crystal structure, vibrational spectroscopy and thermal properties...

12
Crystal structure, vibrational spectroscopy and thermal properties studies of [Cd(NH 3 ) 6 ](ClO 4 ) 2 and [Cd(NH 3 ) 4 ](ReO 4 ) 2 Kamila Wojszko Supervisor: dr Łukasz Hetmańczyk

Upload: votuyen

Post on 07-May-2019

221 views

Category:

Documents


0 download

TRANSCRIPT

Crystal structure, vibrational spectroscopy and thermal properties studies of

[Cd(NH3)6](ClO4)2 and [Cd(NH3)4](ReO4)2

Kamila Wojszko

Supervisor: dr Łukasz Hetmańczyk

PRESENTATION PLAN

NERA Spectrometer

Identification of compounds

DSC examinations

Experimental and calculation vibrational spectra

Infrared absorption spectra vs. temperature

Results of neutron experiment

• Neutron powder diffraction

• Inelastic neutron scattering

NERA

a multi-purpose indirect geometry spectrometer

Fig. 1 . The scheme of NERA spectrometer http://flnp.jinr.ru/img/133/233_pv_spectrometer_NERA.jpg

1 - sample 2 - Be-filters 3 - collimators 4 - He3 detectors (INS and QNS) 5 - PG analysers (INS) 6 - single crystal analysers (QNS) 7 - detectors for high intensity diffraction 8 - detectors for high resolution diffraction 9 - spectrometer shielding 10 - Ni-coated mirror neutron guide in a vacuum tube 11 - vacuum neutron guide

10 20 30 40 50 60 70 80

0

1000

2000

3000

4000

5000

6000[Cd(NH

3)

6] (ClO

4)

2

Inte

nsit

y

2

IDENTIFICATION OF COMPOUNDS

Crystal data Cubic, F-m3m a = 11.6049 Å V = 1562.875 Å3 Z = 4 T = 293 K

Crystal data Cubic, F-43m a = 10.68857 Å V = 1221.121 Å3 Z = 4 T = 295 K

10 20 30 40 50 60 70 80

0

500

1000

1500

2000

2500

3000[Cd(NH

3)

4] (ReO

4)

2

Inte

nsit

y

2

DSC EXAMINATIONS

150 200 250 300

-8

-4

0

4

8

Sample weight = 27.4000 mg

Cooling and heating rate = 10 K/min

[Cd(NH3)

4] (ReO

4)

2

Heat

Flo

w (

mW

)

Temperature (K)

120 150 180 210 240 270 300

-4

-2

0

2

4

[Cd(NH3)

6] (ClO

4)

2

Heat

Flo

w (

mW

)

Temperature (K)

Sample weight = 8.66 mg

Cooling and heating rate = 10 K/min

133 K

132 K

VIBRATIONAL SPECTRA

0 500 1000 1500 2000 2500 3000 3500 4000

[Cd(NH3)

4](ReO

4)

2

IR A

bso

rban

ce

Wavenumber (cm-1

)

ReO4

2- calculation

[Cd(NH3)

4]

2+ calculation

0 500 1000 1500 2000 2500 3000 3500 4000

[Cd(NH3)

6](ClO

4)

2

IR a

bso

rban

ce

[Cd(NH3)

6]

2+ calculation

ClO4

2- calculation

Wavenumber (cm-1

)

1664cm-1 δas.(HNH)

1676cm-1 δas.(HNH)

IR ABSORBANCE SPECTRA

500 1000 1500 3500 4000

0.0

0.5

1.0

1.5

2.0

2.5

290 K

Wavenumber (cm-1

)

20 K

80 K

110 K

135 K

170 K

200 K

230 K

[Cd(NH3)

6](ClO

4)

2

Tc

0 100 200 300 400 500

0.0

0.5

1.0

1.5

2.0

2.5

[Cd(NH3)

6](ClO

4)

2

290 K

20 K

80 K

110 K

135 K

170 K

200 K

IR a

bso

rban

ce

Wavenumber (cm-1

)

230 K

500 1000 1500 3500 4000

0

1

2

3

4

5

[Cd(NH3)

4](ReO

4)

2

Wavenumber (cm-1

)

290 K

20 K

80 K

110 K

140 K

170 K

200 K

230 K

0 100 200 300 400 5000.0

0.5

1.0

1.5

2.0

[Cd(NH3)

4](ReO

4)

2

IR a

bso

rban

ce

Wavenumber (cm-1

)

290 K

20 K

80 K

110 K

140 K

170 K

200 K

230 K

IR ABSORBANCE SPECTRA vs. TEMPERATURE

0 50 100 150 200 250 300

42

44

46

48

50

52

54

56

FW

HM

(cm

-1)

Temperature (K)

ModelNewFunction (User)

EquationP1+P2*x+P3*exp(-P4/(8.31*x))

Reduced Chi-Sqr

0.01483

Adj. R-Square 0.99921

Value Standard Error

FWHM

P1 42 0

P2 -0.00244 0.00115

P3 133.50507 6.13791

P4 5334.97718 152.27737

[Cd(NH3)6 ](ClO4)2

[Cd(NH3)4 ](ReO4)2

0 50 100 150 200 250 300

1605

1608

1611

1614

1617

1620

1623

1626

Po

siti

on

of

the

ban

d (

cm-1

)

Temperature (K)

0 50 100 150 200 250 300

1614

1616

1618

1620

1622

1624

1626

Po

siti

on

of

the

ban

d (

cm-1

)

Temperature (K)

50 100 150 200 250 300

23

24

25

26

27

28

29

30

FW

HM

(cm

-1)

Temperature (K)

NEUTRON POWDER DIFFRACTION

3 4 5 6 7 8

4000

8000

12000

16000

20000

24000

Reflex position

293 K

155 K

125 K

25 K

[Cd(NH3)

6] (ClO

4)

2

Inte

nsi

ty

dhkl

(Å)

Tc

3 4 5 6 7 8

0

4000

8000

12000

16000

20000

Reflex position

293 K

150 K

50 K

[Cd(NH3)

4] (ReO

4)

2

Inte

nsi

ty

dhkl

(Å)

INELASTIC NEUTRON SCATTERING

1 2 3 4 5 6

0

50

100

150

200

250

300

350

400[Cd(NH

3)

4] (ReO

4)

2

50 K

150 K

293 KII

NS

Int

ensi

ty (

a.u)

Incoming neutron wavelength (Å)

1 2 3 4 5 6

0

500

1000

1500

2000[Cd(NH

3)

6] (ClO

4)

2

155 K

125 K

25 K

IIN

S I

nte

nsi

ty (

a.u

)

Incoming neutron wavelength (Å)

Tc

750 600 450 300 150 0

0

15

30

45

60

75 [Cd(NH3)

4](ReO

4)

2

[Cd(NH3)

4]

2+ calculation

G (

)

Wavenumber (cm-1

)

750 600 450 300 150 0

0

1000

2000

3000

4000

5000

[Cd(NH3)

6](ClO

4)

2

[Cd(NH3)

6]

2+ calculation

G (

)

Wavenumber (cm-1

)

References

[1] I. Natkaniec, S.I. Bragin, J. Brańkowski, J. Mayer, in: U. Steigenberger, T. Brome, G. Rees, A. Soper, (Eds); Proceedings of the ICANS XII Meeting, Abingdon 1993, RAL Report 94-025, Vol. I, (1994) 89-96. [2] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, and J.A. Pople, Gaussian 03, Revision D.01, Gaussian, Inc., Wallingford CT, 2004. [3] A.D.Becke, J.Chem.Phys. 98(1993)5648–5652. [4] P.J.Stephens, F.J.Devlin, C.F.Chabalowski, M.J.Frisch, J.Phys.Chem. 98 (1994) 11623–11627. [5] L.E. Roy, P.J. Hay, R.L. Martin, Revised basis sets for the LANL effective core potentials, J. Chem. Theory Comput. 4 (2008) 1029–1031. [6] K.T. Schuchardt, B.T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J. Chase, J. Li, T.L. Windus, Basis Set Exchange: A Community Database for Computational Sciences, J. Chem. Inf. Model. 47 (2007) 1045–1052. [7] Y. Tantirungrotechai, K. Phanasant, S. Roddecha,P. Surawatanawong, V. Sutthikhum, J. Limtrakul, J. Mol. Struct. (Theochem) 760 (2006) 189. [8] S.W. Lovesey, Theory of Neutron Scattering from Condensed Matter, Clarendon Press, Oxford, 1984. [9] A.J. Ramirez-Cuesta (2004). Comput. Phys. Comm. 157, 226–238. ACLIMAX 4.0.1, The new version of the software for analyzing and interpreting INS spectra. [10] W.J. Kazimirov, I. Natkaniec, Programme for Calculation of the Resolution Function of NERA-PR and KDSOG-M Inelastic Neutron Scattering Inverse Geometry spectrometers, Preprint P14-2003-48 JINR, Dubna, 2003. [11] C. Carabatos-Nédelec, P. Becker, J. Raman Spectrosc. 28 (1997) 663. [12] P. da R. Andrade, A.D. PasadRao, R.S. Katiyar, S.P.S. Porto, Solid St. Commun. 12 (1973) 847. [13] P da R. Andrade, S.P.S. Porto, Solid St. Commun. 13 (1973) 1249. [14] http://nuvis.jankrawczyk.pl/ [15] S. Hodorowicz, M. Ciechanowicz-Rutkowska, J. M. Janik, J. A. Janik, Phys. Stat.Sol. (a), 43 (1977) 53-57 [16] K. S. Pitzer, Zeitschrift fuer Kristallographie, Kristallgeometrie, Kristallphysik, Kristallchemie, 92 (1935) 131-135.

THANK YOU FOR YOUR ATTENTION

The infrared research was carried out with the equipment purchased thanks to the financial support of the European Regional Development Fund in the framework of the Polish Innovation Economy Operational Program (contract no. POIG.02.01.00-12-023/08).

Acknowledgments for

dr Łukasz Hetmańczyk

PL-Grid Infrastucture

ATOMIN Project