copyright © 2012 rockwell automation, inc. all rights reserved.rev 5058-co900b soft starter...

Download Copyright © 2012 Rockwell Automation, Inc. All rights reserved.Rev 5058-CO900B Soft Starter Technology Applying SMC’s to maximize investments and energy

If you can't read please download the document

Upload: eve-orman

Post on 16-Dec-2015

216 views

Category:

Documents


1 download

TRANSCRIPT

  • Slide 1
  • Copyright 2012 Rockwell Automation, Inc. All rights reserved.Rev 5058-CO900B Soft Starter Technology Applying SMCs to maximize investments and energy efficiency
  • Slide 2
  • Copyright 2012 Rockwell Automation, Inc. All rights reserved. Title: Practical applications of Soft Starter technology for improved performance and energy management Description: Increase your technical competency and understanding of the latest Soft Starter technology, and find out how SMC's can be applied to maximize your investment and energy efficiency. This session will include a brief overview on technology, recent advancements, application examples and considerations, use of the SMC Application Wizards, and an overview of the Allen Bradley SMC portfolio. RAOTM - Topic
  • Slide 3
  • Copyright 2012 Rockwell Automation, Inc. All rights reserved.3 Agenda Allen Bradley SMC Portfolio Application Wizards Application Examples and Considerations Recent Advancements Understand Soft Starter Technology
  • Slide 4
  • Copyright 2012 Rockwell Automation, Inc. All rights reserved. AC Motor Control Basics 4 Basic Advanced
  • Slide 5
  • Copyright 2012 Rockwell Automation, Inc. All rights reserved. Reduced Voltage Starter Background Pre 1980s RVS Types Auto Transformer Part Winding Wye-Delta (Star-Delta) Primary Resistance Primary Inductance Wound Rotor 5 Electromechanical Solid State Todays RVS Solid State RVS Voltage controlled through use of SCRs (Silicon Controlled Rectifiers) 6 Back to Back SCRs SCR triggered ON by energizing the Gate Microprocessor monitors and controls when SCRs fire SCR Gate
  • Slide 6
  • Copyright 2012 Rockwell Automation, Inc. All rights reserved. Solid State Starting Basics 6 A. Using SCRs in an opposed (back to back) configuration, the full sine wave of the AC power can be controlled. B.By controlling when an SCR is fired in the cycle, the output voltage can be controlled. The result is sometimes called a Notch. SCR Control V IN SCR Gate V OUT Gate Signal AB
  • Slide 7
  • Copyright 2012 Rockwell Automation, Inc. All rights reserved. Soft Motor Starting Basics 7 Typical Motor Starting Curve 100% 0 Speed -%RPM Starting Torque (Lock rotor torque) Pull-up torque Break-down torque Full load torque Full Voltage Starting Characteristics Starting Current ~6xFLA High starting torque can cause damage to the mechanical system. High current can cause problems in the electrical system 180% 100%
  • Slide 8
  • Copyright 2012 Rockwell Automation, Inc. All rights reserved. Soft Motor Starting Basics If you reduce voltage by 50%, the result is a 75% reduction in motor torque. (.5) 2 =.25 or 25% of Locked Rotor Torque 180% 100% 100%0 Percentage of Full Speed Full Voltage Torque Physics of Reduced Voltage and Motor Torque Reduced Voltage Torque Percentage of Full Rated Torque
  • Slide 9
  • Copyright 2012 Rockwell Automation, Inc. All rights reserved. Soft Motor Starting Basics 9 Example 100% 0 Speed -RPM Torque (ftlb) 100% 72% 25% 600% 510% 300% 100% Voltage 85% Voltage 50% Voltage Full Load Torque required by the load %FLA (amps) Current Torque
  • Slide 10
  • Copyright 2012 Rockwell Automation, Inc. All rights reserved. Reasons for Soft Motor Starting 10 Minimize mechanical damage of system components and product Belts, Gears, Drive Shafts and Keyways Reduced Product Spillage Water Hammer and Mechanical Vibration Better Energy Management Limit in-rush current Optimize the size of transformers/generators/switch gear Meet Power Company Requirements / Rebate programs Manage Control under Power Distribution Limitations Energy Cost Reduction (Peak Demand Charges)
  • Slide 11
  • Copyright 2012 Rockwell Automation, Inc. All rights reserved.11 Agenda Allen Bradley SMC Portfolio Application Wizards Application Examples and Considerations Recent Advancements Understand Soft Starter Technology
  • Slide 12
  • Copyright 2012 Rockwell Automation, Inc. All rights reserved. Electromechanical vs. Solid State 12 Solid State delivers greater flexibility Allow for the starting current/torque to be optimized versus standard reduced voltage starter types Example Star-Delta reduced voltage starter is fixed at 300% current/33% Torque Solid State insures minimal amount of energy to accelerate motor even if the load only requires 25% torque. SS eliminates transitions due to electromechanical limitations Open or Closed transitions Open disconnects motor from line voltage, Closed maintains connection to line Both cause current surges during start
  • Slide 13
  • Copyright 2012 Rockwell Automation, Inc. All rights reserved. Advantages of Solid State Control Enhanced Control Options Advanced Start/Stop control User Programmability and settings Scalable setting for the critical nature of application Local, Manual, Automatic Modes Inherent Diagnostics Current, Voltage, Power and Energy Monitoring/protection Faults and Alarms (some based on real time clock) Controller Event logs and Snapshot (what happened right before a fault) Lowest Installed Cost with Network Integration Ease of Communication Linkage (i.e. multi protocol, AOPs) Localized I/O and Control Wire Reductions 13
  • Slide 14
  • Copyright 2012 Rockwell Automation, Inc. All rights reserved. 2 Phase Vs. 3 Phase Control Comparison 2 Phase Control Advantages Lower initial cost Smaller overall total size 2 Phase Control Disadvantages Higher Peak Currents/Imbalance Regardless of control methodology Increased Heating Increased Vibration during Starting 3 Phase control provides superior performance on every start! 2 Phase 3 Phase
  • Slide 15
  • Copyright 2012 Rockwell Automation, Inc. All rights reserved. Advances in Starting/Stopping Modes SMC-50 Patented Linear Acceleration Starting Mode Simplest Starting Mode Lowest starting current profile per start Regardless of loading condition Ideal for any application Provides control over both torque and speed Unmatched motor starting performance Selected start time closer to actual than any other stating method* 15
  • Slide 16
  • Copyright 2012 Rockwell Automation, Inc. All rights reserved. Starting Performance Comparison 16 Linear Accel vs. Traditional Soft Start: Centrifugal Pump Load Parameter Settings: = Start Time: 10 second Time 2 Sec/Div = 3 Sec total Higher Peak Current High Torque Pulse/Surge and water hammer 2 Sec/Div = ~10 Sec Current more stable and less disruptive to power system
  • Slide 17
  • Copyright 2012 Rockwell Automation, Inc. All rights reserved. Starting Performance Comparison 17 Linear Accel vs. Traditional Soft Start: High Inertia Load Parameter Settings: =Start Time: 10 second Torque Pulse/Mechanical Wear and Tear Higher Peak Current Time 2 Sec/Div = ~10 Sec 2 Sec/Div = ~6 Sec Current more stable and less disruptive to power system
  • Slide 18
  • Copyright 2012 Rockwell Automation, Inc. All rights reserved. SMC Soft Starters Power and Energy Management Green Initiatives Allow users to qualify for Energy focused based rebates and discount programs Help reduce energy consumption and waste Facility wide information enablement via Intelligent Motor Control Sustainability and Sustainable Production Deliver a return on investment with scalable products Reduced downtime and maintenance costs Energy Savings Reduce the total amount of energy consumed (Energy Saver in SMC-50) Reduce the total cost of energy
  • Slide 19
  • Copyright 2012 Rockwell Automation, Inc. All rights reserved. Soft Starters and Energy Management Reduction of the peak inrush of a motor (i.e. peak current) Reduces the peak demand charges Charges are determined by utility based on the peak energy usage Advantages of Controlled Demand Allows for the facility to optimize/maximize distribution Smaller gensets or transformers (incl. feeders wires etc.) Allows the power company optimize/maximize distribution Possible reduced installation cost based on system demands Scalable Performance SMC Flex and SMC-50 Provide advanced Power and Energy Monitoring Measurement it = manage it Visibility = helps provide business case support for future process and product improvements
  • Slide 20
  • Copyright 2012 Rockwell Automation, Inc. All rights reserved.20 Agenda Allen Bradley SMC Portfolio Application Wizards Application Examples and Considerations Recent Advancements Understand Soft Starter Technology
  • Slide 21
  • Copyright 2012 Rockwell Automation, Inc. All rights reserved. Motor Starting Comparison Full Voltage (DOL) Simplest Starting Solution Full torque applied to motor Mechanical wear ~6x inrush current Peak demand charges Limited Functionality Unless used with advanced Overload Finite Mechanical Life Contacts will wear out No Starting Choices SMC Soft Start Simple Starting and Stopping Limited Control at various speeds Reduced torque and current during starting Simple to adjust and setup Reduced installation costs Smaller footprint No need for harmonic/EMC mitigation Highly efficient when running at full speed Energy Saver Performance for light loads Up to 15 different starting modes VFD/Drive Complete Continuous Control at any Speed Full torque at any speed without sacrificing current Highly efficient motor and application performance More complex setup and install Larger footprint Impact on Power Quality Application Considerations Motors types Lead Lengths Wire Type Ambient Conditions Unlimited Starting possibilities when sized properly
  • Slide 22
  • Copyright 2012 Rockwell Automation, Inc. All rights reserved. Selecting a Starting Method Speed Control is required Consistent Acceleration and Deceleration (New SMC-50 exception) High starting torque required Continuous Feedback (critical position control) Custom starting and stopping maneuvers Faster stopping with Dynamic braking options Drive can hold rotor at zero speed Undersized or closely matched motor or power source 22 When do I specify a drive versus a soft starter?
  • Slide 23
  • Copyright 2012 Rockwell Automation, Inc. All rights reserved. Why Use SMC Controllers? Minimize Operating Costs, Reduce Down time Problem: Problem: Belts, gears and machinery can be damaged by across-the-line starting SMC: SMC: Lengthens system life by reducing mechanical stress during starting Reduces DOWN Time Helps reduce/eliminate PMO on equipment No need to replace damaged parts Minimal production loss 23 Breakdown Torque 180% 100% 0 Percentage of Full Load Torque Percentage of Full Speed High torque can cause physical damage to the mechanical system.
  • Slide 24
  • Copyright 2012 Rockwell Automation, Inc. All rights reserved. Why Use SMC Controllers? Minimize Operating Costs, Reduce Down time Problem: Problem: Power company restrictions on incoming line current, or you pay the penalty Weak power lines cannot handle high inrush currents, causing brown outs or excessive line disturbances, which in turn cause other processes to shut down SMC Solution: SMC Solution: Current Limit starting minimizes the amount of inrush current, meeting power company restrictions and lowering peak demand charges Process shut down and brown outs are minimized by reducing the amount of current drawn during starting 24 600% 100% 0 Percentage of Full Load Current Percentage of Full Speed
  • Slide 25
  • Copyright 2012 Rockwell Automation, Inc. All rights reserved. How to apply SMC Controllers Determine the main reason for using reduced voltage? Mechanical? Power Limitations? Simplicity? Select the best solid state control mode 25 Soft Start Soft Stop Current Limit Soft Start/CL with Kick Start Pump Control Torque Control Linear Acceleration/Deceleration Special Modes Dual Ramp Full Voltage Slow Speed Custom Starting Profiles Smart Motor Braking Combination of profiles
  • Slide 26
  • Copyright 2012 Rockwell Automation, Inc. All rights reserved. Standard Starting Methods Current Limit Primarily used to limit line disturbances Constant or very lightly loaded motor Good on high inertia applications Bandmills, Fans, Centrifuge, Ball Mill, Washers Soft Start Primarily used to limit mechanical stress Constant or exponentially increasing loads Compressors, Pumps, Conveyors Soft Start/Current Limit with Kick Start Kick Start is needed to overcome static condition Example: Cold system components, loaded conveyor Full Voltage Not a common Starting mode. NOTE: Full voltage required to accelerate the motor may be a sign of other problems (i.e. Initial Torque of > 90%) Used as a Solid State Contactor for High cycle rates 26
  • Slide 27
  • Copyright 2012 Rockwell Automation, Inc. All rights reserved. Standard Starting Methods Pump Control Legacy version of torque control optimized for centrifugal loads Simple to apply but some considerations Exponentially increasing load such as Compressors, Pumps, Conveyors Torque Control Similar to Pump Control performance but applicable for all load types More difficult to apply but yields higher level of performance Linear Acceleration/Deceleration Simplest starting, lowest current, most consistent starting time per start regardless of load 27
  • Slide 28
  • Copyright 2012 Rockwell Automation, Inc. All rights reserved. Pump Control in SMC-Flex & SMC-50 Designed for Centrifugal Pumps Applications lightly loaded at zero speed Reduces surges (water hammer) caused by uncontrolled acceleration and deceleration Can eliminate the need for specialized flow control valves Ease of pump configuration Provides control without the use of sensors or feedback devices Pump Control Compared to Linear Acceleration No advantage, other than legacy migration Pump Control Compared to Torque Control Easier to set up and optimized for centrifugal pumps Not intended for Positive Displacement Pumps Full Load required at zero speed Variable Speed typically required to control flow 28
  • Slide 29
  • Copyright 2012 Rockwell Automation, Inc. All rights reserved.29 Torque Speed Pump System Full Speed DOL Start Full Load SMC-Flex & 50 Pump Control Soft Start Pump Start Excess energy/power
  • Slide 30
  • Copyright 2012 Rockwell Automation, Inc. All rights reserved.30 SMB Smart Motor Braking SMC Flex and SMC-50 The SMB Smart Motor Braking is designed to stop a motor quickly No additional hardware or feedback devices are required Automatic zero speed shut off is integrated into the controller
  • Slide 31
  • Copyright 2012 Rockwell Automation, Inc. All rights reserved. SMB Smart Motor Braking SMC Flex and SMC-50 Considerations How fast do you want to brake? Rule of thumb Rule of thumb : It will take you at least 1.5 times as long to brake a motor as it will to start (3 to 4 times is more typical) How much power can you use for braking? Rule of thumb Rule of thumb : Anything more than about 300% can play havoc with power systems and cause nuisance tripping or worse. Can the power system handle the demands of braking current for the entire duration of the stop? How consistent does the brake time need to be? A good power supply is critical to consistent braking 31 Good line Voltage regulation is the key to successful braking!
  • Slide 32
  • Copyright 2012 Rockwell Automation, Inc. All rights reserved.32 SMB Common Concerns/Questions Braking is hard on the motor? True, Braking regardless of the method, is hard on the motor windings Noise is common during braking? True, moans and groans of all kinds can be heard in a motor during braking Braking produces increased Harmonic distortion? True, the SMC produces some harmonic distortion during starting and stopping, however the levels are insignificant (typically < 10% of the fundamental) SMB is a good alternative for Critical braking? False, SMB is not intended to be used for E-Stop scenarios. To many variables are involved which can alter the performance of this feature The SMB option damages motors? False, Braking is hard, but we can not create more energy then what the motor demands. Motor damage is typically caused by incorrect settings or normal wear and tear Smart Motor Braking is an exact science? False, Most applications are dialed in via trial and error
  • Slide 33
  • Copyright 2012 Rockwell Automation, Inc. All rights reserved. SMC Special Application Considerations Multi-Motor Applications Mechanically Coupled (Transmission, direct gear drive, Conveyors) Single SMC for multiple motors Separate Overload protection required Not Mechanically Coupled (No physical connection) Separate SMCs per motor One SMC Not Recommended Reduced Performance and adjustability Too much variability in motor characteristics Cost advantage with Adj.Freq. Drive, but less with SMC 33
  • Slide 34
  • Copyright 2012 Rockwell Automation, Inc. All rights reserved. SMC Special Application Considerations Power Source Sizing Guidelines Ideally, the source would be sized for a full voltage start. (Somewhat impractical today) When sizing for use with a generator it is critical that the generator is able to stay in proper regulation under starting or braking loads. Rule of thumb Rule of thumb : Avoid sizing the supply for anything less the 300% of the motors FLA. SCR Fusing for SCR Protection (Very Fast Acting Semiconductor type fuse) Limited usefulness with SMC-Flex and SMC-3, due to bypass operation Use is not suggested in High Inertia, Braking, or Pump stop applications (Applications with Start times > 30 seconds) due to potential for nuisance tripping Can be used to achieve Type 2 Coordination in some cases See SMC Wizard Short Circuit Protection (SCPD) Wizard for further guidance 34
  • Slide 35
  • Copyright 2012 Rockwell Automation, Inc. All rights reserved. SMC Special Application Considerations Power Factor Correction Capacitors Line side only - locating load side can damage the SCR Ideally PFCC are brought in with up-to-speed contact Dynamic Correction can be responsible for nuisance line faults Transient/Cyclic Spikes of Current Due to Load Variation Examples: Rock Crushers, Wood Chippers, Band Saws, etc. With the SMC-Flex & SMC-3, Spikes 120% of controller max frame rating causes the bypass to drop in and outNOTE: If this is happening a lot, the SMC is likely under sized for the application Insure the FLA adjustment/programming is correct for the motor operation SMC-3 and Soft Stop For best operation try to size SMC-3 mid range per Selection Guide/Catalog 35
  • Slide 36
  • Copyright 2012 Rockwell Automation, Inc. All rights reserved.36 Sizing the starter for the application Selection guides are correct for 90% of applications (Pumps, Fans, Compressors) Simply choose based on voltage, horsepower, current and insure that the motor FLA fits the SMCs operating range 10% of applications may require a closer look Application Analysis: Load with potential high starting inertia or minimal load Flywheel, chippers, grinders, braking, retrofits, running vs. starting req. etc. Thermal Analysis may be required to determine proper size for the following: Extended starting or stopping times (>30 sec) Aggressive Duty Cycle (> 10 times/hr) Operation in elevated (above 50C) ambient temperatures LRA > 600% (i.e. High efficiency motors, NEMA Design A) Solution to Assist: SMC Estimation Wizard
  • Slide 37
  • Copyright 2012 Rockwell Automation, Inc. All rights reserved.37 Agenda Allen Bradley SMC Portfolio Application Wizards Application Examples and Considerations Recent Advancements Understand Soft Starter Technology
  • Slide 38
  • Copyright 2012 Rockwell Automation, Inc. All rights reserved. SMC Application Wizards To provide a better Estimation to the applicability of a SMC-3, SMC Flex and SMC- 50 product to a given set of motor & load operating requirements. Why use the Wizards (eTools)?
  • Slide 39
  • Copyright 2012 Rockwell Automation, Inc. All rights reserved. SMC Application eTools Thermal Wizard Used for simple/quick analysis of SMC capabilities from a thermal perspective Short Circuit Protection Device Used to guide selection of branch circuit protection components i.e. fuse or circuit breaker size bypass and isolation sizing Application Wizard Used for advanced modeling of the complete system including SMC thermal capabilities and motor/load starting characteristics Wizards Available from: ProposalWorks Tools pull-down or from: http://ab.rockwellautomation.com/Motor-Control/Soft-Starters/SMC-Flex#/tab6
  • Slide 40
  • Copyright 2012 Rockwell Automation, Inc. All rights reserved. SMC Application eTools SMC Applications built for mobile phones and tablets Cross platform support with all major mobile operating systems iOS, Blackberry, and Android HTML 5 based applications Allows for ease of use and updating Can run like any standalone mobile application Almost fully offline capable Do an App Search for Rockwell Automation
  • Slide 41
  • Copyright 2012 Rockwell Automation, Inc. All rights reserved.41 Agenda Allen Bradley SMC Portfolio Application Wizards Application Examples and Considerations Recent Advancements Understand Soft Starter Technology
  • Slide 42
  • Copyright 2012 Rockwell Automation, Inc. All rights reserved. Solid State Power Control Portfolio SMC - 50 Performance / Functionality Ampere Rating (Line and Delta) 25100200500160058001000 SMC Dialog SMC -3 *Dialog supports line configuration only SSC
  • Slide 43
  • Copyright 2012 Rockwell Automation, Inc. All rights reserved. Allen-Bradley SMC Contemporary Offering 43 SMC-3SMC Flex SMC-50 Hybrid Power Structure Solid State Power Structure
  • Slide 44
  • Copyright 2012 Rockwell Automation, Inc. All rights reserved. SMC Family Choosing a Power Platform Hybrid Solid State (Integral Bypass) 2 Thyristors per phase (6 total) Thermal Mass Small Stirring Fans Integral Shorting or Bypass Contactor True Solid State 2 Thyristors per phase (6 total) Larger finned heat sinks & fans Optional external bypass contactors Ability to replace contactor Ability to size contactor AC1 or AC3 Hybrid Solid State AC53-B Smaller Total Footprint Less External Wiring Optimized Thermal Management Easy Product Selection Lower Total Installed Cost True Solid State AC53-A Ideal for Harsh Environmental Conditions Higher SCCR ratings Phase Rebalance/Energy Saver Capability Higher operations/hour Scalable Thermal Ratings
  • Slide 45
  • Copyright 2012 Rockwell Automation, Inc. All rights reserved. SMC Family Choosing a Power Platform Internal Bypass (SMC-3, SMC Flex) Ideal for small spaces Smallest total footprint Easy selection and application Lowest total installed cost Solid State (SMC-50, SMC Dialog, SMC Plus) Ideal for critical performance in tough environmental conditions Allows for Specialized Control External Bypass offers operational flexibility and redundancy 45 Hybrid Power Structure Solid State Power Structure
  • Slide 46
  • Copyright 2012 Rockwell Automation, Inc. All rights reserved. SMC-50, SMC-Flex Pump Control Slow Speed Dual Ramp Full Voltage Starting Smart Motor Braking Linear Accel/Decel ( SMC-50 Only ) Torque Control ( SMC-50 Only ) SMC Family Choosing the control for your application SMC-50, Flex & SMC-3 Soft Start Soft Stop Current Limit Soft with Kick Start 46 Which control modes are required? The SMC Flex / 50 also offer power metering features as well as communication options enhancing configuration, control and data collection capabilities!
  • Slide 47
  • Copyright 2012 Rockwell Automation, Inc. All rights reserved. SMC-3 Overview Compact Series Hybrid design (internal bypass contacts) Simplified DIP and Rotary Set-up Din Rail Mountable through 85 amps 4 Starting/Stopping Modes Soft-start, Soft-stop, Current Limit, Kick Start Basic Diagnostics Compact design provides 3 phase control, increased intelligence, and unmatched performance. Motor and system diagnostics and an electronics overload with adjustable trip class help reduce downtime and protect assets. Hybrid Power Structure
  • Slide 48
  • Copyright 2012 Rockwell Automation, Inc. All rights reserved. SMC-3 Overview Line Ratings Frame 1 (3 A, 9 A,16 A, 19 A, 25 A, 30 A, 37 A) Frame 2 (43 A, 60 A, 85 A) Frame 3 (108 A, 135 A) Frame 4 (201 A, 251 A) Frame 5 (317 A, 361 A, 480 A) Delta Ratings 3 831 amps Two line voltage ratings 200480V or 200600V @ 50/60 Hertz Two control voltage 24V AC/DC or 100240V AC 050C Operating temperature SMC-3 can be applied to both line and delta connected applications!
  • Slide 49
  • Copyright 2012 Rockwell Automation, Inc. All rights reserved. SMC Flex - Overview Modular Class Hybrid design (internal bypass contacts) Built-In LCD and Keypad 9 Start/Stopping Modes 3 slow-speed modes Smart Motor Braking Enhanced Diagnostics and Protection functions Hybrid Power Structure Modular design features 3 phase control, advanced intelligence, performance and diagnostics, communications flexibility, modular control module/power modules/fan assembly for a cost effective package.
  • Slide 50
  • Copyright 2012 Rockwell Automation, Inc. All rights reserved. SMC Flex - Overview Line Ratings 5.1250 Amps Delta Ratings 81600 Amps Three Voltage Ratings 200 - 480V @ 50/60 Hz 200 - 600V @ 50/60 Hz 230 690V @ 50/60 Hz Control Voltage Ratings 100-240 VAC or 24V AC/DC 0 - 50 C Operating Temperature Soft-Start With selectable Kick Start Soft-Stop Current Limit Start With selectable Kick Start Full Voltage Preset Slow Speed Linear Speed Acceleration Feedback Device Required Dual Ramp Pump Control (optional) SpecificationsStarting Modes
  • Slide 51
  • Copyright 2012 Rockwell Automation, Inc. All rights reserved. SMC-50 Product Overview Scalable Series Solid State Power Structure NO Integral bypass like SMC-3 or SMC-Flex Built-In HIM Cradle and PC port 15 Start/Stopping Modes 3 slow-speed modes Smart Motor Braking Advanced Diagnostics and Protection functions Full power and energy management, Real Time Clock, Event Log 51 Solid State Power Structure Designed for customer flexibility 3 phase control and scalable options help maximize the total motor control investment. Advanced monitoring and protection, superior communication capabilities and energy saver modes help increase operating efficiencies and reduce downtime.
  • Slide 52
  • Copyright 2012 Rockwell Automation, Inc. All rights reserved. SMC-50 Product Overview Benefits of a Fully Solid State Power Structure (no integral bypass) Improved performance in high vibration applications Performance not impacted by environmental debris Longer life (no mechanical life limits) Scalable thermal ratings Higher SCCR ratings 100 Ka Fuses 65 Ka Breaker 52
  • Slide 53
  • Copyright 2012 Rockwell Automation, Inc. All rights reserved. www.rockwellautomation.com Follow ROKAutomation on Facebook & Twitter. Connect with us on LinkedIn. Rev 5058-CO900B Thank You! Find More Information on SMC Products Visit us @ WWW.AB.com
  • Slide 54
  • Copyright 2012 Rockwell Automation, Inc. All rights reserved. www.rockwellautomation.com Follow ROKAutomation on Facebook & Twitter. Connect with us on LinkedIn. Rev 5058-CO900B Back-Up Slides
  • Slide 55
  • Copyright 2012 Rockwell Automation, Inc. All rights reserved. SMC-50 Modes of Operation Soft Start Current Limit w/ Kick Start Pump Control Enhanced Slow Speed: 1% to 15% Patented Sensor-less Linear Acceleration* Consistent ramp up time (no tachometer required) Optimizes energy consumption Torque Control Full Voltage Dual Ramp w/ Kick Start 55 *SMC Flex provides Linear Acceleration Start, however it requires a tachometer for speed feedback Starting Modes Stopping / Specialty Modes Coast Soft Stop Smart Motor Braking (SMB) Linear Deceleration External Braking Control Pump Control Motor Winding Heater Energy Saver Phases back voltage sensing lighter loads Emergency Run NEW!
  • Slide 56
  • Copyright 2012 Rockwell Automation, Inc. All rights reserved. SMC-50 Modes of Operation Linear Speed Patented Sensor-less Linear Acceleration Starting Mode Accomplished via Advanced Motor Speed Estimation Algorithm No external feedback required - reduces cost and potential for failure Provides exacting motor acceleration control under varying load conditions Simplest to Setup 2 Parameters Required to configure: Ramp Time and Initial Torque (used as reference) Reduces/eliminates the need for the Dual Ramp mode Always uses the minimum amount of energy needed to accelerate the motor in the time requested (regardless of the loading condition) 56
  • Slide 57
  • Copyright 2012 Rockwell Automation, Inc. All rights reserved. SMC-50 Modes of Operation Torque Control Torque Control can be used to control the maximum torque developed by the motor independent of motor speed Provides a torque ramp from an initial starting torque level to a maximum torque level Mode also provides simple starting performance (Kick start available as an option) Controlling torque does not allow control over speed of acceleration like Linear Accel. Torque Control algorithms are useful for basic applications (pumps, compressors) Basic Setup Parameters: Ramp Time, Starting Torque, Max Torque(M), Rated Torque(M) and Rated Speed Settings(M) 57 (M) = motor rated value
  • Slide 58
  • Copyright 2012 Rockwell Automation, Inc. All rights reserved. SMC-50 Modes of Operation Comparison Example 58 Linear Accel vs. Torque (Pump) Start: Pump Load Parameter Settings: =Start Time: 10 second Time 2 Sec/Div = 10 Sec total Motor load = approx 65% of FLA 2 Sec/Div = 5 Sec total Higher Peak Current NOTEs: - Actual Start time difference of Linear versus torque mode - Smoother torque curve for Linear versus torque mode - Lower peak current with Linear Acceleration mode
  • Slide 59
  • Copyright 2012 Rockwell Automation, Inc. All rights reserved. SMCs Differentiated by Innovation Broadest offering of Features/Performance/Functionality in a Soft Start Advanced Starting/Stopping Performance (Linear Mode) True 3 Phase Control Solid State or Hybrid Performance and Reliability Simple to Advanced Fault, Power, and Energy Monitoring Improved Troubleshooting, Diagnostics Accuracy and time stamping High Fault SCCR ratings with Fuses and Standard Breakers Special Modes Slow Speed, Motor Winding Heater, Energy Saver, Phase Rebalance, DeviceLogix Standard features cover multiple dedicated devices Power Monitors, Scopes, ETMs, Motor Winding Heaters, DC Brake etc. Standard Open and Enclosed offerings