csc321 lecture 4: learning a classifier · 2018-01-13 · de ne a model and a cost function...

36
CSC321 Lecture 4: Learning a Classifier Roger Grosse Roger Grosse CSC321 Lecture 4: Learning a Classifier 1 / 31

Upload: others

Post on 24-Jun-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: CSC321 Lecture 4: Learning a Classifier · 2018-01-13 · de ne a model and a cost function optimize it using gradient descent Roger Grosse CSC321 Lecture 4: Learning a Classi er

CSC321 Lecture 4: Learning a Classifier

Roger Grosse

Roger Grosse CSC321 Lecture 4: Learning a Classifier 1 / 31

Page 2: CSC321 Lecture 4: Learning a Classifier · 2018-01-13 · de ne a model and a cost function optimize it using gradient descent Roger Grosse CSC321 Lecture 4: Learning a Classi er

Overview

Last time: binary classification, perceptron algorithm

Limitations of the perceptron

no guarantees if data aren’t linearly separablehow to generalize to multiple classes?linear model — no obvious generalization to multilayer neural networks

This lecture: apply the strategy we used for linear regression

define a model and a cost functionoptimize it using gradient descent

Roger Grosse CSC321 Lecture 4: Learning a Classifier 2 / 31

Page 3: CSC321 Lecture 4: Learning a Classifier · 2018-01-13 · de ne a model and a cost function optimize it using gradient descent Roger Grosse CSC321 Lecture 4: Learning a Classi er

Overview

Design choices so far

Task: regression, binary classification, multiway classification

Model/Architecture: linear, log-linear

Loss function: squared error, 0–1 loss, cross-entropy, hinge loss

Optimization algorithm: direct solution, gradient descent,perceptron

Roger Grosse CSC321 Lecture 4: Learning a Classifier 3 / 31

Page 4: CSC321 Lecture 4: Learning a Classifier · 2018-01-13 · de ne a model and a cost function optimize it using gradient descent Roger Grosse CSC321 Lecture 4: Learning a Classi er

Overview

Recall: binary linear classifiers. Targets t ∈ {0, 1}

z = wTx + b

y =

{1 if z ≥ 00 if z < 0

Goal from last lecture: classify all training examples correctly

But what if we can’t, or don’t want to?

Seemingly obvious loss function: 0-1 loss

L0−1(y , t) =

{0 if y = t1 if y 6= t

= 1y 6=t .

Roger Grosse CSC321 Lecture 4: Learning a Classifier 4 / 31

Page 5: CSC321 Lecture 4: Learning a Classifier · 2018-01-13 · de ne a model and a cost function optimize it using gradient descent Roger Grosse CSC321 Lecture 4: Learning a Classi er

Attempt 1: 0-1 loss

As always, the cost E is the average loss over training examples; for0-1 loss, this is the error rate:

E =1

N

N∑i=1

1y (i) 6=t(i)

Roger Grosse CSC321 Lecture 4: Learning a Classifier 5 / 31

Page 6: CSC321 Lecture 4: Learning a Classifier · 2018-01-13 · de ne a model and a cost function optimize it using gradient descent Roger Grosse CSC321 Lecture 4: Learning a Classi er

Attempt 1: 0-1 loss

Problem: how to optimize?

Chain rule:∂L0−1∂wj

=∂L0−1∂z

∂z

∂wj

But ∂L0−1/∂z is zero everywhere it’s defined!

∂L0−1/∂wj = 0 means that changing the weights by a very smallamount probably has no effect on the loss.The gradient descent update is a no-op.

Roger Grosse CSC321 Lecture 4: Learning a Classifier 6 / 31

Page 7: CSC321 Lecture 4: Learning a Classifier · 2018-01-13 · de ne a model and a cost function optimize it using gradient descent Roger Grosse CSC321 Lecture 4: Learning a Classi er

Attempt 1: 0-1 loss

Problem: how to optimize?

Chain rule:∂L0−1∂wj

=∂L0−1∂z

∂z

∂wj

But ∂L0−1/∂z is zero everywhere it’s defined!

∂L0−1/∂wj = 0 means that changing the weights by a very smallamount probably has no effect on the loss.The gradient descent update is a no-op.

Roger Grosse CSC321 Lecture 4: Learning a Classifier 6 / 31

Page 8: CSC321 Lecture 4: Learning a Classifier · 2018-01-13 · de ne a model and a cost function optimize it using gradient descent Roger Grosse CSC321 Lecture 4: Learning a Classi er

Attempt 2: Linear Regression

Sometimes we can replace the loss function we care about with onewhich is easier to optimize. This is known as a surrogate loss function.

We already know how to fit a linear regression model. Can we usethis instead?

y = w>x + b

LSE(y , t) =1

2(y − t)2

Doesn’t matter that the targets are actually binary.

Threshold predictions at y = 1/2.

Roger Grosse CSC321 Lecture 4: Learning a Classifier 7 / 31

Page 9: CSC321 Lecture 4: Learning a Classifier · 2018-01-13 · de ne a model and a cost function optimize it using gradient descent Roger Grosse CSC321 Lecture 4: Learning a Classi er

Attempt 2: Linear Regression

The problem:

The loss function hates when you make correct predictions with highconfidence!

If t = 1, it’s more unhappy about y = 10 than y = 0.

Roger Grosse CSC321 Lecture 4: Learning a Classifier 8 / 31

Page 10: CSC321 Lecture 4: Learning a Classifier · 2018-01-13 · de ne a model and a cost function optimize it using gradient descent Roger Grosse CSC321 Lecture 4: Learning a Classi er

Attempt 3: Logistic Activation Function

There’s obviously no reason to predict values outside [0, 1]. Let’ssquash y into this interval.

The logistic function is a kind of sigmoidal, orS-shaped, function:

σ(z) =1

1 + e−z

A linear model with a logistic nonlinearity is known as log-linear:

z = w>x + b

y = σ(z)

LSE(y , t) =1

2(y − t)2.

Used in this way, σ is called an activation function, and z is called thelogit.

Roger Grosse CSC321 Lecture 4: Learning a Classifier 9 / 31

Page 11: CSC321 Lecture 4: Learning a Classifier · 2018-01-13 · de ne a model and a cost function optimize it using gradient descent Roger Grosse CSC321 Lecture 4: Learning a Classi er

Attempt 3: Logistic Activation Function

The problem:(plot of LSE as a function of z)

∂L∂wj

=∂L∂z

∂z

∂wj

wj ← wj − α∂L∂wj

In gradient descent, a small gradient (in magnitude) implies a smallstep.

If the prediction is really wrong, shouldn’t you take a large step?

Roger Grosse CSC321 Lecture 4: Learning a Classifier 10 / 31

Page 12: CSC321 Lecture 4: Learning a Classifier · 2018-01-13 · de ne a model and a cost function optimize it using gradient descent Roger Grosse CSC321 Lecture 4: Learning a Classi er

Attempt 3: Logistic Activation Function

The problem:(plot of LSE as a function of z)

∂L∂wj

=∂L∂z

∂z

∂wj

wj ← wj − α∂L∂wj

In gradient descent, a small gradient (in magnitude) implies a smallstep.

If the prediction is really wrong, shouldn’t you take a large step?

Roger Grosse CSC321 Lecture 4: Learning a Classifier 10 / 31

Page 13: CSC321 Lecture 4: Learning a Classifier · 2018-01-13 · de ne a model and a cost function optimize it using gradient descent Roger Grosse CSC321 Lecture 4: Learning a Classi er

Logistic Regression

Because y ∈ [0, 1], we can interpret it as the estimated probabilitythat t = 1.

The pundits who were 99% confident Clinton would win were muchmore wrong than the ones who were only 90% confident.

Cross-entropy loss captures this intuition:

LCE(y , t) =

{− log y if t = 1− log(1− y) if t = 0

= −t log y − (1− t) log(1− y)

Roger Grosse CSC321 Lecture 4: Learning a Classifier 11 / 31

Page 14: CSC321 Lecture 4: Learning a Classifier · 2018-01-13 · de ne a model and a cost function optimize it using gradient descent Roger Grosse CSC321 Lecture 4: Learning a Classi er

Logistic Regression

Because y ∈ [0, 1], we can interpret it as the estimated probabilitythat t = 1.

The pundits who were 99% confident Clinton would win were muchmore wrong than the ones who were only 90% confident.

Cross-entropy loss captures this intuition:

LCE(y , t) =

{− log y if t = 1− log(1− y) if t = 0

= −t log y − (1− t) log(1− y)

Roger Grosse CSC321 Lecture 4: Learning a Classifier 11 / 31

Page 15: CSC321 Lecture 4: Learning a Classifier · 2018-01-13 · de ne a model and a cost function optimize it using gradient descent Roger Grosse CSC321 Lecture 4: Learning a Classi er

Logistic Regression

Logistic Regression:

z = w>x + b

y = σ(z)

=1

1 + e−z

LCE = −t log y − (1− t) log(1− y)

[[gradient derivation in the notes]]

Roger Grosse CSC321 Lecture 4: Learning a Classifier 12 / 31

Page 16: CSC321 Lecture 4: Learning a Classifier · 2018-01-13 · de ne a model and a cost function optimize it using gradient descent Roger Grosse CSC321 Lecture 4: Learning a Classi er

Logistic Regression

Problem: what if t = 1 but you’re really confident it’s a negativeexample (z � 0)?

If y is small enough, it may be numerically zero. This can cause verysubtle and hard-to-find bugs.

y = σ(z) ⇒ y ≈ 0

LCE = −t log y − (1− t) log(1− y) ⇒ computes log 0

Instead, we combine the activation function and the loss into a singlelogistic-cross-entropy function.

LLCE(z , t) = LCE(σ(z), t) = t log(1 + e−z) + (1− t) log(1 + ez)

Numerically stable computation:

E = t * np.logaddexp(0, -z) + (1-t) * np.logaddexp(0, z)

Roger Grosse CSC321 Lecture 4: Learning a Classifier 13 / 31

Page 17: CSC321 Lecture 4: Learning a Classifier · 2018-01-13 · de ne a model and a cost function optimize it using gradient descent Roger Grosse CSC321 Lecture 4: Learning a Classi er

Logistic Regression

Problem: what if t = 1 but you’re really confident it’s a negativeexample (z � 0)?

If y is small enough, it may be numerically zero. This can cause verysubtle and hard-to-find bugs.

y = σ(z) ⇒ y ≈ 0

LCE = −t log y − (1− t) log(1− y) ⇒ computes log 0

Instead, we combine the activation function and the loss into a singlelogistic-cross-entropy function.

LLCE(z , t) = LCE(σ(z), t) = t log(1 + e−z) + (1− t) log(1 + ez)

Numerically stable computation:

E = t * np.logaddexp(0, -z) + (1-t) * np.logaddexp(0, z)

Roger Grosse CSC321 Lecture 4: Learning a Classifier 13 / 31

Page 18: CSC321 Lecture 4: Learning a Classifier · 2018-01-13 · de ne a model and a cost function optimize it using gradient descent Roger Grosse CSC321 Lecture 4: Learning a Classi er

Logistic Regression

Comparison of loss functions:

Roger Grosse CSC321 Lecture 4: Learning a Classifier 14 / 31

Page 19: CSC321 Lecture 4: Learning a Classifier · 2018-01-13 · de ne a model and a cost function optimize it using gradient descent Roger Grosse CSC321 Lecture 4: Learning a Classi er

Logistic Regression

Comparison of gradient descent updates:

Linear regression:

w← w − α

N

N∑i=1

(y (i) − t(i)) x(i)

Logistic regression:

w← w − α

N

N∑i=1

(y (i) − t(i)) x(i)

Not a coincidence! These are both examples of matching lossfunctions, but that’s beyond the scope of this course.

Roger Grosse CSC321 Lecture 4: Learning a Classifier 15 / 31

Page 20: CSC321 Lecture 4: Learning a Classifier · 2018-01-13 · de ne a model and a cost function optimize it using gradient descent Roger Grosse CSC321 Lecture 4: Learning a Classi er

Logistic Regression

Comparison of gradient descent updates:

Linear regression:

w← w − α

N

N∑i=1

(y (i) − t(i)) x(i)

Logistic regression:

w← w − α

N

N∑i=1

(y (i) − t(i)) x(i)

Not a coincidence! These are both examples of matching lossfunctions, but that’s beyond the scope of this course.

Roger Grosse CSC321 Lecture 4: Learning a Classifier 15 / 31

Page 21: CSC321 Lecture 4: Learning a Classifier · 2018-01-13 · de ne a model and a cost function optimize it using gradient descent Roger Grosse CSC321 Lecture 4: Learning a Classi er

Hinge Loss

Another loss function you might encounter is hinge loss. Here, we taket ∈ {−1, 1} rather than {0, 1}.

LH(y , t) = max(0, 1− ty)

This is an upper bound on 0-1 loss (auseful property for a surrogate lossfunction).

A linear model with hinge loss is calleda support vector machine. You alreadyknow enough to derive the gradientdescent update rules!

Very different motivations from logisticregression, but similar behavior inpractice.

Roger Grosse CSC321 Lecture 4: Learning a Classifier 16 / 31

Page 22: CSC321 Lecture 4: Learning a Classifier · 2018-01-13 · de ne a model and a cost function optimize it using gradient descent Roger Grosse CSC321 Lecture 4: Learning a Classi er

Logistic Regression

Comparison of loss functions:

Roger Grosse CSC321 Lecture 4: Learning a Classifier 17 / 31

Page 23: CSC321 Lecture 4: Learning a Classifier · 2018-01-13 · de ne a model and a cost function optimize it using gradient descent Roger Grosse CSC321 Lecture 4: Learning a Classi er

Multiclass Classification

What about classification tasks with more than two categories?It is very hard to say what makes a 2 Some examples from an earlier version of the net

Roger Grosse CSC321 Lecture 4: Learning a Classifier 18 / 31

Page 24: CSC321 Lecture 4: Learning a Classifier · 2018-01-13 · de ne a model and a cost function optimize it using gradient descent Roger Grosse CSC321 Lecture 4: Learning a Classi er

Multiclass Classification

Targets form a discrete set {1, . . . ,K}.It’s often more convenient to represent them as one-hot vectors, or aone-of-K encoding:

t = (0, . . . , 0, 1, 0, . . . , 0)︸ ︷︷ ︸entry k is 1

Roger Grosse CSC321 Lecture 4: Learning a Classifier 19 / 31

Page 25: CSC321 Lecture 4: Learning a Classifier · 2018-01-13 · de ne a model and a cost function optimize it using gradient descent Roger Grosse CSC321 Lecture 4: Learning a Classi er

Multiclass Classification

Now there are D input dimensions and K output dimensions, so weneed K × D weights, which we arrange as a weight matrix W.

Also, we have a K -dimensional vector b of biases.

Linear predictions:

zk =∑j

wkjxj + bk

Vectorized:z = Wx + b

Roger Grosse CSC321 Lecture 4: Learning a Classifier 20 / 31

Page 26: CSC321 Lecture 4: Learning a Classifier · 2018-01-13 · de ne a model and a cost function optimize it using gradient descent Roger Grosse CSC321 Lecture 4: Learning a Classi er

Multiclass Classification

A natural activation function to use is the softmax function, amultivariable generalization of the logistic function:

yk = softmax(z1, . . . , zK )k =ezk∑k ′ ezk′

The inputs zk are called the logits.

Properties:

Outputs are positive and sum to 1 (so they can be interpreted asprobabilities)If one of the zk ’s is much larger than the others, softmax(z) isapproximately the argmax. (So really it’s more like “soft-argmax”.)Exercise: how does the case of K = 2 relate to the logistic function?

Note: sometimes σ(z) is used to denote the softmax function; in thisclass, it will denote the logistic function applied elementwise.

Roger Grosse CSC321 Lecture 4: Learning a Classifier 21 / 31

Page 27: CSC321 Lecture 4: Learning a Classifier · 2018-01-13 · de ne a model and a cost function optimize it using gradient descent Roger Grosse CSC321 Lecture 4: Learning a Classi er

Multiclass Classification

If a model outputs a vector of class probabilities, we can usecross-entropy as the loss function:

LCE(y, t) = −K∑

k=1

tk log yk

= −t>(log y),

where the log is applied elementwise.

Just like with logistic regression, we typically combine the softmaxand cross-entropy into a softmax-cross-entropy function.

Roger Grosse CSC321 Lecture 4: Learning a Classifier 22 / 31

Page 28: CSC321 Lecture 4: Learning a Classifier · 2018-01-13 · de ne a model and a cost function optimize it using gradient descent Roger Grosse CSC321 Lecture 4: Learning a Classi er

Multiclass Classification

Multiclass logistic regression:

z = Wx + b

y = softmax(z)

LCE = −t>(log y)

Tutorial: deriving the gradient descent updates

∂LCE

∂z= y − t

Roger Grosse CSC321 Lecture 4: Learning a Classifier 23 / 31

Page 29: CSC321 Lecture 4: Learning a Classifier · 2018-01-13 · de ne a model and a cost function optimize it using gradient descent Roger Grosse CSC321 Lecture 4: Learning a Classi er

Convex Functions

Recall: a set S is convex if for any x0, x1 ∈ S,

(1− λ)x0 + λx1 ∈ S for 0 ≤ λ ≤ 1.

A function f is convex if for any x0, x1 in the domain of f ,

f ((1− λ)x0 + λx1) ≤ (1− λ)f (x0) + λf (x1)

Equivalently, the set ofpoints lying above thegraph of f is convex.

Intuitively: the functionis bowl-shaped.

Roger Grosse CSC321 Lecture 4: Learning a Classifier 24 / 31

Page 30: CSC321 Lecture 4: Learning a Classifier · 2018-01-13 · de ne a model and a cost function optimize it using gradient descent Roger Grosse CSC321 Lecture 4: Learning a Classi er

Convex Functions

We just saw that theleast-squares lossfunction 1

2 (y − t)2 isconvex as a function of y

For a linear model,z = w>x + b is a linearfunction of w and b. Ifthe loss function isconvex as a function ofz , then it is convex as afunction of w and b.

Roger Grosse CSC321 Lecture 4: Learning a Classifier 25 / 31

Page 31: CSC321 Lecture 4: Learning a Classifier · 2018-01-13 · de ne a model and a cost function optimize it using gradient descent Roger Grosse CSC321 Lecture 4: Learning a Classi er

Convex Functions

Which loss functions are convex?

Roger Grosse CSC321 Lecture 4: Learning a Classifier 26 / 31

Page 32: CSC321 Lecture 4: Learning a Classifier · 2018-01-13 · de ne a model and a cost function optimize it using gradient descent Roger Grosse CSC321 Lecture 4: Learning a Classi er

Convex Functions

Why we care about convexity

All critical points are minima

Gradient descent finds the optimal solution (more on this in a laterlecture)

Roger Grosse CSC321 Lecture 4: Learning a Classifier 27 / 31

Page 33: CSC321 Lecture 4: Learning a Classifier · 2018-01-13 · de ne a model and a cost function optimize it using gradient descent Roger Grosse CSC321 Lecture 4: Learning a Classi er

Gradient Checking

We’ve derived a lot of gradients so far. How do we know if they’recorrect?

Recall the definition of the partial derivative:

∂xif (x1, . . . , xN) = lim

h→0

f (x1, . . . , xi + h, . . . , xN)− f (x1, . . . , xi , . . . , xN)

h

Check your derivatives numerically by plugging in a small value of h,e.g. 10−10. This is known as finite differences.

Roger Grosse CSC321 Lecture 4: Learning a Classifier 28 / 31

Page 34: CSC321 Lecture 4: Learning a Classifier · 2018-01-13 · de ne a model and a cost function optimize it using gradient descent Roger Grosse CSC321 Lecture 4: Learning a Classi er

Gradient Checking

Even better: the two-sided definition

∂xif (x1, . . . , xN) = lim

h→0

f (x1, . . . , xi + h, . . . , xN)− f (x1, . . . , xi − h, . . . , xN)

2h

Roger Grosse CSC321 Lecture 4: Learning a Classifier 29 / 31

Page 35: CSC321 Lecture 4: Learning a Classifier · 2018-01-13 · de ne a model and a cost function optimize it using gradient descent Roger Grosse CSC321 Lecture 4: Learning a Classi er

Gradient Checking

Run gradient checks on small, randomly chosen inputs

Use double precision floats (not the default for most deep learningframeworks!)

Compute the relative error:

|a− b||a|+ |b|

The relative error should be very small, e.g. 10−6

Roger Grosse CSC321 Lecture 4: Learning a Classifier 30 / 31

Page 36: CSC321 Lecture 4: Learning a Classifier · 2018-01-13 · de ne a model and a cost function optimize it using gradient descent Roger Grosse CSC321 Lecture 4: Learning a Classi er

Gradient Checking

Gradient checking is really important!

Learning algorithms often appear to work even if the math is wrong.

But:They might work much better if the derivatives are correct.Wrong derivatives might lead you on a wild goose chase.

If you implement derivatives by hand, gradient checking is the singlemost important thing you need to do to get your algorithm to workwell.

Roger Grosse CSC321 Lecture 4: Learning a Classifier 31 / 31