψ n (t)

0 10 20 30 40 50 60 -0.5

0

0.5

1

1.5

2

t

φ n (t

)

CONTROL:

0 10 20 30 40 50 60−1

0

1

2

3

4

5

t

u n(t)

Page 28: Control of vehicular platoons: limitations and tradeoffs

M. JOVANOVIC, UMN 27

RemarksJovanovic, Fowler, Bamieh, & D’Andrea, Automatica’05 (submitted):

? trajectory planing to avoid magnitude and rate peaking

large platoonsuniform convergence rates

⇒ large transient peaks

fast convergence rates ⇒ small position overshoots

slow convergence rates ⇒small velocity overshoots

small control efforts

• ONGOING/FUTURE RESEARCH

? design of distributed controllers with favorable architectures

? control under communication constraints

? limitations & tradeoffs in the control of 2D & 3D formationsflocking & swarming

Page 29: Control of vehicular platoons: limitations and tradeoffs

M. JOVANOVIC, UMN 28

Additional info

Mihailo Jovanovicwww.umn.edu/∼mihailo