vibrational spectroscopy basics

Upload: austinsymposium

Post on 08-Apr-2018

241 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/7/2019 Vibrational Spectroscopy Basics

    1/24

    Deriva'onoftheFundamental

    Equa'onsofVibra'onalSpectroscopy

    RobertKalescky

    SouthernMethodistUniversity

    CATCO

    March18,2011

    1

  • 8/7/2019 Vibrational Spectroscopy Basics

    2/24

    Overview

    Lagrangian Overview CartesianandInternalCoordinates DisplacementCoordinates Rela'onshipBetweenInternalandCartesianCoordinates Kine'cEnergyinInternalCoordinates Poten'alEnergyinInternalCoordinates

    Euler-LagrangeEqua'on Overview NewtonianMechanicsExample Vibra'onalEuler-LagrangeEqua'on PossibleSolu'ons NormalModeVectors NormalCoordinate BasicEqua'onofVibra'onalSpectroscopy

    2

  • 8/7/2019 Vibrational Spectroscopy Basics

    3/24

    LagrangianforVibra'onal

    Spectroscopy Lagrangian

    Differencebetweenkine'candpoten'alenergydescrip'ons.

    Kine'cEnergy 3KCartesiandisplacement

    coordinatevelocityelements.

    Misa3Ksymmetricsquarematrixofatomicmasses.

    Poten'alEnergy 3KCartesiandisplacement

    coordinatexelements.

    fisa3Ksymmetricsquarematrixofforceconstants. Thedotindicates

    differen'a'onwithrespectto'me.

    L(x, !x) =T( !x) !V(x)

    =

    1

    2!xM!x ! 1

    2xfx

    3

  • 8/7/2019 Vibrational Spectroscopy Basics

    4/24

    CartesianandInternalCoordinates

    ExternalReferences Theposi'onoftheatoms

    iswithrespecttoexternalreferencepointssuchas

    thegridofCartesianspace. InternalReferences

    Theposi'onofatomsarewithrespecttootheratomsinthemolecule.

    Atomicposi'onsaredescribedusingbondlengthsandangles.

    ExampleofanExternalReference

    O -1.9 1.5 0.0

    H -0.9 1.5 0.0

    H -2.2 2.4 0.0

    ExampleofanInternalReference

    O

    H 1 B1

    H 1 B1 2 A2

    B1 0.96

    A2 104.5

    4

  • 8/7/2019 Vibrational Spectroscopy Basics

    5/24

    DisplacementCoordinates

    DisplacementCoordinates Cartesiandisplacement

    coordinatesarethe

    differencebetweenacertainposi'onandthe

    equilibriumposi'on.

    Internaldisplacementcoordinatesarethe

    differencebetweena

    certaininternalcoordinate

    anditsequilibriumvalue.

    !x = x " xe# x

    !r = r " re# r

    5

  • 8/7/2019 Vibrational Spectroscopy Basics

    6/24

    Poten'alEnergyofDisplacement

    Poten'alEnergy Describesthepoten'al

    energyofasystemconnectedwithsprings.

    HookesLaw Analogoustotheintegrated

    HookesLawequa'onwithrespecttox.

    Displacement

    Thepoten'alenergyiszerowhentheatomsareattheirequilibriumdistancefromeachotherandgreaterthanzerootherwise.

    V(x) = 12

    xfx

    F= !kx"V=1

    2kx

    2

    6

  • 8/7/2019 Vibrational Spectroscopy Basics

    7/24

    Kine'cEnergyofDisplacement

    Kine'cEnergy Afunc'ondescribingthe

    kine'cenergyofa

    vibra'ngmolecule. AtomicMo'on

    Thevibra'ngmoleculesatomshaveakine'cenergypropor'onalto

    thefrequencyoftheiroscilla'ons.

    Analogoustomv2

    7

    T(!x) =1

    2!x M !x

  • 8/7/2019 Vibrational Spectroscopy Basics

    8/24

    Rela'onshipBetweenInternaland

    CartesianCoordinates TheBMatrix

    Providesarela'onshipbetweeninternaland

    Cartesiancoordinates. 3KLrinternal

    displacementcoordinates.

    3KxCartesiancoordinates.

    Bisarectangular3Kby3KLmatrix.

    Ithasnoinverse.

    r = Bx

    Bni=

    !rn(x)

    !xi

    "#$

    %&'x

    8

  • 8/7/2019 Vibrational Spectroscopy Basics

    9/24

    Kine'cEnergyinInternalCoordinates

    Kine'cEnergyDescrip'on Becausethereisnoinverseof

    B,thereisnodirectwaytoconvertkine'cenergydescrip'onusingMinto

    internalcoordinates. TheGMatrix

    TheGmatrixisthemassmatrixininternalcoordinates.

    Itisa3KLsymmetricsquarematrix.

    TheKMatrix TheKmatrixistheinverseof

    theGmatrix.

    Itisa3KLsymmetricsquarematrix.

    T( x) = 1

    2rK r

    K=G1= BM

    1B

    1

    9

  • 8/7/2019 Vibrational Spectroscopy Basics

    10/24

    Poten'alEnergyinInternal

    Coordinates Poten'alEnergy

    Descrip'on

    3KLrelements. TheFMatrix

    Theforceconstantmatrixininternalcoordinates.

    3KLsymmetricsquarematrix.

    Eachelementisthe2ndderiva'veofthepoten'al

    energy.

    V(r) =1

    2 rFr

    Fij =

    2V(r)rirj

    10

  • 8/7/2019 Vibrational Spectroscopy Basics

    11/24

    Overview

    Lagrangian Overview CartesianandInternalCoordinates DisplacementCoordinates Rela'onshipBetweenInternalandCartesianCoordinates Kine'cEnergyinInternalCoordinates Poten'alEnergyinInternalCoordinates

    Euler-LagrangeEqua'on Overview NewtonianMechanicsExample Vibra'onalEuler-LagrangeEqua'on PossibleSolu'ons NormalModeVectors NormalCoordinate BasicEqua'onofVibra'onalSpectroscopy

    11

  • 8/7/2019 Vibrational Spectroscopy Basics

    12/24

    TheEuler-LagrangeEqua'on

    Lagrangian Thedifferenceofthekine'c

    andpoten'alenergies.

    TheLagrangianisamorekine'canddynamicdescrip'onversusthemorepoten'alandsta'cbasedHamiltoniandescrip'on.

    Euler-Lagrange Thedynamicsofthevibra'ng

    atomsinamoleculecanbefoundbysolvingthesystemofEuler-Lagrangeequa'onsfori=1,,3K

    12

    L(x, x) =T( x) V(x)d

    dt

    L(x, x)dx

    i

    L(x, x)dx

    i

    = 0

  • 8/7/2019 Vibrational Spectroscopy Basics

    13/24

    Euler-LagrangeExample

    NewtonsLawsofMo5on

    1. Abodyinmo'onstaysinmo'onun'lacteduponby

    anexternalforce.

    2. Abodyacteduponbyaforceaccelerates

    propor'onally,F=ma.

    3.

    Forcesbetweenbodiesareequalandopposite,

    Fa-b=-Fb-a

    LagrangianMechanics

    Lagrangianmechanicsisadifferentwayofmathema'callyexpressingNewtonianmechanics,

    butthephysicsstaysthesame. Theprimaryadvantageofusing

    theLagrangianisthatitisnotcoordinatesystemdependent. ChangingfromCartesian

    coordinatestopolarcoordinatesforsomeNewtonianproblemscanbetedious.

    AstheLagrangianisnotcoordinatesystemdependent,changingcoordinatesystemsforapar'culartypeofproblemaretrivial.

    13

  • 8/7/2019 Vibrational Spectroscopy Basics

    14/24

    Euler-LagrangeExample

    PrincipleofLeastAc'on Thepaththrough

    configura'onalspaceas

    afunc'onof'meissuchthatac'onis

    minimized.

    TheLagrangianischosensuchthatthepathtaken

    isthepathofleast

    ac'onaccordingto

    NewtonsLaws.

    14

    L(x, !x) =T(!x) !V(x)

    =

    1

    2m!x 2 !V(x)

  • 8/7/2019 Vibrational Spectroscopy Basics

    15/24

    Euler-LagrangeExample

    15

    L(x, x) =1

    2mx2 V(x)

    d

    dt

    L(x, x)dx

    i

    L(x, x)dx

    i

    = 0

    d

    dt

    1

    2mx2 V(x)

    dxi

    1

    2mx2 V(x)

    dxi

    = 0

  • 8/7/2019 Vibrational Spectroscopy Basics

    16/24

    Euler-LagrangeExample

    16

    d

    dt

    1

    2mx 2 V(x)

    dxi

    1

    2mx 2 V(x)

    dxi

    = 0

    d

    dtmx V(x)

    dxi

    = 0

    md

    dtx V(x)

    dxi

    = 0

    mxi+F

    Vi= F

    Ti+F

    Vi= 0

    FTi= F

    Vi

    2ndLaw:F=ma

    3rdLaw:Fa-b=-Fb-a

  • 8/7/2019 Vibrational Spectroscopy Basics

    17/24

    Euler-LagrangeEqua'on

    Euler-Lagrange Thedynamicsofthe

    vibra'ngatomsina

    moleculecanbefoundbysolvingthesystemofEuler-

    Lagrangeequa'onsfor

    i=1,,3KL.

    Thevibra'onalEuler-Lagrangeequa'onisfound

    bysubs'tu'ngthe

    vibra'onalLagrangianinto

    theequa'on.

    L(r,r) =T(r) V(r) = 12

    rKr 12rFr

    d

    dt

    L(r,r)r

    i

    L(r,r)r

    i

    = 0

    d

    dt

    T(r) +V(r)r

    i

    T(r) +V(r)

    ri

    = 0

    d

    dt

    T(r)

    ri

    V

    (r)

    ri

    = 0

    Kr +Fr = 0

    17

  • 8/7/2019 Vibrational Spectroscopy Basics

    18/24

    PossibleSolu'ons

    Possiblesolu'onstheEuler-LagrangeEqua'on Systemof3KLsolu'ons. kandareappropriately

    chosenconstants.

    karevibra'onaleigenvaluesfromwhichtheharmonicfrequenciescanbedetermined.

    ThelVector Contains3KLnormalmode

    vectors.

    Thepossiblesolu'onsaresubs'tutedintothedifferen'atedformoftheEuler-Lagrangeequa'on.

    18

    Kr + Fr = 0ri= l

    ikcos(2

    k+ )

    ri=

    klikri

    F kK[ ]lik = 0

  • 8/7/2019 Vibrational Spectroscopy Basics

    19/24

    NormalModeVectors

    NormalModeVectors Describethemo'onof

    thevibra'onalnormal

    modes.

    Example:NormalModesofWater

    Symmetricstretch. Bending. Asymmetricstretch.

    19

  • 8/7/2019 Vibrational Spectroscopy Basics

    20/24

    NormalCoordinate

    Normalcoordinatesrefertothedisplacementofnucleifromtheirequilibriumposi'onsduringanormalmodevibra'on.

    Anormalcoordinateisalinearcombina'onofmassweightedinternalorCartesiancoordinatedisplacements.

    Thereisasinglenormalcoordinateforeachvibra'onalnormalmode.

    Normalcoordinatesarerequiredforaquantummechanicalversusclassicaldescrip'onofmolecularvibra'ons.

    Thekine'candpoten'alenergiesaresummedoveri=3KL.

    20

    T(Q) = 12

    !i !Qi2"V(Q) = 1

    2Q

    i

    2"

  • 8/7/2019 Vibrational Spectroscopy Basics

    21/24

    BasicEqua'onofVibra'onal

    Spectroscopy BasicEqua'onofVibra'onal

    Spectroscopy Providesconnec'onbetweenthe

    3K-Lnormalmodevectorsliandtheirfrequenciesvia.

    isamatrixofwhichthediagonalelementsare3K-Lvibra'onaleigenvaluesfromwhichthevibra'onalharmonicfrequenciescanbedetermined.

    Eisaunitmatrix. FinalEqua'on

    Mul'plyfromthelebyK-1whichisG.

    Thebracketedequa'onsareequivalent.

    TheLmatrixcontainsthenormalmodeeigenvectors.

    21

    F kK[ ]lik = 0

    GF kE[ ]lik = 0

    GFL = L

  • 8/7/2019 Vibrational Spectroscopy Basics

    22/24

    Overview

    Lagrangian Overview CartesianandInternalCoordinates DisplacementCoordinates Rela'onshipBetweenInternalandCartesianCoordinates Kine'cEnergyinInternalCoordinates Poten'alEnergyinInternalCoordinates

    Euler-LagrangeEqua'on Overview NewtonianMechanicsExample Vibra'onalEuler-LagrangeEqua'on PossibleSolu'ons NormalModeVectors NormalCoordinate BasicEqua'onofVibra'onalSpectroscopy

    22

  • 8/7/2019 Vibrational Spectroscopy Basics

    23/24

    References

    1. Kraka,E.;Cremer,D.Characteriza'onofCFBondswithMul'ple-BondCharacter:BondLengths,StretchingForceConstants,andBondDissocia'onEnergies.ChemPhysChem2009,10,686-698.

    2. Ochterski,J.Vibra'onalanalysisinGaussian.GaussianInc.2000.3. Konkoli,Z.;Cremer,D.Anewwayofanalyzingvibra'onalspectra.I.Deriva'onofadiaba'c

    internalmodes.Interna'onalJournalOfQuantumChemistry1998,67,1-9.

    4. Cremer,D.;Larsson,J.Newdevelopmentsintheanalysisofvibra'onalspectraOntheuseofadiaba'cinternalvibra'onalmodes.Theore'calOrganicChemistry1998,5,259-327.

    5. McQuarrie,D.A.;Simon,J.D.PhysicalChemistry;AMolecularApproach;UniversityScienceBooks:Sausalito,1997.

    6. Atkins,P.W.;Friedman,R.S.MolecularQuantumMechanics;3rded.;OxfordUniversityPress:Oxford,1997.

    7. Woodward,L.A.Introduc'ontotheTheoryofMolecularVibra'onsandVibra'onalTheory;OxfordUniversityPress:London,1972.

    8. Gans,P.Vibra'ngMolecules;AnIntroduc'ontotheInterpreta'onofInfraredandRamanSpectra;ChapmanandHall:London,1971.

    9. Wilson,E.B.;Decius,J.C.;Cross,P.C.MolecularVibra'ons;McGraw-HillBookCompany,Inc.:NewYork,19.Images

    1. hp://www.phy.cuhk.edu.hk/contextual/heat/tep/trans/solid_state_model.gif2. hp://disc.sci.gsfc.nasa.gov/oceancolor/addi'onal/science-focus/ocean-color/images/47Z.jpg

    23

  • 8/7/2019 Vibrational Spectroscopy Basics

    24/24

    Ques'ons?

    24