cross-site image acquisition: fmri outline multi-sit… · e.g. hemodynamics in bold fmri! outline!...

22
Radiological Sciences Laboratory Center for Advanced MR Technology Stanford University School of Medicine Department of Radiology Gary H. Glover Cross-site image acquisition: fMRI Outline Motivation for multicenter imaging studies Issues in MC-fMRI studies Standardization of protocols QA Site Equalization Calibration Context example: fBIRN Why do Multicenter Neuroimaging Studies? Potential use of MRI/fMRI as a biomarker - structural/functional differences may predict disease; large study numbers are necessary for biodiversity - ADNI study using VBM methods to study cortical thickness - BJ Casey study using fMRI to examine ADHD Generate large data sets rapidly Access wide or targeted demographic characteristics Provide image databases for other analyses/data mining Functional Imaging Research in Schizophrenia Testbed Biomedical Imaging Research Network fBIRN Goals: Develop - multisite fMRI methods - federated database Study schizophrenia

Upload: others

Post on 19-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Cross-site image acquisition: fMRI Outline multi-sit… · e.g. hemodynamics in BOLD fMRI! Outline! • Motivation for multicenter imaging studies! • Issues in fMRI studies! •

Radiological Sciences Laboratory!Center for Advanced MR Technology!

!Stanford University School of Medicine!

!!

Department of Radiology!

Gary H. Glover!

Cross-site image acquisition: fMRI! Outline!

• Motivation for multicenter imaging studies!• Issues in MC-fMRI studies!• Standardization of protocols!• QA!• Site Equalization!• Calibration!!Context example: fBIRN!

!

Why do Multicenter Neuroimaging Studies?!

• Potential use of MRI/fMRI as a biomarker! - structural/functional differences may predict disease;! large study numbers are necessary for biodiversity!

! - ADNI study using VBM methods to study cortical thickness ! - BJ Casey study using fMRI to examine ADHD !

• Generate large data sets rapidly!

• Access wide or targeted demographic characteristics!

• Provide image databases for other analyses/data mining!

Functional Imaging Research in Schizophrenia Testbed !Biomedical Imaging Research Network!

!

fBIRN Goals:!• Develop ! - multisite fMRI methods! - federated database!• Study schizophrenia!

Page 2: Cross-site image acquisition: fMRI Outline multi-sit… · e.g. hemodynamics in BOLD fMRI! Outline! • Motivation for multicenter imaging studies! • Issues in fMRI studies! •

Outline!

• Motivation for multicenter imaging studies!• Issues in fMRI studies!• Standardization of protocols!• QA!• Site Equalization !• Calibration!

Multicenter MRI/fMRI!

• Desire to pool results across sites equally requires! standardization!

!• Different venders may have incompatible characteristics/! definitions- e.g. ! - pulse sequence contrast in FSPGR vs MPRAGE! - meaning of BW/echo spacing in EPI imaging -> artifacts/SNR!

- k-space apodization filters -> smoothness/CNR! - gradient distortion correction differences! - geometric calibration precision! - temporal stability!

Multicenter MRI/fMRI!

• Need to qualify sites for entry into study! - develop characteristics for acceptance!

e.g.! - geometric accuracy! - contrast/resolution! - SNR, CNR, tSNR (SFNR)! - temporal stability! - reliability/reproducibility!

• Need to maintain minimum performance standards! - develop a QA program!

- understand sensitivity of scanner characteristics relative! to desired measurements!• Set criteria for acceptance!

Multicenter MRI/fMRI!

• Decide policy for upgrades (depending on size, chances ! good for at least one site to upgrade)! - minor: software only! - major: hardware & software!

• Develop procedures to control for/reduce site effects!

• Develop procedures to reduce data acquisition confounds,! e.g. hemodynamics in BOLD fMRI!

Page 3: Cross-site image acquisition: fMRI Outline multi-sit… · e.g. hemodynamics in BOLD fMRI! Outline! • Motivation for multicenter imaging studies! • Issues in fMRI studies! •

Outline!

• Motivation for multicenter imaging studies!• Issues in fMRI studies!• Standardization of protocols!• QA!• Site Equalization !• Calibration!

Standardization!

• Acquisition parameters!• Scanner characteristics!• Study procedures!• Analysis pipeline!• Database structures!

fMRI Imaging Characteristics!

Modest importance:!• Structural accuracy (since fMRI is low! resolution- e.g. 3.4x3.4x4 mm3) !

• Structural image contrast uniformity!

However,!• Both must be adequate for tissue segmentation and! normalization to template!

Important fMRI Characteristics!

• fMRI acquisition contrast/smoothness! - control parameters: ! resolution (FOV & matrix size), but…! measured smoothness (resel) may !

!NOT = FOV/matrix_size)! !

Page 4: Cross-site image acquisition: fMRI Outline multi-sit… · e.g. hemodynamics in BOLD fMRI! Outline! • Motivation for multicenter imaging studies! • Issues in fMRI studies! •

Intersite smoothness differences!

Friedman et al. NI (2006)!

• Resolution (nominally) = FOV / npix!

- Smoothing can diminish actual resolution!

Why smoothness differences?!

Why smoothness differences?!

• k-space reconstruction kernel!

Siemens! GE!(“Fermi filter”)!• Tacq!

• T2* (Bo)!

• Resolution (nominally) = FOV / npix!

- Smoothing can diminish actual resolution!

Why smoothness differences?!

- T2* apodizes k-space!

Page 5: Cross-site image acquisition: fMRI Outline multi-sit… · e.g. hemodynamics in BOLD fMRI! Outline! • Motivation for multicenter imaging studies! • Issues in fMRI studies! •

RF

Gz

Gy

Gx

readout

phase encode

TE!

EPI: partial k-space!

64x64!

128x128!Gy

Gx

T2*!

Why smoothness differences?!

Tad = 20 ms! Tad = 60 ms!

T2* = 50 ms!

1.17x 1.33x

• Resolution (nominally) = FOV / npix!

- Smoothing can diminish actual resolution!

Why smoothness differences?!

- T2* apodizes k-space!

- k-space Trajectory!

Why smoothness differences?!

• k-space trajectory!

EPI! spiral!

Page 6: Cross-site image acquisition: fMRI Outline multi-sit… · e.g. hemodynamics in BOLD fMRI! Outline! • Motivation for multicenter imaging studies! • Issues in fMRI studies! •

• Resolution (nominally) = FOV / npix!

- Smoothing can diminish actual resolution!

Why smoothness differences?!

- T2* apodizes k-space!

- k-space Trajectory!

- Field strength and pulse sequence!

Comparison: GRE vs. SE @ 3T!SE!GRE!

hi102111!

64x64, 3.43 mm !

GRE

SE

Activation autocorrelation

function

GRE 2.04 pixels SE 1.75 pixels Ratio 1.17

3T 64x64, 3.43 mm

Comparison: GRE vs. SE @ 7T!SE!GRE!

hi012112!

128x128, 1.72 mm, 3 shots !

Page 7: Cross-site image acquisition: fMRI Outline multi-sit… · e.g. hemodynamics in BOLD fMRI! Outline! • Motivation for multicenter imaging studies! • Issues in fMRI studies! •

GRE

SE

Activation autocorrelation

function

GRE 1.88 pixels SE 1.90 pixels Ratio 0.99

7T 128x128, 1.72 mm

Important fMRI Characteristics!

• fMRI acquisition contrast/smoothness! - control parameters: ! resolution/smoothness (resel may not = FOV/matrix_size)! BW: keep ESP constant across venders! slice spacing/skip/orientation! fat saturation vs. water excitation! readout trajectory (EPI vs. spiral), affects!

!smoothness, artifacts! field strength (affects SNR, CNR, vessels vs. tissue, artifacts)!

Field Strength/Vender Differences!

Friedman et al. NI (2006)!

(3T) (1.5T)

Important fMRI Characteristics!

• Dynamic image stability! fMRI & ASL depend on subtraction to compare conditions! scanner stability must be < || << brain noise !

Page 8: Cross-site image acquisition: fMRI Outline multi-sit… · e.g. hemodynamics in BOLD fMRI! Outline! • Motivation for multicenter imaging studies! • Issues in fMRI studies! •

Brain noise relative to thermal noise!

D. Greve (MRM 2011)!

• Acquire data at 10º, 77º!• Calc fraction of scanner/! brain noise vs. thermal! noise, using human &! phantom scans!

σ2 = σ02 +σs

2 +σp2

= σ02 + (λs + λp )S2(α)

G. Krueger (2000)!

Standardization: Slice selection!

Glover, et al.,!JMRI 2012!

Outline!

• Motivation for multicenter imaging studies!• Issues in MRI or fMRI studies!• Standardization of protocols!• QA!• Site Equalization !• Calibration!

Reconstruction artifacts!

Page 9: Cross-site image acquisition: fMRI Outline multi-sit… · e.g. hemodynamics in BOLD fMRI! Outline! • Motivation for multicenter imaging studies! • Issues in fMRI studies! •

QA: What to measure?!

• Time series image stability!• Signal to noise ratio!• Signal intensity!• Xmtr/Rcvr Gains!• MRS characteristics!• Eddy currents!• Geometric accuracy!

!

Scan protocols!

• Stability! - acquisition!

!17 cm agar gel phantom!!fMRI acquisition, 2s TR, 240 time frames !! (~8 min scan, ~55% grad slewing duty cycle)!

- analysis!!plot time series in large ROI (31x31)!!Weisskoff plot!!SNR !!SFNR!

Analysis!

ave !

Ieven = 2N

Ii − Itrend (i)even∑ Iodd = 2

NIi − Itrend (i)

odd∑

Iave =12

(Ieven + Iodd ) Inave =12

(Ieven − Iodd )

σ 2 = 1N −1

[Ii − Itrend(i)∑ ]2 SFNR = Iave /σ

nave ! SFNR!

Friedman, JMRI 2006!

Weisskoff Analysis!

I i(w) = mean(wx w )[Ii − Itrend (i)]

σ(w) = stdev[I i(w)]σ theory (w) = σ (1) /w

R. M. Weisskoff, !MRM 36,!

643-645 (1996).!

Page 10: Cross-site image acquisition: fMRI Outline multi-sit… · e.g. hemodynamics in BOLD fMRI! Outline! • Motivation for multicenter imaging studies! • Issues in fMRI studies! •

Stability! Time Series Stability!QA 3.0T Spiral dataRMS Fluct. %

0

0.025

0.05

0.075

0.1

0.125

0.15

0.175

0.2

0.225

0.25

0.275

0.3

0.325

0.35

0.375

0.4

0.425

0.45

10/3

1/99

11/1

4/99

1/7/

00

1/25

/00

2/16

/00

2/26

/00#

2

3/15

/00

4/1/

00#1

4/8/

00

4/18

/00

4/25

/00

5/12

/00

6/9/

00

7/12

/00

7/21

/00

8/16

/00

8/29

/00

9/13

/00#

2

9/18

/00#

2

9/18

/00#

4

10/1

4/00

10/2

5/00

#1

10/2

6/00

11/1

7/00

12/1

5/00

1/5/

01

1/31

/01

2/23

/01#

2

3/15

/01

3/22

/01#

2

5/21

/01

7/2/

01

7/27

/01#

1

8/10

/01

RM

S flu

ctua

tion,

%!

Time Series Stability!QA 3.0T Spiral dataRMS Fluct. %

0

0.025

0.05

0.075

0.1

0.125

0.15

0.175

0.2

0.225

0.25

0.275

0.3

0.325

0.35

0.375

0.4

0.425

0.45

10/3

1/99

11/1

4/99

1/7/

00

1/25

/00

2/16

/00

2/26

/00#

2

3/15

/00

4/1/

00#1

4/8/

00

4/18

/00

4/25

/00

5/12

/00

6/9/

00

7/12

/00

7/21

/00

8/16

/00

8/29

/00

9/13

/00#

2

9/18

/00#

2

9/18

/00#

4

10/1

4/00

10/2

5/00

#1

10/2

6/00

11/1

7/00

12/1

5/00

1/5/

01

1/31

/01

2/23

/01#

2

3/15

/01

3/22

/01#

2

5/21

/01

7/2/

01

7/27

/01#

1

8/10

/01

RM

S flu

ctua

tion,

%!

fBIRN spec!

Typical brain!

Bad Gradient Amps!

Page 11: Cross-site image acquisition: fMRI Outline multi-sit… · e.g. hemodynamics in BOLD fMRI! Outline! • Motivation for multicenter imaging studies! • Issues in fMRI studies! •

Bad Head Coil!

!

Time Series Drift!QA 3.0T Spiral dataDrift %

-3.5

- 3

-2.5

- 2

-1.5

- 1

-0.5

0

0.5

1

1.5

2

2.5

3

10/3

1/99

11/1

4/99

1/7/

00

1/25

/00

2/16

/00

2/26

/00#

2

3/15

/00

4/1/

00#1

4/8/

00

4/18

/00

4/25

/00

5/12

/00

6/9/

00

7/12

/00

7/21

/00

8/16

/00

8/29

/00

9/13

/00#

2

9/18

/00#

2

9/18

/00#

4

10/1

4/00

10/2

5/00

#1

10/2

6/00

11/1

7/00

12/1

5/00

1/5/

01

1/31

/01

2/23

/01#

2

3/15

/01

3/22

/01#

2

5/21

/01

7/2/

01

7/27

/01#

1

8/10

/01

Inte

nsity

Dri

ft, %!

Frequency Drift!QA 3.0T Spiral dataFrequency

127,700,600

127,700,700

127,700,800

127,700,900

127,701,000

127,701,100

127,701,200

127,701,300

127,701,400

127,701,500

127,701,600

127,701,700

127,701,800

127,701,900

127,702,000

127,702,100

10/3

1/99

11/1

4/99

1/7/

00

1/25

/00

2/16

/00

2/26

/00#

2

3/15

/00

4/1/

00#1

4/8/

00

4/18

/00

4/25

/00

5/12

/00

6/9/

00

7/12

/00

7/21

/00

8/16

/00

8/29

/00

9/13

/00#

2

9/18

/00#

2

9/18

/00#

4

10/1

4/00

10/2

5/00

#1

10/2

6/00

11/1

7/00

12/1

5/00

1/5/

01

1/31

/01

2/23

/01#

2

3/15

/01

3/22

/01#

2

5/21

/01

7/2/

01

7/27

/01#

1

8/10

/01

-110 Hz/year

Eddy Current Maps!

R/L !!!!A/P!!!!S/I!

• 3-directions phase contrast scan! on agar phantom!• Analyze velocity maps for error!• Useful as on-going QA!

Page 12: Cross-site image acquisition: fMRI Outline multi-sit… · e.g. hemodynamics in BOLD fMRI! Outline! • Motivation for multicenter imaging studies! • Issues in fMRI studies! •

Stability!

BWH, 3T!9/29/03!9/26/03!

Stability!Iowa, 1.5T! MGH, 3T!

8/21/03! 9/15/03!

Stability!Minnesota, 3T! NM, 1.5T!

8/19/03! 8/27/03!

Stability!UCSD, 1.5T!UCI, 1.5T!

9/29/03! 8/24/03!

Page 13: Cross-site image acquisition: fMRI Outline multi-sit… · e.g. hemodynamics in BOLD fMRI! Outline! • Motivation for multicenter imaging studies! • Issues in fMRI studies! •

0

0.05

0.1

0.15

0.2

0.25

0.3

BWH Duke, 1.5T Duke, 4.0T Iowa MGH Minnesota New Mexico Stanford UCI UCSD

Stability, Percent Fluctuation! SNR!

50!

100!

150!

200!

250!

BWH! Duke, 1.5T! Duke, 4.0T! Iowa! MGH! Minnesota! New Mexico! Stanford! UCI! UCSD!

QA helped to bring!scanners into spec! QA helped to debug site !

problems!

Page 14: Cross-site image acquisition: fMRI Outline multi-sit… · e.g. hemodynamics in BOLD fMRI! Outline! • Motivation for multicenter imaging studies! • Issues in fMRI studies! •

fBIRN QA Program!

• Initial tests resulted in vendor efforts to !!improve stability!

• Daily/weekly QA highlighting problems !

• One vendor using stability !!scans for own testing!

• QA protocols being used for !!magnet acceptance testing!

Outline!

• Motivation for multicenter imaging studies!• Issues in MRI or fMRI studies!• Standardization of protocols!• QA!• Site Equalization!• Calibration!

fMRI equalization across sites!

• Compensation for smoothness!

• Compensation by SFNR !

BOLD Smoothness Differences!

Friedman, !et al. 2006!

Page 15: Cross-site image acquisition: fMRI Outline multi-sit… · e.g. hemodynamics in BOLD fMRI! Outline! • Motivation for multicenter imaging studies! • Issues in fMRI studies! •

SM Sensitivity Differences!

Sensitivity (Effect Size Threshold)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NMEX UCSD D15T UCIR IOWA MINN D40T BWHM MAGH STAN

Eff

ect

Siz

e

Red: 3T!Blue: 1.5T!

Friedman, !et al. 2006!

Sensitivity vs. Smoothness!

Friedman, et al. 2006!

5 traveling!subjects at!10 sites!performing!sensorimotor!task !

Smoothness equalization!

In first-level analysis: Use “smooth to” instead of ! “smooth by”!!Smooth each site to largest FWHM using Gaussian filter!! !

FWHMout−2 = FWHMmeas

−2 + FWHM filter−2

Friedman, !et al. 2006!

Sensitivity after smoothness equalization!

Friedman, !et al. 2006!

Page 16: Cross-site image acquisition: fMRI Outline multi-sit… · e.g. hemodynamics in BOLD fMRI! Outline! • Motivation for multicenter imaging studies! • Issues in fMRI studies! •

Intersite CV!

Friedman, !et al. 2006!

1.5T! 3T!

Intersite Effect of Field!

Friedman, !et al. 2006!

Friedman, !et al.!

H M I N

Original!

Equalized!

Novel Tones - Effect Size!

BOLD Sensitivity: Oddball Task!

Friedman, !et al.!

Original!

Equalized!

H M I N

Target Tones- Effect Size!

BOLD Sensitivity: Oddball Task!

Page 17: Cross-site image acquisition: fMRI Outline multi-sit… · e.g. hemodynamics in BOLD fMRI! Outline! • Motivation for multicenter imaging studies! • Issues in fMRI studies! •

Friedman, !et al.!

Original!

Equalized!

H M I N

Target Tones - Cluster Maps Voxel P = 0.001, Cluster Size = 8, Volumewise p = 0.05

BOLD Sensitivity: Oddball Task! fMRI equalization across sites!

• Compensation for smoothness!

• Compensation by SFNR !

fMRI equalization by SFNR!

• Measure SFNR using! - GM - Rest! - WM - Rest! - GM - SMresid! - WM - SMresid!• Covary for SFNR!

Original SFNR !

Site equalization by SFNR!

1.5T ! 3T !

Page 18: Cross-site image acquisition: fMRI Outline multi-sit… · e.g. hemodynamics in BOLD fMRI! Outline! • Motivation for multicenter imaging studies! • Issues in fMRI studies! •

Outline!

• Motivation for multicenter imaging studies!• Issues in MRI or fMRI studies!• Standardization of protocols!• QA!• Site Equalization!• Calibration!• Site performance standardization!

Calibration Goals!

Goals of Calibration process!!• Use fMRI tasks and traveling subjects (‘human phantoms’)!

!to develop data with which to characterize inter-site differences!• Develop calibration methods with which to reduce inter-site variance!

!in fMRI results !!

Tasks should !!• require minimal cognitive input!• be robust (good repeatability, control for attention/behavioral level)!• be performable by schizophrenic subjects!

SM Task- Visual/Auditory/Motor!

Block trials, 15s “on”, 15s “off”, 8 blocks.!!On block:!• Alternating contrast checkerboard.!• Binaural tones generated with Mac internal squarewave synthesizer. Each tone is 166 ms long with 167 ms of !silence. !• Tones and visual contrast change at 3Hz. Tone sequence is Midi notes: {60, 64, 68, 72, 76, 80, 84, 88, 86, 82, 78, 74, 70, 66, 62, 58}. This is an auditorily annoying, mistonal scale.!• Subject performs bilateral finger apposition at 3Hz, in time with visual and auditory cues.!!Off Block: Fixation cross, silence, no motion.!!!TR/TE/FA = 3000/(40/30)/90, 100 kHz BW, 64x64 matrix; !22 cm FOV, 35 slices, AC-PC orientation, 4 mm skip 0.!!

Activation!1.5T! 3.0T!

0.25 ≤ cc ≤ 0.70!

Page 19: Cross-site image acquisition: fMRI Outline multi-sit… · e.g. hemodynamics in BOLD fMRI! Outline! • Motivation for multicenter imaging studies! • Issues in fMRI studies! •

Passive (pneumatic plungers) SM !Calibration Task!

attend!!!!not attend!!!!!attend!

Calibration of BOLD Signal!

Davis, PNAS (1998)!Buxton, 2003 !

rCBF![HbO2]!

OEF!

[Hb]!

CMRO2 = OEF x rCBF x [HbO2]!

ΔR2*∝ rCBVa[Hb]aβ − rCBV0[Hb]0

β

BOLD∝−TE ⋅ ΔR2*rCBV ∝ rCBFα

BOLDa = S0[ f α (mf

)β −1]

m ≡ CMRO2a /CMRO20

f = rCBFa /rCBF0

BOLDa = BOLDBH

[ faα ( m

fa

)β −1]

[ fBHα−β −1]�

BOLDBH = S0[ fBHα−β −1]

Calibration Breath-holding Task!

Block trials, 15s “on”, 15s “off”, 8 blocks.!!On block: Hold breath while circle of diminishing size is projected.!!Off Block: Fixation cross, breathe normally!!!Gray matter shows stronger response than white matter.!

Calibration: Voxel-wise Normalization by!BH Response!

ymeas( j) = ymetab ( j) ⋅ B( j) + n, j = 1Nsub

ymetab ( j) ≈ ycalib ( j) = ymeas( j) B B( j)

σ calib2 = (1− R2)σmeas

2 , R2 = cov(ymeas,B)

M. Thomason, 2007!

Page 20: Cross-site image acquisition: fMRI Outline multi-sit… · e.g. hemodynamics in BOLD fMRI! Outline! • Motivation for multicenter imaging studies! • Issues in fMRI studies! •

No calib!

BH Calibration: WM Task!Calib!

5 ≤ t ≤ 20!SWM task, fBIRN BH task! M. Thomason, 2007!

No cal! Calib!

3.5 ≤ t ≤ 10

vol = 1.24 @ p .001 !vol = 1.0!

BH Calibration: Group Activation!

SWM task, fBIRN BH task, N = 7! M. Thomason, 2007!

M. Thomason, 2007!

Calibration: SWM!

0!

500!

1000!

1500!

2000!

2500!

SWM! SWM calib!

Act

ivati

on

vo

lum

e!

sd: p = 0.05 *!

5 subjects, parietal!

Cerebral Blood Flow •  Cerebral blood flow (CBF) is a measure of the delivery

of blood to brain tissue. �•  A number of recent studies have shown that the

BOLD signal measured in fMRI studies can depend on baseline CBF.

Liu et al, Abstract 854, ISMRM 2008!

Page 21: Cross-site image acquisition: fMRI Outline multi-sit… · e.g. hemodynamics in BOLD fMRI! Outline! • Motivation for multicenter imaging studies! • Issues in fMRI studies! •

ASL- quantitative rCBF maps

Courtesy T. Liu!

Impact of Calibration!

• Controlling for subject-specific vasoreactivity!differences leads to reduced group variances,!ironically may decrease inter-site reliability!

Outline!

• Motivation for multicenter imaging studies!• Issues in fMRI studies!• Standardization of protocols!• QA!• Site Equalization!• Calibration!• Site performance standardization!

Site Procedures!

• Standardize scanners, imaging params, coil type !• Standardize ancillary equipment- bbox, A/V! stimulus delivery equipment/SW, bite bar!• Standardize scan procedure- order of scans, ! scan script, subject preparation, slice prescription! QA scans!• Use cross site visiting coordinator!• Use automated upload scripts, processing pipeline !

!

Page 22: Cross-site image acquisition: fMRI Outline multi-sit… · e.g. hemodynamics in BOLD fMRI! Outline! • Motivation for multicenter imaging studies! • Issues in fMRI studies! •

Site visual presentation!

!

Luminance, Lux

0.00

1000.00

2000.00

3000.00

4000.00

5000.00

6000.00

0 2 4 6Contrast Setting

Lux,

m-ca

ndles

Stanford-3TUCIMGHUMNNM@80%Duke 1.5TUCLA-gogglesDuke 4T-- goggles1UCSDIowaBWH-3Tproj

Conclusions!

• Standardize scanner performance/ imaging params/! site procedures as much as possible!• Compensate inter-site differences in SFNR, etc.! - smooth-to! - SFNR covariation!

• Use inter-subject compensation for HRF confounds! - hypercapnic calibration (BH)! - ASL baseline rCBF compensation! (may increase site effects)!

Firenza!

NIH: National Center for Research Resources!P41-RR009784!U24-RR021992 !

Acknowledgements:!

Greg Brown @ucsd.edu!Lee Friedman @UCI.edu!Doug Greve @nmr.mgh.harvard.edu!Tom Liu @ucsd.edu!Bryon Mueller @cmrr.umn.edu!Jessie Turner @uci.edu!Jim Vovoyodic @duke.edu!

fBIRN Calibration Working Group! My kids!

Lara Foland!Moriah Thomason!

Glover GH, Mueller BA, Turner JA, van Erp TG, Liu TT, Greve DN,Voyvodic JT, Rasmussen J, Brown GG, Keator DB, Calhoun VD, Lee HJ, Ford JM, Mathalon DH, Diaz M, O'Leary DS, Gadde S, Preda A, Lim KO, Wible CG, Stern HS, Belger A, McCarthy G, Ozyurt B, Potkin SG.!Function biomedical informatics research network recommendations for prospective multicenter functional MRI studies. JMRI 36:39-54 (2012).!

Important fMRI Characteristics!

• fMRI acquisition contrast/smoothness! - control parameters: ! resolution/smoothness (resel may not = FOV/matrix_size)! BW: keep ESP constant across venders! slice spacing/skip/orientation! fat saturation vs. water excitation! readout trajectory (EPI vs. spiral), affects!

!smoothness, artifacts!