correlaciones tc por conveccion

Upload: messy99999

Post on 04-Jun-2018

229 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/14/2019 Correlaciones TC Por Conveccion

    1/12

    Convective Heat Transfer Correlations

    Bernhard Spang

    Email: [email protected]

    Web: http://chemengineer.miningco.com

    1 Forced Convection Flow Inside a Circular Tube

    Re

    Pr

    =

    = =

    =

    u D

    c

    k

    hD

    k

    m

    p

    Nu

    All properties at fluid bulk mean temperature (arithmetic mean of inlet and outlet temperature).

    Nusselt numbers Nu0from sections 1-1 to 1-3 have to be corrected for temperature-dependent

    fluid properties according to section 1-4.

    1-1 Thermally developing, hydrodynamically developed laminar flow (Re < 2300)

    a) Constant wall temperature

    Nu0

    0 8

    0 467

    3657

    019

    1 0117

    = ++

    .

    . (Re Pr )

    . (Re Pr )

    .

    .

    D

    LD

    L

    (Hausen)

    b) Constant wall heat flux

    Nu0=+ 7.

    1-3 Fully developed turbulent and transition flow (Re > 2300)

    a) Constant wall heat flux

    Nu02 3

    2 3

    8 1000

    1 12 78

    1

    1=

    + +

    (Re ) Pr

    . (Pr )/

    /

    DL

    (Petukhov, Gnielinski)

    where=

    1

    182 164 2( . log Re . )

    b) Constant wall temperature

    For fluids with Pr > 0.7 correlation for constant wall heat flux can be used with

    negligible error.

    1-4 Effects of property variation with temperature

    a) Liquids, laminar and turbulent flow

    Nu Nu0w

    =

    0 14.

  • 8/14/2019 Correlaciones TC Por Conveccion

    3/12

    - -3

    at mean fluid temperature, wat wall temperature

    b) Gases, laminar flow

    Nu = Nu0

    c) Gases, turbulent flow

    Nu Nu=

    0

    0 36

    T

    T

    m

    w

    .

    Temperatures in Kelvin

    2 Forced Convection Flow Inside Concentric Annular Ducts, Turbulent (Re > 2300)

    Do

    Di

    Dh=Do-Di

    Re=

    u Dm h

    Nu=h D

    k

    h

    All properties at fluid bulk mean temperature

    (arithmetic mean of inlet and outlet

    temperature)

    a) Heat transfer at the inner wall, outer wall insulated

    Nu

    Nu tube=

    0 86

    0 16

    .

    .

    D

    D

    o

    i

    (Petukhov and Roizen)

    b) Heat transfer at the outer wall, inner wall insulated

    Nu

    Nu tube=

    1 014

    0 6

    .

    .

    D

    D

    i

    o

    (Petukhov and Roizen)

    c) Heat transfer at both walls, same wall temperatures

  • 8/14/2019 Correlaciones TC Por Conveccion

    4/12

    - -4

    Nu

    Nutube

    =

    +

    +

    086 1 014

    1

    0 84 0 6

    . .

    . .

    D

    D

    D

    D

    D

    D

    i

    o

    i

    o

    i

    o

    (Stephan)

    3 Forced Convection Flow Inside Non-Circular Ducts, Turbulent (Re > 2300)

    Equations for circular tube with hydraulic diameterDh = 4 cross sectional area

    wetted perimeter

    Re=

    u Dm h

    Nu=hD

    k

    h

    4 Forced Convection Flow Across Single Circular Cylinders and Tube Bundles

    l D=

    2

    Re lmu l=

    Nu lhl

    k=

    D= cylinder diameter, um= free-stream velocity, all properties at fluid bulk mean temperature.

    Correction for temperature dependent fluid properties see section 4-4

    4-1 Smooth circular cylinder

    Nu Nu Nul o l lam l turb, , ,.= + +0 32 2

    (Gnielinski)

    where Nu l lam l, . Re Pr= 06643

    ( )Nu l turb

    l

    l

    ,

    .

    . /

    . Re Pr

    . Re Pr=

    + 0037

    1 2 443 1

    0 8

    0 1 2 3

  • 8/14/2019 Correlaciones TC Por Conveccion

    5/12

    - -5

    10 < Rel< 107

    0.6 < Pr < 1000

    4-2 Tube bundle

    Transverse pitch ratio aS

    D

    Q=

    Longitudinal pitch ratio b S

    D

    L=

    Void ratio

    = 14a

    for b > 1

    = 14ab

    for b < 1

    Re ,

    lmu l=

    Nu0,bundle=fANul,0 (Gnielinski)

    Nul,0according to section 4-1 with Re ,l instead of Rel.

    Arrangement factorfAdepends on tube bundle arrangement.

    a) In-line arrangement fb a

    b aA

    = +

    +1

    0 7 0 3

    0 71 5 2. ( / . )

    ( / . ).

    mu

    D

    s L

    Qs

  • 8/14/2019 Correlaciones TC Por Conveccion

    6/12

    - -6

    b) Staggered arrangement fb

    A= +12

    3

    um

    s Q

    s L

    4-3 Finned tube bundle

    Rs

    r

    D

    ( ) ( )AA

    S S

    S D S S D r

    o

    e

    Q R

    Q R Q

    = + +

    ( )

    2

    ( )( )

    A

    A

    r r D

    D SGo R= +

    + +

    +1

    2

    a) In-line tube bundle arrangement

    Nu l o lo

    e GO

    A

    A

    A

    A,

    .

    . .

    /. Re Pr=

    0 26 0 60 6 0 15

    1 3 (Paikert)

  • 8/14/2019 Correlaciones TC Por Conveccion

    7/12

    - -7

    b) Staggered tube bundle arrangement

    Nul o l

    o

    e GO

    A

    A

    A

    A,

    .

    . .

    /. Re Pr=

    0 45 0 60 6 0 15

    1 3 (Paikert)

    4-4 Effects of property variation with temperature

    a) Liquids

    Nu Nu

    Nu Nubundle bundle

    l l o

    w

    w

    =

    =

    ,

    .

    ,

    .

    0 14

    0

    0 14

    at mean fluid temperaturewat wall temperature

    b) Gases

    Nu Nul l o

    m

    w

    T

    T=

    ,

    .0 12

    Nu Nubundle bundle=

    0

    0 12

    ,

    .

    T

    T

    m

    w

    Temperatures in Kelvin

    5 Forced Convection Flow over a Flat Plate

    T

    uL

    Tw ReL

    L

    u L

    hL

    k

    =

    =

    Nu

    All properties at mean film temperature

    T T Tm w= + 2

  • 8/14/2019 Correlaciones TC Por Conveccion

    8/12

    - -8

    a) Laminar boundary layer, Tw= const.

    NuL lam L,/ /. Re Pr= 0664 1 2 1 3 (Pohlhausen)

    ReL< 2105

    0.6 < Pr < 10

    b) Turbulent boundary layer along the whole plate,Tw= const.

    ( )NuL turb

    L

    L

    ,

    .

    . /

    . Re Pr

    . Re Pr )=

    + 0037

    1 2 443 1

    0 8

    0 1 2 3(Petukhov)

    c) Boundary layer with laminar-turbulent transition

    Nu Nu NuL L lam L turb= +, ,2 2

    (Gnielinski)

    6 Free Convection

    All properties at ( )T T TM w= + 1

    2

    Gr

    Nu

    =

    =

    L g T T

    h L

    k

    w

    3 2

    2

    L= characteristic length (see below)

    Nu0 "Length"L

    Vertical wall 0.67 H

    Horizontal cylinder 0.36 D

    Sphere 2.00 D

    For ideal gases: =1

    TM(temperature in K)

  • 8/14/2019 Correlaciones TC Por Conveccion

    9/12

    - -9

    Nu Nu

    Gr

    = +

    +

    o

    Pr

    ( (.

    Pr) )

    / /

    300

    105 9 16 16 9

    16

    (Churchill, Thelen)

    valid for: 10-4< GrPr < 41014

    0.022 < Pr < 7640

    and Tw= const.

    7 Film Condensation

    All properties without subscript are for condensate at the mean temperature

    T T Tm w s= +3

    4

    1

    4

    Exception: D

    = vapor density at saturation temperature Ts

    7-1 Laminar film condensation

    a) Vertical wall or tube

    Nu= =

    hH

    k

    h g H

    T T k

    D

    s w

    09433 1 4

    .( )

    ( )

    /

    (Nusselt)

    Tw= mean wall temperature

    b) Horizontal cylinder

    Nu =

    =

    h D

    k

    h g D

    T T k

    D

    s w0728

    3 1 4

    .

    ( )

    ( )

    /

    (Nusselt)

    Tw= const.

    7-2 Turbulent film condensation

    For vertical wall

    Re = C Am

  • 8/14/2019 Correlaciones TC Por Conveccion

    10/12

    - -10

    ( )Re

    ( );

    /

    /=

    =

    h H T T

    hA

    g k H T T

    h

    s w s w

    1 3

    5 3

    Recrit= 350

    turbulent film: C m= =3 10 3 23 ; / (Grigull)

    8 Nucleate Pool Boiling

    ( )q h T T w s= Tw= temperature of heating surface

    Ts = saturation temperature

    a) Heat transfer at ambient pressure

    Nu = =

    hd

    kqdk T

    hdd

    A A

    s

    A

    A

    01

    0 674 0156 2

    2

    0 371

    2

    0 350

    0 162.

    (Pr )

    . . . .

    .

    (Stephan and Preuer)

    ' saturated liquid

    '' saturated vapor

    Bubble departure diameter dg

    A o= 0851

    2.

    ( ' ' ' )

    Angle o = /4 rad for water

    = 0.0175 rad for low-boiling liquids= 0.611 rad for other liquids

    b) Water, 0.5 bar

  • 8/14/2019 Correlaciones TC Por Conveccion

    11/12

    - -11

    List of Symbols

    cp specific heat capacity at constant pressure

    D, d diameter

    g gravitational acceleration

    h mean heat transfer coefficienth enthalpy of evaporation

    H height

    k thermal conductivity

    L lengthq heat flux

    T temperature

    u flow velocity

    thermal diffusivity coefficient of thermal expansion

    dynamic viscosity kinematic viscosity density

    surface tension

    Subscripts

    h hydraulic

    i inside

    m mean

    o outside

    s saturationw wall

    Dimensionless numbers

    Gr Grashof number

    Nu mean Nusselt number

    Pr Prandtl number

    Re Reynolds number

  • 8/14/2019 Correlaciones TC Por Conveccion

    12/12

    - -12

    References

    Churchill, S.W.: Free convection around immersed bodies. Chapter 2.5.7 ofHeat Exchanger

    Design Handbook, Hemisphere (1983).

    Fritz, W.: In VDI-Wrmeatlas, Dsseldorf (1963), Hb2.

    Gnielinski, V.: Neue Gleichungen fr den Wrme- und den Stoffbergang in turbulent

    durchstrmten Rohren und Kanlen. Forschung im Ingenieurwesen41, 8-16 (1975).

    Gnielinski, V.: Berechnung mittlerer Wrme- und Stoffbergangskoeffizienten an laminar und

    turbulent berstrmten Einzelkrpern mit Hilfe einer einheitlichen Gleichung. Forschung im

    Ingenieurwesen41, 145-153 (1975).

    Grigull, U.: Wrmebergang bei der Kondensation mit turbulenter Wasserhaut. Forschung im

    Ingenieurwesen13, 49-57 (1942).

    Hausen, H.: Neue Gleichungen fr die Wrmebertragung bei freier und erzwungener Strmung.

    Allg. Wrmetechnik9, 75-79 (1959).

    Nusselt, W.: Die Oberflchenkondensation des Wasserdampfes. VDI Z. 60, 541-546 and 569-575

    (1916).

    Petukhov, B.S.: Heat transfer and friction in turbulent pipe flow with variable physical properties.

    Adv. Heat Transfer6, 503-565 (1970).

    Petukhov, B.S. and L.I. Roizen:High Temperature2, 65-68 (1964).

    Pohlhausen, E.: Der Wrmeaustausch zwischen festen Krpern und Flssigkeiten mit kleiner

    Reibung und kleiner Wrmeleitung.Z. Angew. Math. Mech.1, 115-121 (1921).

    Shah, R.K.: Thermal entry length solutions for the circular tube and parallel plates. Proc. 3rd

    Natnl. Heat Mass Transfer Conference, Indian Inst. Technol Bombay,Vol. I, Paper HMT-11-75

    (1975).

    Stephan, K.: Wrmebergang und Druckabfall bei nicht ausgebildeter Laminarstrmung in

    Rohren und ebenen Spalten. Chem.-Ing.-Tech.31, 773-778 (1959).

    Stephan, K.: Chem.-Ing.-Tech.34, 207-212 (1962).

    Stephan, K. and P. Preuer: Wrmebergang und maximale Wrmestromdichte beim

    Behltersieden binrer und ternrer Flssigkeitsgemische. Chem.-Ing.-Tech.51, 37 (1979).

    VDI-Wrmeatlas, 7thedition, Dsseldorf 1994.