cutis laxa: intersection of elastic fiber biogenesis, tgfβ signaling, the secretory pathway and...

7
UNCORRECTED PROOF 1 Mini review 2 Cutis laxa: Intersection Q2 of elastic ber biogenesis, TGFβ signaling, the 3 secretory pathway and metabolism 4 Zsolt Q1 Urban a, , Elaine C. Davis b 5 a Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, United States 6 b Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, , H3A 0C7Canada 7 8 abstract article info 9 Article history: 10 Received 24 June 2013 11 Received in revised form 8 July 2013 12 Accepted 9 July 2013 13 Available online xxxx 14 15 16 17 18 Cutis laxa (CL) is a disease characterized by redundant and inelastic skin displays extensive locus heterogeneity. 19 Together with geroderma osteodysplasticum and arterial tortuosity syndrome, which show phenotypic overlap 20 with CL, eleven CL-related genes have been identied to date, which encode proteins within 3 groups. Elastin, 21 bulin-4, bulin-5 and latent transforming growth factor-β-binding protein 4 are secreted proteins which 22 form elastic bers and are involved in the sequestration and subsequent activation of transforming growth 23 factor-β (TGFβ). Proteins within the second group, localized to the secretory pathway, perform transport and 24 membrane trafcking functions necessary for the modication and secretion of elastic ber components. Key 25 proteins include a subunit of the vacuolar-type proton pump, which ensures the efcient secretion of tropoelastin, 26 the precursor or elastin. A copper transporter is required for the activity of lysyl oxidases, which crosslink collagen 27 and elastin. A Rab6-interacting goglin recruits kinesin motors to Golgi-vesicles facilitating the transport from the 28 Golgi to the plasma membrane. The Rab and Ras interactor 2 regulates the activity of Rab5, a small guanosine 29 triphosphatase essential for the endocytosis of various cell surface receptors, including integrins. Proteins of the 30 third group related to CL perform metabolic functions within the mitochondria, inhibiting the accumulation of 31 reactive oxygen species. Two of these proteins catalyze subsequent steps in the conversion of glutamate to 32 proline. The third transports dehydroascorbate into mitochondria. Recent studies on CL-related proteins highlight 33 the intricate connections among membrane trafcking, metabolism, extracellular matrix assembly, and TGFβ 34 signaling. 35 © 2013 Elsevier B.V. All rights reserved. 36 37 38 39 40 Contents 41 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 42 2. CL genes in elastic ber biogenesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 43 3. CL and TGFb signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 44 4. The CL proteins and TGFβ in Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 45 5. CL and the secretory pathway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 46 6. CL and metabolism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 47 7. Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 48 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 49 50 1. Introduction 51 Cutis laxa (CL) is a group of disorders characterized by redundant, 52 pendulous, prematurely wrinkled and inelastic skin. CL can either be 53 inherited or acquired secondary to a range of inammatory conditions. 54 Considerable progress has been made in identifying the genes 55 responsible for inherited forms of CL (Table 1). A detailed review of 56 the clinical manifestations of the different types of inherited CL and 57 related syndromes has recently been published (Berk et al., 2012). 58 Recent reviews also discussed the genetic heterogeneity of CL and its 59 implications for the complexity of elastic ber biogenesis (Urban, 60 2012; Uitto et al., 2013). Complementary human genetic, biochemical, 61 cell biological and animal model studies now suggest that many forms 62 of inherited CL display abnormalities both of elastic bers biogenesis 63 and of transforming growth factor-β (TGFβ) signaling, membrane Matrix Biology xxx (2013) xxxxxx Corresponding author at: Zsolt Urban, Department of Human Genetics, 130 DeSoto Street, Crabtree Hall A300, Pittsburgh, PA 15261, United States. Tel.: +1 412 648 8269; fax: +1 412 624 3020. E-mail address: [email protected] (Z. Urban). MATBIO-00980; No of Pages 7 0945-053X/$ see front matter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.matbio.2013.07.006 Contents lists available at ScienceDirect Matrix Biology journal homepage: www.elsevier.com/locate/matbio Please cite this article as: Urban, Z., Davis, E.C., Cutis laxa: Intersection of elastic ber biogenesis, TGFβ signaling, the secretory pathway and metabolism, Matrix Biol. (2013), http://dx.doi.org/10.1016/j.matbio.2013.07.006

Upload: elaine-c

Post on 12-Dec-2016

227 views

Category:

Documents


13 download

TRANSCRIPT

Page 1: Cutis laxa: Intersection of elastic fiber biogenesis, TGFβ signaling, the secretory pathway and metabolism

1

2Q2

3

4Q1

56

7

891011121314151617

38

3940

41

42

43

44

45

46

47

48

49

50

51

52

53

Matrix Biology xxx (2013) xxx–xxx

MATBIO-00980; No of Pages 7

Contents lists available at ScienceDirect

Matrix Biology

j ourna l homepage: www.e lsev ie r .com/ locate /matb io

Mini review

Cutis laxa: Intersection of elastic fiber biogenesis, TGFβ signaling, thesecretory pathway and metabolism

OFZsolt Urban a,⁎, Elaine C. Davis b

a Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, United Statesb Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, , H3A 0C7Canada

⁎ Corresponding author at: Zsolt Urban, Department oStreet, Crabtree Hall A300, Pittsburgh, PA 15261, Unitedfax: +1 412 624 3020.

E-mail address: [email protected] (Z. Urban).

0945-053X/$ – see front matter © 2013 Elsevier B.V. All rhttp://dx.doi.org/10.1016/j.matbio.2013.07.006

Please cite this article as: Urban, Z., Davis, Emetabolism, Matrix Biol. (2013), http://dx.d

Oa b s t r a c t

a r t i c l e i n f o

18

19

20

21

22

23

Article history:Received 24 June 2013Received in revised form 8 July 2013Accepted 9 July 2013Available online xxxx

24

25

26

27

28

29

30

31

32

33

34

35

CTED P

RCutis laxa (CL) is a disease characterized by redundant and inelastic skin displays extensive locus heterogeneity.Together with geroderma osteodysplasticum and arterial tortuosity syndrome, which show phenotypic overlapwith CL, eleven CL-related genes have been identified to date, which encode proteins within 3 groups. Elastin,fibulin-4, fibulin-5 and latent transforming growth factor-β-binding protein 4 are secreted proteins whichform elastic fibers and are involved in the sequestration and subsequent activation of transforming growthfactor-β (TGFβ). Proteins within the second group, localized to the secretory pathway, perform transport andmembrane trafficking functions necessary for the modification and secretion of elastic fiber components. Keyproteins include a subunit of the vacuolar-type proton pump,which ensures the efficient secretion of tropoelastin,the precursor or elastin. A copper transporter is required for the activity of lysyl oxidases, which crosslink collagenand elastin. A Rab6-interacting goglin recruits kinesin motors to Golgi-vesicles facilitating the transport from theGolgi to the plasma membrane. The Rab and Ras interactor 2 regulates the activity of Rab5, a small guanosinetriphosphatase essential for the endocytosis of various cell surface receptors, including integrins. Proteins of thethird group related to CL perform metabolic functions within the mitochondria, inhibiting the accumulation ofreactive oxygen species. Two of these proteins catalyze subsequent steps in the conversion of glutamate toproline. The third transports dehydroascorbate intomitochondria. Recent studies on CL-related proteins highlightthe intricate connections among membrane trafficking, metabolism, extracellular matrix assembly, and TGFβsignaling.

© 2013 Elsevier B.V. All rights reserved.

3637

E

RContents

NCO

R1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 02. CL genes in elastic fiber biogenesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 03. CL and TGFb signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 04. The CL proteins and TGFβ in Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 05. CL and the secretory pathway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 06. CL and metabolism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 07. Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

54

55

56

57

58

U1. Introduction

Cutis laxa (CL) is a group of disorders characterized by redundant,pendulous, prematurely wrinkled and inelastic skin. CL can either beinherited or acquired secondary to a range of inflammatory conditions.

59

60

61

62

63

f Human Genetics, 130 DeSotoStates. Tel.: +1 412 648 8269;

ights reserved.

.C., Cutis laxa: Intersection ooi.org/10.1016/j.matbio.2013.

Considerable progress has been made in identifying the genesresponsible for inherited forms of CL (Table 1). A detailed review ofthe clinical manifestations of the different types of inherited CL andrelated syndromes has recently been published (Berk et al., 2012).Recent reviews also discussed the genetic heterogeneity of CL and itsimplications for the complexity of elastic fiber biogenesis (Urban,2012; Uitto et al., 2013). Complementary human genetic, biochemical,cell biological and animal model studies now suggest that many formsof inherited CL display abnormalities both of elastic fibers biogenesisand of transforming growth factor-β (TGFβ) signaling, membrane

f elastic fiber biogenesis, TGFβ signaling, the secretory pathway and07.006

Page 2: Cutis laxa: Intersection of elastic fiber biogenesis, TGFβ signaling, the secretory pathway and metabolism

T

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

t1:1

t1:2

t1:3

t1:4

t1:5

t1:6

t1:7

t1:8

t1:9

t1:10

t1:11

t1:12

t1:13

t1:14

t1:15

2 Z. Urban, E.C. Davis / Matrix Biology xxx (2013) xxx–xxx

EC

trafficking and mitochondrial metabolism, highlighting the integrationof these processes atmultiple levels. The goal of this review is to discussthese latest insights.

2. CL genes in elastic fiber biogenesis

The skin manifestations in inherited CL are usually congenital andgeneralized, and are commonly associated with involvement of elastictissues within the respiratory and cardiovascular systems (Berk et al.,2012). The phenotype is consistent with a generalized elastinopathy.However, some forms of CL are also associated with growth and devel-opmental delay, craniofacial anomalies, reduced bone density, jointand ligament laxity, hernias and gastrointestinal and urinary tractlesions suggesting broader connective tissue involvement (Table 1).Histological and electron microscopic studies have shown a range ofelastic fiber abnormalities in CL, consistent with defective assembly ofthese extracellular matrix (ECM) structures (Fig. 1). Consistently, severalgenes that encodeproteins associatedwith elasticfibers, including elastin,fibulin-4, fibulin-5 and latent TGFβ-binding protein 4 (LTBP4), have beenidentified to harbor mutations causing CL (Table 1). The mechanisms bywhich mutations in these genes lead to abnormal elastic fiber assemblyand altered TGFβ signaling is beginning to emerge.

Autosomal dominant CL (ADCL) ismost commonly caused by frame-shift mutations within the last 5 exons of the elastin gene (ELN)(Callewaert et al., 2011; Hadj-Rabia et al., 2013). These mutationslead to the replacement of the C-terminus of the elastin precursor,tropoelastin, with a missense peptide sequence as a consequence of astable mutant mRNA and protein (Szabo et al., 2006; Callewaert et al.,2011). ADCL-causing mutations have multiple cellular and biochemicaleffects. The most upstream (exon 30) mutations result in the longestmissense peptide sequence, which activates the unfolded proteinresponse (UPR) and leads to increased rates of apoptosis both inpatient-derived skin fibroblasts (Callewaert et al., 2011) and in a trans-genic mouse model (Hu et al., 2010). Despite activation of the UPR, themutant tropoelastin is partially secreted by ADCL cells and alters theassembly of the elastic fibers by interfering with the binding oftropoelastin to fibulin-5 and fibrillin-1 (Sato et al., 2006). In addition,ADCLmutations increase the coacervation of tropoelastin in a dominantmanner (Callewaert et al., 2011). The effects of these biochemicalchanges include ultrastructural disorganization and altered mechanical

UNCO

RR

Table 1Cutis laxa and related genes.

Diseasea Distinguishing clinical features Mutatedgenes

Gene functio

ADCL Pulmonary and cardiovascular manifestationsabsent, milder or later onset

ELN Structural pro

ARCL1A Supravalvular aortic stenosis, lethal developmentalemphysema

FBLN5 Accessory proFBN1, LOXL1

ARCL1B Arterial tortuosity, lethal pulmonary hypertension,bone fragility

FBLN4EFEMP2

Accessory proLOX and FBN

ARCL1C/URDS

Severe gastrointestinal and urinary malformations,lethal developmental emphysema mild cardiovascular involvement

LTBP4 Accessory proFN, FBN1, and

ARCL2A Growth and developmental delay, abnormalglycosylation of serum proteins

ATP6V0A2 A subunit ofacidifies vesic

ARCL2B Growth and developmental delay, triangular face,normal glycosylation

PYCR1 Mitochondriapathway

XLCL Occipital exostoses, pili torti ATP7A Copper transactivity

DBS/ARCL3

Corneal clouding, athetoid movements ALDH18A1 Mitochondriapathway

GO Bone fragility, short stature GORAB Localized to tinvolved in v

MACS Macrocephaly, alopecia, scoliosis RIN2 Localized to texchange fac

ATS Triangular face, arterial tortuosity, normal lungs SLC2A10 Transports de

a ADCL, autosomal dominant cutis laxa; ARCL, autosomal recessive cutis laxa; URDS, Urban–Rosteodysplasticum; MACS, macrocephaly alopecia cutis laxa scoliosis syndrome; ATS

Please cite this article as: Urban, Z., Davis, E.C., Cutis laxa: Intersection ometabolism, Matrix Biol. (2013), http://dx.doi.org/10.1016/j.matbio.2013.

ED P

RO

OF

properties of the elastic fibers (Hu et al., 2010; Callewaert et al., 2011).In transgenic mouse models, the mutant tropoelastin was observed tocontribute to lung elastic fibers, but was largely excluded from fibersin the skin and blood vessels (Hu et al., 2010; Sugitani et al., 2012).Although these findings point to tissue-specific mechanisms of elasticfiber assembly, the precise molecular determinants of such tissue spec-ificity remain to be determined. Nevertheless, it is clear that ADCL-related ELNmutations are characterized by a complexmolecular diseasemechanismwith a gain of function in polymerization and a loss of func-tion in elastin-microfibril interaction coupled with some non-specifictoxic effects associated with protein misfolding.

The profound functional consequences of alterations at theC-terminus of tropoelastin in ADCL strengthen an existing body of evi-dence for the essential nature of this region for a variety of activities. Forexample, the last 17 amino acids of tropoelastin are key for cell attach-ment both via heparan sulfate proteoglycans (HSPGs) (Broekelmannet al., 2005) and through non-RGD-mediated αvβ3 integrin binding(Bax et al., 2009). Consistent with the dynamic, cell-mediated natureof elastic fiber assembly (Czirok et al., 2006; Kozel et al., 2006), anti-bodies against this C-terminal cell interaction domain interfere withelastin deposition (Brown-Augsburger et al., 1996). Additionally, thehydrophobic domain encoded by exon 30 is essential for tropoelastinpolymerization, and hence, fiber formation (Kozel et al., 2003).

Whereas the molecular mechanisms of ADCL are quite complex,autosomal recessive CL (ARCL) involves a simpler, loss of functionmechanism. Type 1 ARCL (ARCL1), characterized by severe cardio-vascular or pulmonary manifestations (Table 1), can be caused bymutations in fibulin-5 (FBLN5, ARCL1A) (Loeys et al., 2002), fibulin-4(FBLN4/EFEMP2, ARCL1B) (Hucthagowder et al., 2006), and LTBP4(ARCL1C) (Urban et al., 2009).

Loss of functionmutations in FBLN5 result in ARCL1A associatedwithsevere, often fatal, infantile respiratory distress related to developmen-tal emphysema. Other common manifestations include supravalvularaortic stenosis, pulmonary artery stenosis and inguinal hernias (Loeyset al., 2002; Elahi et al., 2006; Claus et al., 2008; Callewaert et al.,2013). Fibulin-5 knockout mice show a similar phenotype with skinlaxity, developmental emphysema, elongation, tortuosity and alteredbranching of the large arteries (Nakamura et al., 2002; Yanagisawaet al., 2002), an increased angiogenic phenotype (Sullivan et al., 2007),and pelvic prolapse (Drewes et al., 2007). ARCL1A-causing mutations

n References

tein of the elastic fibers (Hu et al., 2010; Callewaert et al., 2011)

tein of the elastic fibers, binds ELN,, LTBP2 and LTBP4

(Loeys et al., 2002)

tein of the elastic fibers, binds1

(Hucthagowder et al., 2006; Dasouki et al.,2007; Renard et al., 2010)

tein of the elastic fibers, binds TGFB1,FBLN5

(Urban et al., 2009)

the vacuolar-type proton pump,les in the secretory pathway

(Kornak et al., 2008; Hucthagowder et al.,2009)

l enzyme in the proline-biosynthetic (Guernsey et al., 2009; Reversade et al., 2009)

porter required for lysyl oxidase (Byers et al., 1980; Moller et al., 2005;Kennerson et al., 2010)

l enzyme in the proline-biosynthetic (Bicknell et al., 2008; Skidmore et al., 2011)

he Golgi, binds RAB6, a G-proteinesicle trafficking

(Hennies et al., 2008)

he Golgi, is a guanine nucleotidetor of RAB5

(Basel-Vanagaite et al., 2009)

hydroascorbate into mitochondria (Coucke et al., 2006; Lee et al., 2010)

ifkin–Davis syndrome; XLCL, X-linked cutis laxa; DBS, De Barsy syndrome; GO, geroderma

f elastic fiber biogenesis, TGFβ signaling, the secretory pathway and07.006

Page 3: Cutis laxa: Intersection of elastic fiber biogenesis, TGFβ signaling, the secretory pathway and metabolism

T

PRO

OF

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

Fig. 1. Electronmicroscopic analyses of elasticfibers in skin punch biopsies fromunaffected and CL patients. (A)Anunaffected individual; (B) a patientwith a heterozygousmutation in theelastin gene; (C) a patient with a homozygous mutation in the LTBP4 gene; (D) dermal elastic fibers from a patient with CL of an unknown cause. Bar = 500 nm.

3Z. Urban, E.C. Davis / Matrix Biology xxx (2013) xxx–xxx

UNCO

RREC

affect the folding and secretion offibulin-5 resulting in a failure of elastinto be properly integrated with microfibrils (Hu et al., 2006; Lotery et al.,2006; Choi et al., 2009). Biochemical studies have highlighted a numberof activities of fibulin-5, including its ability to bind lysyl oxidase-like-1(LOXL1) (Liu et al., 2004; Hirai et al., 2007b), LOXL2, and LOXL4 (Hiraiet al., 2007b), fibrillin-1 (Freeman et al., 2005; El-Hallous et al., 2007;Ono et al., 2009), tropoelastin (Yanagisawa et al., 2002; Hirai et al.,2007b), LTBP2 (Hirai et al., 2007a) and LTBP4 (Noda et al., 2013). Thebinding of fibulin-5 increases the coacervation and crosslinking oftropoelastin, facilitating elastic fiber formation (Hirai et al., 2007b;Wachi et al., 2008). Furthermore, an RGD motif in fibulin-5 binds αvβ3,αvβ5, α4β1, α5β1 and α9β1 integrins (Nakamura et al., 2002; Lomaset al., 2007). In vascular smoothmuscle cells (VSMC), themain integrinsresponsible for attachment to fibulin-5 are α4β1 and α5β1; however,binding to fibulin-5 does not result in integrin activation (Lomas et al.,2007). Additionally, in vivo evidence suggests that fibulin-5-integrininteractions are not necessary for elastic fiber formation, as mice carry-ing homozygous RGDNRGE mutations in fibulin-5 are normal (Budathaet al., 2011).

Fibulin-5-deficient tissues show increased angiogenesis and vascularinvasion, with elevated VEGF and angiopoietin expression playing a role(Sullivan et al., 2007). Conversely, transplanted tumors show decreasedgrowth in fibulin-5 knockout mice associated with increased reactiveoxygen species (ROS) production dependent on β1-integrin and fibro-nectin (Schluterman et al., 2010). Fibulin-5 also binds the extracellularsuperoxide dismutase, Sod3. In the absence of fibulin-5, the localizationof Sod3 to the ECM is lost, leading to an elevated extracellular super-oxide levels in vessels (Nguyen et al., 2004). However, it remainsunclear if any of these physiological changes contribute to diseasein human patients with fibulin-5 mutations.

Mutations in FBLN4 cause ARCL1B, a disease associated with wide-spread systemic involvement, including arterial tortuosity, aorticaneurysm, pulmonary hypertension, developmental emphysema,bone fragility, arachnodactyly, joint laxity and diaphragmatic andinguinal hernias (Hucthagowder et al., 2006; Dasouki et al., 2007;Hoyer et al., 2009; Renard et al., 2010). Knockout and hypomorphicmice replicate many of these phenotypes (McLaughlin et al., 2006;Hanada et al., 2007; Horiguchi et al., 2009; Huang et al., 2010).

Please cite this article as: Urban, Z., Davis, E.C., Cutis laxa: Intersection ometabolism, Matrix Biol. (2013), http://dx.doi.org/10.1016/j.matbio.2013.

EDFibulin-4 binds tropoelastin (McLaughlin et al., 2006), fibrillin-1 (El-

Hallous et al., 2007; Choudhury et al., 2009; Ono et al., 2009) andLTBP1 (Massam-Wu et al., 2010). A somewhat different set of ligands,distinct binding affinities for shared ligands and cell type- and develop-mental stage-specific expression of fibulin-5 and fibulin-4 ensure thatthese proteins perform non-overlapping functions in elastic fiberassembly. For example, fibulin-5 has higher affinity for tropoelastinthan fibrillin-1, whereas fibulin-4 preferentially binds fibrillin-1 overtropoelastin. Fibulin-4 can form a ternary complex with tropoelastinand LOX, facilitating the crosslinking of elastin (Choudhury et al., 2009;Horiguchi et al., 2009). In addition, fibulin-5 enhances tropoelastin coac-ervation (Hirai et al., 2007b; Wachi et al., 2008). Both fibulin-4 andfibulin-5 limit tropoelastin droplet size during the maturation of coacer-vates (Cirulis et al., 2008). In both humanmutations and animal models,the absence of fibulin-5 leads to elastin deposits that are large and notintegrated with the microfibril scaffold (Nakamura et al., 2002;Yanagisawa et al., 2002; Hu et al., 2006). In contrast, fibulin-4 mutantpatients and mice show greatly reduced amounts of elastic fibers, adecrease in elastin-specific desmosine crosslinks and disorganization ofthe elastic fiber ultrastructure (Hucthagowder et al., 2006; McLaughlinet al., 2006; Horiguchi et al., 2009).

In a VSMC conditional knockout of fibulin-4, the VSMC were shownto be undifferentiated, together with enhanced angiotensin production,increased ERK signaling and cell proliferation (Huang et al., 2010, 2013).Aortic aneurysms caused by fibulin-4 deficiency can be prevented bytreatment with an angiotensin converting enzyme inhibitor (captopril)or an angiotensin II type 1 receptor inhibitor (losartan) (Moller et al.,2005; Huang et al., 2013), indicating a role for fibulin-4 in the regulationof angiotensin signaling andVSMChomeostasis and identifying a poten-tial approach for the treatment of patients with fibulin-4mutations.

Mutations in LTBP4 cause ARCL1C, also known as Urban–Rifkin–Davis syndrome, characterized by severe developmental emphysema,severe diverticulosis, tortuosity, enlargement and stenosis of the gastro-intestinal tract, diverticulosis of the bladder and diaphragmatic andinguinal hernias (Urban et al., 2009; Callewaert et al., 2013). Respiratoryfailure and, less frequently, intestinal perforation are causes of prema-ture death. LTBP4 utilizes 3 alternative promoters producing one small(LTBP4S) and 2 large (LTBP4L) isoforms. Human mutations identified

f elastic fiber biogenesis, TGFβ signaling, the secretory pathway and07.006

Page 4: Cutis laxa: Intersection of elastic fiber biogenesis, TGFβ signaling, the secretory pathway and metabolism

T

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

Table 2 t2:1

t2:2Elastic fiber genes as targets of miR29 regulation.a

t2:3Number of binding sites (target score)

t2:4Gene miR29a-3p miR29b-3p miR29c-3p miR29b-5pt2:5ELN 3 (78) 3 (77) 3 (78) 0t2:6FBN1 2 (86) 2 (85) 2 (85) 1 (78)t2:7LOX 3 (81) 3 (81) 3 (80) 0t2:8LTBP1 0 0 0 1 (53)

a Data based on miRDB searches (http://mirdb.org/miRDB/). t2:9

4 Z. Urban, E.C. Davis / Matrix Biology xxx (2013) xxx–xxx

UNCO

RREC

to date affect all isoforms. A knockoutmouse has only been reported forLtbp4S (Sterner-Kock et al., 2002), which nevertheless replicates theelastic fiber phenotypes seen in humans, such as developmental em-physema and the abnormal morphology of elastic fibers with largeelastin deposits with a smooth surface devoid of microfibrils (Dabovicet al., 2009; Urban et al., 2009). However, the structural anomalies ofthe gastrointestinal and urinary systems observed in humans withLTBP4 mutations are not present in Ltbp4S−/− mice, suggesting thatnormal development of the digestive system and bladder primarilyrequires LTBP4L.

An increasing body of evidence shows that LTBP4 has at least twofunctions, one related to TGFβ sequestration, and the other for facilitatingelastic fiber assembly. Indeed, the developmental emphysema observedin Ltbp4S−/− mice could be partially reversed by reducing the TGFβ2dose, but the elastic fiber abnormality was not corrected (Dabovicet al., 2009). LTBP4 isoforms are functionally specialized, with LTBP4Lpreferentially binding TGFβ, and LTBP4S associated with the ECM(Kantola et al., 2010). Consistent with phenotypic similarities betweenARCL1A and ARCL1C and between Fbln5−/− and Ltbp4S−/− mice,LTBP4 binds fibulin-5 (Noda et al., 2013) and fibrillin-1 (Isogai et al.,2003), facilitating the incorporation of fibulin-5/elastin complexes ontomicrofibrils. LTBP4 is also known to interact with fibronectin andHSPGs and is capable of supporting cell adhesion (Kantola et al., 2008).Although the importance of these functions for elastic fiber formationor TGFβ signaling remains unclear, a human mutation eliminating theC-terminal cell-attachment region results in microfibrillar bundles ofabnormally thick and wavy morphology (Callewaert et al., 2013)suggesting that a balanced binding of cells and ECMmolecules is neces-sary for LTBP4 to contribute to normal deposition of elastic fibers.

3. CL and TGFb signaling

TGFβs are a family of cytokines involved in reciprocal interactionswith the ECM. They are secreted in a latent form strongly butnon-covalently bound to their propeptides, also known as latency-associated peptides, which in turn interact with latent TGFβ-bindingproteins (LTBPs). LTBPs target latent TGFβs to the ECM by binding tofibrillin-1, fibronectin and HSPGs. Activation of latent TGFβs can occurby integrin-mediated force generation, proteolytic degradation,exposure to ROS or interaction with matricellular proteins, such asthrombospondin-1 (Horiguchi et al., 2012).

TGFβs, in turn, up-regulate the expression of many genes necessaryfor the production of elastic fibers including fibronectin (Ignotz et al.,1987), LTBPs (Ahmed et al., 1998; Weikkolainen et al., 2003), ELN(Kahari et al., 1992; Kucich et al., 1997), LOXs (Boak et al., 1994; Kimet al., 2008) and FBLN5 (Kuang et al., 2006). This regulation occurs atthe transcriptional (Ignotz et al., 1987; Ahmed et al., 1998; Kuanget al., 2006; Kim et al., 2008) or posttranscriptional level depending onthe gene (Kahari et al., 1992; Kucich et al., 1997). Posttranscriptionalregulation of ELN and fibrillin-1 (FBN1) is likely achieved in part byTGFβ-mediated suppression of the miR29 family of micro-RNAs (vanRooij et al., 2008), which have binding sites in several mRNAs encodingelastic fiber proteins (Table 2).

During the course of normal development or injury, sequestration ofTGFβ by elastic fibers serves as a negative feedback signal indicatingthat sufficient amounts and quality of ECM has been produced. Consis-tently, loss of function mutations in genes responsible for TGFβ seques-tration, including FBN1 and LTBP4, result in elevated TGFβ signaling(Neptune et al., 2003; Dabovic et al., 2009; Urban et al., 2009). However,recent studies have shown elevated TGFβ in several types of CL causedby mutations in genes not directly involved in TGFβ sequestration, butrather required for the biogenesis of elastic fibers including ELN (Huet al., 2010; Callewaert et al., 2011), fibulin-4 (Hanada et al., 2007;Renard et al., 2010) and ATP6V0A2 (Fischer et al., 2012). Thus, impairedelastic fiber function sensed by cells, in turn up-regulates TGFβ activity.Sensing of ECM dysfunction may involve integrin-mediated activation

Please cite this article as: Urban, Z., Davis, E.C., Cutis laxa: Intersection ometabolism, Matrix Biol. (2013), http://dx.doi.org/10.1016/j.matbio.2013.

ED P

RO

OF

of TGFβ itself, which is dependent on the mechanical properties of theECM, as well as on force generation by the cells (Hinz, 2009). Consis-tently, mutations in actin (ACTA2) and myosin (MYH11) genes,required for the contractility of VSMC, are mutated in familial thoracicaortic aneurysms and are associated with increased TGFβ signaling(Renard et al., 2013).

4. The CL proteins and TGFβ in Evolution

In humans, there are three fibrillins and four LTBPs. These proteinscontainmultiple TGFβ-binding (TB) domains interspersed with numer-ous calcium-binding epidermal growth factor domains. The TB domain,which is found in noother proteins, emerged over 600 million years agoin the Eumetazoa (Peterson and Butterfield, 2005) within a singlefibrillin gene (Piha-Gossack et al., 2012). Diversification of the TB do-main led to the emergence of the first LTBP-like protein in sea urchins(Robertson et al., 2011). TGFβ also appeared at this time suggestingco-evolution of their functions (Robertson et al., 2011). Elastin appearedlater still, with the divergence of jawless fish (agnatha) and jawedvertebrates, known as gnathostomes within the phylum Chordata(Keeley, 2013). This time period coincided with a duplication eventleading to two fibrillins (Piha-Gossack et al., 2012), and the appearanceof a closed circulatory system (Faury, 2001). The single fibrillin had alsoacquired a unique hybrid domain and RGD-integrin binding sites in twoof the TB domains by this time (Piha-Gossack et al., 2012). Like fibrillin,fibulin-like proteins also existed in the Eumetazoa, much earlier thanthe emergence of elastin supporting a functional role for fibulins inde-pendent of elastic fiber assembly (Segade, 2010). Interestingly, diversi-fication of the fibulins also occurred at the same time as the evolution ofelastin. The appearance of specialized domains and the occurrence ofduplication events around the time of the evolution of elastin under-scores the potential functional significance of these specialized regionsand duplicated proteins in elastic fiber assembly.

5. CL and the secretory pathway

Several CL-related genes are required for intracellular protein traf-ficking, highlighting the importance of the secretory pathway in elasticfiber biogenesis. Loss of function mutations in ATP7A, a copper trans-porter localized to the Golgi apparatus, cause Menkes disease or amilder disease, occipital horn syndrome (OHS) (Das et al., 1995). OHS,also known as X-linked CL displays LOX deficiency associated with im-paired crosslinking of elastin and collagen (Byers et al., 1980). Recessivemutations in the gene for the A2 subunit of the vacuolar proton pump,ATP6V0A2, cause ARCL2A (Kornak et al., 2008). ATP6V0A2-deficientcells show accumulation of tropoelastin in the Golgi, Golgi fragmenta-tion and an accumulation of lamellar bodies, leading to impaired secre-tion of tropoelastin, but relatively preserved production of fibrillin-1and LOXs (Hucthagowder et al., 2009). Macrocephaly alopecia CLscoliosis (MACS) syndrome is caused by a recessive mutation in RIN2(Ras and Rab interactor 2) (Basel-Vanagaite et al., 2009). Subsequently,a recessive RIN2 mutation was also described in an Ehlers–Danlossyndrome-like condition (Syx et al., 2010). Tissues and cells from indi-viduals with RIN2 mutations show abnormal endoplasmic reticulum,Golgi apparatus, elastic and collagen fibers (Basel-Vanagaite et al.,2009; Syx et al., 2010). Geroderma osteodysplasticum, a disease related

f elastic fiber biogenesis, TGFβ signaling, the secretory pathway and07.006

Page 5: Cutis laxa: Intersection of elastic fiber biogenesis, TGFβ signaling, the secretory pathway and metabolism

T

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388389390391392393394

395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480

5Z. Urban, E.C. Davis / Matrix Biology xxx (2013) xxx–xxx

UNCO

RREC

to CL, is caused by recessive mutations in the GORAB (goglin, Rab6interacting) (Hennies et al., 2008). GORAB is localized to theGolgi appa-ratus where it interacts with Rab6 G-proteins, which recruit kinesinmotor proteins required for the trafficking of secretory vesicles to theplasma membrane (Grigoriev et al., 2007).

6. CL and metabolism

Three conditions related to CL are caused by mutations in mole-cules required for cellular metabolism. ARCL2B, is caused by reces-sive mutations in gene for pyrroline-5-carboxylate reductase 1 (PYCR1)(Guernsey et al., 2009; Reversade et al., 2009), a mitochondrial enzymethat catalyzes the final step of proline biosynthesis (De Ingeniis et al.,2012). PYCR1 mutant cells do not show overt proline deficiency, but aresensitive to oxidative stress, suggesting that PYCR1 is required for themaintenance of mitochondrial antioxidant balance (Reversade et al.,2009). De Barsy syndrome, also known as ARCL3, can be caused bymutations in ALDH18A1 (Bicknell et al., 2008; Skidmore et al., 2011),the gene for another mitochondrial enzyme in the proline biosyntheticpathway,Δ1-pyrroline-5-carboxylate synthase (P5CS). InALDH18A1mu-tant cells the assembly of collagen type I and elastin into ECM fibers isdiminished (Bicknell et al., 2008; Skidmore et al., 2011). Arterial tor-tuosity syndrome (ATS), related to CL, is caused by mutations in theSLC2A10 gene (Coucke et al., 2006), which encodes the facilitativeglucose transporter family member 10 (GLUT10). Patients show disor-ganized elastic fibers in the arterial wall and elevated TGFβ signaling.Surprisingly, mice with inactivating missense mutations in Slc2a10 donot show phenotypes characteristic of ATS (Callewaert et al., 2008;Cheng et al., 2009). In contrast, slc2a10 knockdown in zebrafishproduces disorganization of the vasculature, wavy notochord andcardiac edema, as well as mitochondrial dysfunction and reducedTGFβ signaling (Willaert et al., 2012). SLC2A10 was shown to be trans-port dehydroascorbate (oxidized vitamin C) into mitochondria to limitthe production of ROS (Lee et al., 2010). Thus, together with PYCR1,SLC2A10 is also required for the maintenance of mitochondrial redoxbalance.

7. Concluding remarks

Human genetic studies on CL patients have revealed a network ofgenes required for elastic fiber assembly, TGFβ sequestration andactivation, vesicular trafficking in the Golgi apparatus and metabolicfunction of the mitochondria. The connections between secreted pro-teins (elastin, fibulin-4, fibulin-5, LTBP4) and their interactions withother elastic fiber-related proteins (fibronectin, lysyl oxidases, fibrillins,LTBPs) are well known and often involve direct binding. However, thetemporal and spatial hierarchy of these interactions has not beendefined yet. A combination of developmental and live imaging investi-gations will be necessary to have a comprehensive mechanistic viewof elastic fiber assembly. The involvement of the posttranslational andsorting mechanisms that occur in the secretory pathway will alsoneed to be investigated, as theymay define the timing, order andprecisebiochemical milieu in which the components can interact. Finally, therole of small molecule metabolites (ROS, proline) as well as signalingmolecules (angiotensin, TGFβ) in elastic fiber biogenesis and dysfunc-tion will need to be elucidated, as these molecules are more amenableto therapeutic modification than structural elastic fiber proteins.

References

Ahmed, W., Kucich, U., Abrams, W., Bashir, M., Rosenbloom, J., Segade, F., Mecham, R.,Rosenbloom, J., 1998. Signaling pathway by which TGF-beta1 increases expressionof latent TGF-beta binding protein-2 at the transcriptional level. Connect. TissueRes. 37, 263–276.

Basel-Vanagaite, L., Sarig, O., Hershkovitz, D., Fuchs-Telem, D., Rapaport, D., Gat, A., Isman,G., Shirazi, I., Shohat, M., Enk, C.D., Birk, E., Kohlhase, J., Matysiak-Scholze, U., Maya, I.,Knopf, C., Peffekoven, A., Hennies, H.C., Bergman, R., Horowitz, M., Ishida-Yamamoto,

Please cite this article as: Urban, Z., Davis, E.C., Cutis laxa: Intersection ometabolism, Matrix Biol. (2013), http://dx.doi.org/10.1016/j.matbio.2013.

ED P

RO

OF

A., Sprecher, E., 2009. RIN2 deficiency results in macrocephaly, alopecia, cutis laxa,and scoliosis: MACS syndrome. Am. J. Hum. Genet. 85, 254–263.

Bax, D.V., Rodgers, U.R., Bilek, M.M., Weiss, A.S., 2009. Cell adhesion to tropoelastin ismediated via the C-terminal GRKRK motif and integrin alphaVbeta3. J. Biol. Chem.284, 28616–28623.

Berk, D.R., Bentley, D.D., Bayliss, S.J., Lind, A., Urban, Z., 2012. Cutis laxa: a review. J. Am.Acad. Dermatol. 66 (842), e817–e841.

Bicknell, L.S., Pitt, J., Aftimos, S., Ramadas, R., Maw, M.A., Robertson, S.P., 2008. A missensemutation in ALDH18A1, encoding Delta1-pyrroline-5-carboxylate synthase (P5CS),causes an autosomal recessive neurocutaneous syndrome. Eur. J. Hum. Genet. 16,1176–1186.

Boak, A.M., Roy, R., Berk, J., Taylor, L., Polgar, P., Goldstein, R.H., Kagan, H.M., 1994.Regulation of lysyl oxidase expression in lung fibroblasts by transforming growthfactor-beta 1 and prostaglandin E2. Am. J. Respir. Cell Mol. Biol. 11, 751–755.

Broekelmann, T.J., Kozel, B.A., Ishibashi, H., Werneck, C.C., Keeley, F.W., Zhang, L., Mecham,R.P., 2005. Tropoelastin interacts with cell-surface glycosaminoglycans via its COOH-terminal domain. J. Biol. Chem. 280, 40939–40947.

Brown-Augsburger, P., Broekelmann, T., Rosenbloom, J., Mecham, R.P., 1996. Functionaldomains on elastin and microfibril-associated glycoprotein involved in elastic fibreassembly. Biochem. J. 318 (Pt 1), 149–155.

Budatha, M., Roshanravan, S., Zheng, Q., Weislander, C., Chapman, S.L., Davis, E.C., Starcher,B., Word, R.A., Yanagisawa, H., 2011. Extracellular matrix proteases contribute to pro-gression of pelvic organ prolapse in mice and humans. J. Clin. Invest. 121, 2048–2059.

Byers, P.H., Siegel, R.C., Holbrook, K.A., Narayanan, A.S., Bornstein, P., Hall, J.G., 1980. X-linkedcutis laxa: defective cross-link formation in collagen due to decreased lysyl oxidaseactivity. N. Engl. J. Med. 303, 61–65.

Callewaert, B.L., Loeys, B.L., Casteleyn, C., Willaert, A., Dewint, P., De Backer, J., Sedlmeier,R., Simoens, P., De Paepe, A.M., Coucke, P.J., 2008. Absence of arterial phenotype inmice with homozygous slc2A10 missense substitutions. Genesis 46, 385–389.

Callewaert, B., Renard, M., Hucthagowder, V., Albrecht, B., Hausser, I., Blair, E., Dias, C.,Albino, A., Wachi, H., Sato, F., Mecham, R.P., Loeys, B., Coucke, P.J., De Paepe, A.,Urban, Z., 2011. New insights into the pathogenesis of autosomal-dominant cutislaxa with report of five ELN mutations. Hum. Mutat. 32, 445–455.

Callewaert, B., Su, C.T., Van Damme, T., Vlummens, P., Malfait, F., Vanakker, O., Schulz, B.,Mac Neal, M., Davis, E.C., Lee, J.G., Salhi, A., Unger, S., Heimdal, K., De Almeida, S.,Kornak, U., Gaspar, H., Bresson, J.L., Prescott, K., Gosendi, M.E., Mansour, S., Pierard,G.E., Madan-Khetarpal, S., Sciurba, F.C., Symoens, S., Coucke, P.J., Van Maldergem, L.,Urban, Z., De Paepe, A., 2013. Comprehensive clinical and molecular analysis of 12families with type 1 recessive cutis laxa. Hum. Mutat. 34, 111–121.

Cheng, C.H., Kikuchi, T., Chen, Y.H., Sabbagha, N.G., Lee, Y.C., Pan, H.J., Chang, C., Chen, Y.T.,2009. Mutations in the SLC2A10 gene cause arterial abnormalities in mice. Cardiovasc.Res. 81, 381–388.

Choi, J., Bergdahl, A., Zheng, Q., Starcher, B., Yanagisawa, H., Davis, E.C., 2009. Analysis ofdermal elastic fibers in the absence of fibulin-5 reveals potential roles for fibulin-5in elastic fiber assembly. Matrix Biol. 28, 211–220.

Choudhury, R., McGovern, A., Ridley, C., Cain, S.A., Baldwin, A., Wang, M.C., Guo, C.,Mironov Jr., A., Drymoussi, Z., Trump, D., Shuttleworth, A., Baldock, C., Kielty, C.M.,2009. Differential regulation of elastic fiber formation by fibulin-4 and -5. J. Biol.Chem. 284, 24553–24567.

Cirulis, J.T., Bellingham, C.M., Davis, E.C., Hubmacher, D., Reinhardt, D.P., Mecham, R.P.,Keeley, F.W., 2008. Fibrillins, fibulins, and matrix-associated glycoprotein modulatethe kinetics and morphology of in vitro self-assembly of a recombinant elastin-likepolypeptide. Biochemistry 47, 12601–12613.

Claus, S., Fischer, J., Megarbane, H., Megarbane, A., Jobard, F., Debret, R., Peyrol, S., Saker, S.,Devillers, M., Sommer, P., Damour, O., 2008. A p.C217R mutation in fibulin-5 fromcutis laxa patients is associated with incomplete extracellular matrix formation in askin equivalent model. J. Invest. Dermatol. 128, 1442–1450.

Coucke, P.J., Willaert, A., Wessels, M.W., Callewaert, B., Zoppi, N., De Backer, J., Fox, J.E.,Mancini, G.M., Kambouris, M., Gardella, R., Facchetti, F., Willems, P.J., Forsyth, R.,Dietz, H.C., Barlati, S., Colombi, M., Loeys, B., De Paepe, A., 2006. Mutations in thefacilitative glucose transporter GLUT10 alter angiogenesis and cause arterial tortuositysyndrome. Nat. Genet. 38, 452–457.

Czirok, A., Zach, J., Kozel, B.A., Mecham, R.P., Davis, E.C., Rongish, B.J., 2006. Elastic fibermacro-assembly is a hierarchical, cell motion-mediated process. J. Cell. Physiol. 207,97–106.

Dabovic, B., Chen, Y., Choi, J., Vassallo, M., Dietz, H.C., Ramirez, F., von Melchner, H., Davis,E.C., Rifkin, D.B., 2009. Dual functions for LTBP in lung development: LTBP-4 indepen-dently modulates elastogenesis and TGF-beta activity. J. Cell. Physiol. 219, 14–22.

Das, S., Levinson, B., Vulpe, C., Whitney, S., Gitschier, J., Packman, S., 1995. Similar splicingmutations of the Menkes/mottled copper-transporting ATPase gene in occipital hornsyndrome and the blotchy mouse. Am. J. Hum. Genet. 56, 570–576.

Dasouki, M., Markova, D., Garola, R., Sasaki, T., Charbonneau, N.L., Sakai, L.Y., Chu, M.L.,2007. Compound heterozygous mutations in fibulin-4 causing neonatal lethal pulmo-nary artery occlusion, aortic aneurysm, arachnodactyly, and mild cutis laxa. Am. J. Med.Genet. A 143A, 2635–2641.

De Ingeniis, J., Ratnikov, B., Richardson, A.D., Scott, D.A., Aza-Blanc, P., De, S.K., Kazanov,M., Pellecchia, M., Ronai, Z., Osterman, A.L., Smith, J.W., 2012. Functional specializa-tion in proline biosynthesis of melanoma. PLoS One 7, e45190.

Drewes, P.G., Yanagisawa, H., Starcher, B., Hornstra, I., Csiszar, K., Marinis, S.I., Keller, P.,Word, R.A., 2007. Pelvic organ prolapse in fibulin-5 knockout mice: pregnancy-induced changes in elastic fiber homeostasis in mouse vagina. Am. J. Pathol. 170,578–589.

Elahi, E., Kalhor, R., Banihosseini, S.S., Torabi, N., Pour-Jafari, H., Houshmand, M., Amini,S.S., Ramezani, A., Loeys, B., 2006. Homozygous missense mutation in fibulin-5 inan Iranian autosomal recessive cutis laxa pedigree and associated haplotype.J. Invest. Dermatol. 126, 1506–1509.

f elastic fiber biogenesis, TGFβ signaling, the secretory pathway and07.006

Page 6: Cutis laxa: Intersection of elastic fiber biogenesis, TGFβ signaling, the secretory pathway and metabolism

T

481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566

567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652

6 Z. Urban, E.C. Davis / Matrix Biology xxx (2013) xxx–xxx

UNCO

RREC

El-Hallous, E., Sasaki, T., Hubmacher, D., Getie, M., Tiedemann, K., Brinckmann, J., Batge, B.,Davis, E.C., Reinhardt, D.P., 2007. Fibrillin-1 interactions with fibulins depend on thefirst hybrid domain and provide an adaptor function to tropoelastin. J. Biol. Chem.282, 8935–8946.

Faury, G., 2001. Function-structure relationship of elastic arteries in evolution: frommicrofibrils to elastin and elastic fibres. Pathol. Biol. 49, 310–325.

Fischer, B., Dimopoulou, A., Egerer, J., Gardeitchik, T., Kidd, A., Jost, D., Kayserili, H., Alanay,Y., Tantcheva-Poor, I., Mangold, E., Daumer-Haas, C., Phadke, S., Peirano, R.I., Heusel, J.,Desphande, C., Gupta, N., Nanda, A., Felix, E., Berry-Kravis, E., Kabra, M., Wevers, R.A.,van Maldergem, L., Mundlos, S., Morava, E., Kornak, U., 2012. Further characterizationof ATP6V0A2-related autosomal recessive cutis laxa. Hum. Genet. 131, 1761–1773.

Freeman, L.J., Lomas, A., Hodson, N., Sherratt, M.J., Mellody, K.T., Weiss, A.S., Shuttleworth,A., Kielty, C.M., 2005. Fibulin-5 interacts with fibrillin-1 molecules and microfibrils.Biochem. J. 388, 1–5.

Grigoriev, I., Splinter, D., Keijzer, N., Wulf, P.S., Demmers, J., Ohtsuka, T., Modesti, M., Maly,I.V., Grosveld, F., Hoogenraad, C.C., Akhmanova, A., 2007. Rab6 regulates transportand targeting of exocytotic carriers. Dev. Cell 13, 305–314.

Guernsey, D.L., Jiang, H., Evans, S.C., Ferguson, M., Matsuoka, M., Nightingale, M., Rideout,A.L., Provost, S., Bedard, K., Orr, A., Dube, M.P., Ludman, M., Samuels, M.E., 2009.Mutation in pyrroline-5-carboxylate reductase 1 gene in families with cutis laxatype 2. Am. J. Hum. Genet. 85, 120–129.

Hadj-Rabia, S., Callewaert, B.L., Bourrat, E., Kempers, M., Plomp, A.S., Layet, V.,Bartholdi, D., Renard, M., De Backer, J., Malfait, F., Vanakker, O.M., Coucke, P.J.,De Paepe, A.M., Bodemer, C., 2013. Twenty patients including 7 probands withautosomal dominant cutis laxa confirm clinical and molecular homogeneity.Orphanet. J. Rare Dis. 8, 36.

Hanada, K., Vermeij, M., Garinis, G.A., de Waard, M.C., Kunen, M.G., Myers, L., Maas, A.,Duncker, D.J., Meijers, C., Dietz, H.C., Kanaar, R., Essers, J., 2007. Perturbations ofvascular homeostasis and aortic valve abnormalities in fibulin-4 deficient mice.Circ. Res. 100, 738–746.

Hennies, H.C., Kornak, U., Zhang, H., Egerer, J., Zhang, X., Seifert, W., Kuhnisch, J., Budde, B.,Natebus, M., Brancati, F., Wilcox, W.R., Muller, D., Kaplan, P.B., Rajab, A., Zampino, G.,Fodale, V., Dallapiccola, B., Newman,W., Metcalfe, K., Clayton-Smith, J., Tassabehji, M.,Steinmann, B., Barr, F.A., Nurnberg, P., Wieacker, P., Mundlos, S., 2008. Gerodermiaosteodysplastica is caused by mutations in SCYL1BP1, a Rab-6 interacting golgin.Nat. Genet. 40, 1410–1412.

Hinz, B., 2009. Tissue stiffness, latent TGF-beta1 activation, and mechanical signal trans-duction: implications for the pathogenesis and treatment of fibrosis. Curr. Rheumatol.Rep. 11, 120–126.

Hirai, M., Horiguchi, M., Ohbayashi, T., Kita, T., Chien, K.R., Nakamura, T., 2007a. LatentTGF-beta-binding protein 2 binds to DANCE/fibulin-5 and regulates elastic fiber as-sembly. EMBO J. 26, 3283–3295.

Hirai, M., Ohbayashi, T., Horiguchi, M., Okawa, K., Hagiwara, A., Chien, K.R., Kita, T.,Nakamura, T., 2007b. Fibulin-5/DANCE has an elastogenic organizer activity that isabrogated by proteolytic cleavage in vivo. J. Cell Biol. 176, 1061–1071.

Horiguchi, M., Inoue, T., Ohbayashi, T., Hirai, M., Noda, K., Marmorstein, L.Y., Yabe, D.,Takagi, K., Akama, T.O., Kita, T., Kimura, T., Nakamura, T., 2009. Fibulin-4 conductsproper elastogenesis via interaction with cross-linking enzyme lysyl oxidase. Proc.Natl. Acad. Sci. U. S. A. 106, 19029–19034.

Horiguchi, M., Ota, M., Rifkin, D.B., 2012. Matrix control of transforming growth factor-beta function. J. Biochem. 152, 321–329.

Hoyer, J., Kraus, C., Hammersen, G., Geppert, J.P., Rauch, A., 2009. Lethal cutis laxa withcontractural arachnodactyly, overgrowth and soft tissue bleeding due to a novelhomozygous fibulin-4 gene mutation. Clin. Genet. 76, 276–281.

Hu, Q., Loeys, B.L., Coucke, P.J., De Paepe, A., Mecham, R.P., Choi, J., Davis, E.C., Urban, Z.,2006. Fibulin-5 mutations: mechanisms of impaired elastic fiber formation in reces-sive cutis laxa. Hum. Mol. Genet. 15, 3379–3386.

Hu, Q., Shifren, A., Sens, C., Choi, J., Szabo, Z., Starcher, B.C., Knutsen, R.H., Shipley, J.M.,Davis, E.C., Mecham, R.P., Urban, Z., 2010. Mechanisms of emphysema in autosomaldominant cutis laxa. Matrix Biol. 29, 621–628.

Huang, J., Davis, E.C., Chapman, S.L., Budatha, M., Marmorstein, L.Y., Word, R.A.,Yanagisawa, H., 2010. Fibulin-4 deficiency results in ascending aortic aneurysms: apotential link between abnormal smooth muscle cell phenotype and aneurysmprogression. Circ. Res. 106, 583–592.

Huang, J., Yamashiro, Y., Papke, C.L., Ikeda, Y., Lin, Y., Patel, M., Inagami, T., Le, V.P.,Wagenseil, J.E., Yanagisawa, H., 2013. Angiotensin-converting enzyme-inducedactivation of local Angiotensin signaling is required for ascending aortic aneurysmsin fibulin-4-deficient mice. Sci. Transl. Med. 5, 183ra158.

Hucthagowder, V., Sausgruber, N., Kim, K.H., Angle, B., Marmorstein, L.Y., Urban, Z., 2006.Fibulin-4: a novel gene for an autosomal recessive cutis laxa syndrome. Am. J. Hum.Genet. 78, 1075–1080.

Hucthagowder, V., Morava, E., Kornak, U., Lefeber, D.J., Fischer, B., Dimopoulou, A., Aldinger,A., Choi, J., Davis, E.C., Abuelo, D.N., Adamowicz, M., Al-Aama, J., Basel-Vanagaite, L.,Fernandez, B., Greally, M.T., Gillessen-Kaesbach, G., Kayserili, H., Lemyre, E., Tekin, M.,Turkmen, S., Tuysuz, B., Yuksel-Konuk, B., Mundlos, S., Van Maldergem, L., Wevers,R.A., Urban, Z., 2009. Loss-of-function mutations in ATP6V0A2 impair vesicular traffick-ing, tropoelastin secretion and cell survival. Hum. Mol. Genet. 18, 2149–2165.

Ignotz, R.A., Endo, T., Massague, J., 1987. Regulation of fibronectin and type I collagenmRNA levels by transforming growth factor-beta. J. Biol. Chem. 262, 6443–6446.

Isogai, Z., Ono, R.N., Ushiro, S., Keene, D.R., Chen, Y., Mazzieri, R., Charbonneau, N.L.,Reinhardt, D.P., Rifkin, D.B., Sakai, L.Y., 2003. Latent transforming growth factorbeta-binding protein 1 interacts with fibrillin and is a microfibril-associated protein.J. Biol. Chem. 278, 2750–2757.

Kahari, V.M., Olsen, D.R., Rhudy, R.W., Carrillo, P., Chen, Y.Q., Uitto, J., 1992. Transforminggrowth factor-beta up-regulates elastin gene expression in human skin fibroblasts.Evidence for post-transcriptional modulation. Lab. Invest. 66, 580–588.

Please cite this article as: Urban, Z., Davis, E.C., Cutis laxa: Intersection ometabolism, Matrix Biol. (2013), http://dx.doi.org/10.1016/j.matbio.2013.

ED P

RO

OF

Kantola, A.K., Keski-Oja, J., Koli, K., 2008. Fibronectin and heparin binding domains oflatent TGF-beta binding protein (LTBP)-4 mediate matrix targeting and cell adhesion.Exp. Cell Res. 314, 2488–2500.

Kantola, A.K., Ryynanen, M.J., Lhota, F., Keski-Oja, J., Koli, K., 2010. Independent regulationof short and long forms of latent TGF-beta binding protein (LTBP)-4 in cultured fibro-blasts and human tissues. J. Cell. Physiol. 223, 727–736.

Keeley, F.W., 2013. The evolution of elastin, In: Keeley, F.W., Mecham, R.P. (Eds.), Evolutionof Extracellular Matrix, 1st ed. Springer Verlag, Berlin Heidelberg, pp. 73–119.

Kennerson, M.L., Nicholson, G.A., Kaler, S.G., Kowalski, B., Mercer, J.F., Tang, J., Llanos, R.M.,Chu, S., Takata, R.I., Speck-Martins, C.E., Baets, J., Almeida-Souza, L., Fischer, D.,Timmerman, V., Taylor, P.E., Scherer, S.S., Ferguson, T.A., Bird, T.D., De Jonghe, P.,Feely, S.M., Shy, M.E., Garbern, J.Y., 2010. Missensemutations in the copper transport-er gene ATP7A cause X-linked distal hereditarymotor neuropathy. Am. J. Hum. Genet.86, 343–352.

Kim, D.J., Lee, D.C., Yang, S.J., Lee, J.J., Bae, E.M., Kim, D.M., Min, S.H., Kim, S.J., Kang, D.C.,Sang, B.C., Myung, P.K., Park, K.C., Yeom, Y.I., 2008. Lysyl oxidase like 4, a novel targetgene of TGF-beta1 signaling, can negatively regulate TGF-beta1-induced cell motilityin PLC/PRF/5 hepatoma cells. Biochem. Biophys. Res. Commun. 373, 521–527.

Kornak, U., Reynders, E., Dimopoulou, A., van Reeuwijk, J., Fischer, B., Rajab, A., Budde, B.,Nurnberg, P., Foulquier, F., Lefeber, D., Urban, Z., Gruenewald, S., Annaert, W., Brunner,H.G., van Bokhoven, H., Wevers, R., Morava, E., Matthijs, G., Van Maldergem, L.,Mundlos, S., 2008. Impaired glycosylation and cutis laxa caused by mutations in the ve-sicular H+-ATPase subunit ATP6V0A2. Nat. Genet. 40, 32–34.

Kozel, B.A., Wachi, H., Davis, E.C., Mecham, R.P., 2003. Domains in tropoelastin that mediateelastin deposition in vitro and in vivo. J. Biol. Chem. 278, 18491–18498.

Kozel, B.A., Rongish, B.J., Czirok, A., Zach, J., Little, C.D., Davis, E.C., Knutsen, R.H., Wagenseil,J.E., Levy,M.A.,Mecham, R.P., 2006. Elasticfiber formation: a dynamic view of extracellu-lar matrix assembly using timer reporters. J. Cell. Physiol. 207, 87–96.

Kuang, P.P., Joyce-Brady, M., Zhang, X.H., Jean, J.C., Goldstein, R.H., 2006. Fibulin-5 geneexpression in human lung fibroblasts is regulated by TGF-beta and phos-phatidylinositol 3-kinase activity. Am. J. Physiol. Cell Physiol. 291, C1412–C1421.

Kucich, U., Rosenbloom, J.C., Abrams, W.R., Bashir, M.M., Rosenbloom, J., 1997. Stabiliza-tion of elastin mRNA by TGF-beta: initial characterization of signaling pathway. Am.J. Respir. Cell Mol. Biol. 17, 10–16.

Lee, Y.C., Huang, H.Y., Chang, C.J., Cheng, C.H., Chen, Y.T., 2010. Mitochondrial GLUT10facilitates dehydroascorbic acid import and protects cells against oxidative stress:mech-anistic insight into arterial tortuosity syndrome. Hum. Mol. Genet. 19, 3721–3733.

Liu, X., Zhao, Y., Gao, J., Pawlyk, B., Starcher, B., Spencer, J.A., Yanagisawa, H., Zuo, J., Li, T.,2004. Elastic fiber homeostasis requires lysyl oxidase-like 1 protein. Nat. Genet. 36,178–182.

Loeys, B., Van Maldergem, L., Mortier, G., Coucke, P., Gerniers, S., Naeyaert, J.M., De Paepe,A., 2002. Homozygosity for a missense mutation in fibulin-5 (FBLN5) results in a se-vere form of cutis laxa. Hum. Mol. Genet. 11, 2113–2118.

Lomas, A.C., Mellody, K.T., Freeman, L.J., Bax, D.V., Shuttleworth, C.A., Kielty, C.M., 2007.Fibulin-5 binds human smooth-muscle cells through alpha5beta1 and alpha4beta1integrins, but does not support receptor activation. Biochem. J. 405, 417–428.

Lotery, A.J., Baas, D., Ridley, C., Jones, R.P., Klaver, C.C., Stone, E., Nakamura, T., Luff, A.,Griffiths, H., Wang, T., Bergen, A.A., Trump, D., 2006. Reduced secretion of fibulin 5in age-related macular degeneration and cutis laxa. Hum. Mutat. 27, 568–574.

Massam-Wu, T., Chiu, M., Choudhury, R., Chaudhry, S.S., Baldwin, A.K., McGovern, A.,Baldock, C., Shuttleworth, C.A., Kielty, C.M., 2010. Assembly of fibrillin microfibrilsgoverns extracellular deposition of latent TGF beta. J. Cell Sci. 123, 3006–3018.

McLaughlin, P.J., Chen, Q., Horiguchi, M., Starcher, B.C., Stanton, J.B., Broekelmann, T.J.,Marmorstein, A.D., McKay, B., Mecham, R., Nakamura, T., Marmorstein, L.Y., 2006.Targeted disruption of fibulin-4 abolishes elastogenesis and causes perinatal lethalityin mice. Mol. Cell. Biol. 26, 1700–1709.

Moller, L.B., Bukrinsky, J.T., Molgaard, A., Paulsen, M., Lund, C., Tumer, Z., Larsen, S., Horn, N.,2005. Identification and analysis of 21 novel disease-causing amino acid substitutions inthe conserved part of ATP7A. Hum. Mutat. 26, 84–93.

Nakamura, T., Lozano, P.R., Ikeda, Y., Iwanaga, Y., Hinek, A., Minamisawa, S., Cheng, C.F.,Kobuke, K., Dalton, N., Takada, Y., Tashiro, K., Ross Jr., J., Honjo, T., Chien, K.R., 2002.Fibulin-5/DANCE is essential for elastogenesis in vivo. Nature 415, 171–175.

Neptune, E.R., Frischmeyer, P.A., Arking, D.E., Myers, L., Bunton, T.E., Gayraud, B., Ramirez,F., Sakai, L.Y., Dietz, H.C., 2003. Dysregulation of TGF-beta activation contributes topathogenesis in Marfan syndrome. Nat. Genet. 33, 407–411.

Nguyen, A.D., Itoh, S., Jeney, V., Yanagisawa, H., Fujimoto, M., Ushio-Fukai, M., Fukai, T.,2004. Fibulin-5 is a novel binding protein for extracellular superoxide dismutase.Circ. Res. 95, 1067–1074.

Noda, K., Dabovic, B., Takagi, K., Inoue, T., Horiguchi, M., Hirai, M., Fujikawa, Y., Akama, T.O.,Kusumoto, K., Zilberberg, L., Sakai, L.Y., Koli, K., Naitoh, M., von Melchner, H., Suzuki, S.,Rifkin, D.B., Nakamura, T., 2013. Latent TGF-beta binding protein 4 promotes elastic fiberassembly by interacting with fibulin-5. Proc. Natl. Acad. Sci. U. S. A. 110, 2852–2857.

Ono, R.N., Sengle, G., Charbonneau, N.L., Carlberg, V., Bachinger, H.P., Sasaki, T., Lee-Arteaga,S., Zilberberg, L., Rifkin, D.B., Ramirez, F., Chu, M.L., Sakai, L.Y., 2009. Latent transforminggrowth factor beta-binding proteins and fibulins compete for fibrillin-1 and exhibitexquisite specificities in binding sites. J. Biol. Chem. 284, 16872–16881.

Peterson, K.J., Butterfield, N.J., 2005. Origin of the Eumetazoa: testing ecological predictionsof molecular clocks against the Proterozoic fossil record. Proc. Natl. Acad. Sci. U. S. A.102, 9547–9552.

Piha-Gossack, A., Sossin, W., Reinhardt, D.P., 2012. The evolution of extracellular fibrillinsand their functional domains. PLoS One 7, e33560.

Renard, M., Holm, T., Veith, R., Callewaert, B.L., Ades, L.C., Baspinar, O., Pickart, A., Dasouki, M.,Hoyer, J., Rauch, A., Trapane, P., Earing, M.G., Coucke, P.J., Sakai, L.Y., Dietz, H.C., De Paepe,A.M., Loeys, B.L., 2010. Altered TGFbeta signaling and cardiovascular manifestations inpatients with autosomal recessive cutis laxa type I caused by fibulin-4 deficiency. Eur.J. Hum. Genet. 18, 895–901.

f elastic fiber biogenesis, TGFβ signaling, the secretory pathway and07.006

Page 7: Cutis laxa: Intersection of elastic fiber biogenesis, TGFβ signaling, the secretory pathway and metabolism

653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688

689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724

726

7Z. Urban, E.C. Davis / Matrix Biology xxx (2013) xxx–xxx

Renard, M., Callewaert, B., Baetens, M., Campens, L., Macdermot, K., Fryns, J.P., Bonduelle,M., Dietz, H.C., Gaspar, I.M., Cavaco, D., Stattin, E.L., Schrander-Stumpel, C., Coucke, P.,Loeys, B., De Paepe, A., De Backer, J., 2013. Novel MYH11 and ACTA2mutations reveala role for enhanced TGFbeta signaling in FTAAD. Int. J. Cardiol. 165, 314–321.

Reversade, B., Escande-Beillard, N., Dimopoulou, A., Fischer, B., Chng, S.C., Li, Y., Shboul, M.,Tham, P.Y., Kayserili, H., Al-Gazali, L., Shahwan, M., Brancati, F., Lee, H., O'Connor, B.D.,Schmidt-von Kegler, M., Merriman, B., Nelson, S.F., Masri, A., Alkazaleh, F., Guerra, D.,Ferrari, P., Nanda, A., Rajab, A., Markie, D., Gray, M., Nelson, J., Grix, A., Sommer, A.,Savarirayan, R., Janecke, A.R., Steichen, E., Sillence, D., Hausser, I., Budde, B., Nurnberg,G., Nurnberg, P., Seemann, P., Kunkel, D., Zambruno, G., Dallapiccola, B., Schuelke, M.,Robertson, S., Hamamy, H., Wollnik, B., Van Maldergem, L., Mundlos, S., Kornak, U.,2009. Mutations in PYCR1 cause cutis laxa with progeroid features. Nat. Genet. 41,1016–1021.

Robertson, I., Jensen, S., Handford, P., 2011. TB domain proteins: evolutionary insights intothe multifaceted roles of fibrillins and LTBPs. Biochem. J. 433, 263–276.

Sato, F., Wachi, H., Starcher, B.C., Seyama, Y., 2006. Biochemical analysis of elastic fiberformation with a frameshift-mutated tropoelastin (fmTE) at the C-terminus oftropoelastin. J. Heal. Sci. 52, 259–267.

Schluterman, M.K., Chapman, S.L., Korpanty, G., Ozumi, K., Fukai, T., Yanagisawa, H.,Brekken, R.A., 2010. Loss of fibulin-5 binding to beta1 integrins inhibits tumor growthby increasing the level of ROS. Dis. Model. Mech. 3, 333–342.

Segade, F., 2010. Molecular evolution of the fibulins: implications on the functionality ofthe elastic fibulins. Gene 464, 17–31.

Skidmore, D.L., Chitayat, D., Morgan, T., Hinek, A., Fischer, B., Dimopoulou, A., Somers, G.,Halliday, W., Blaser, S., Diambomba, Y., Lemire, E.G., Kornak, U., Robertson, S.P., 2011.Further expansion of the phenotypic spectrum associated with mutations inALDH18A1, encoding Delta(1)-pyrroline-5-carboxylate synthase (P5CS). Am. J. Med.Genet. A 155A, 1848–1856.

Sterner-Kock, A., Thorey, I.S., Koli, K., Wempe, F., Otte, J., Bangsow, T., Kuhlmeier, K.,Kirchner, T., Jin, S., Keski-Oja, J., von Melchner, H., 2002. Disruption of the geneencoding the latent transforming growth factor-beta binding protein 4 (LTBP-4)causes abnormal lung development, cardiomyopathy, and colorectal cancer. GenesDev. 16, 2264–2273.

Sugitani, H., Hirano, E., Knutsen, R.H., Shifren, A., Wagenseil, J.E., Ciliberto, C., Kozel, B.A.,Urban, Z., Davis, E.C., Broekelmann, T.J., Mecham, R.P., 2012. Alternative splicing andtissue-specific elastin misassembly act as biological modifiers of human elastin

UNCO

RRECT

725

Please cite this article as: Urban, Z., Davis, E.C., Cutis laxa: Intersection ometabolism, Matrix Biol. (2013), http://dx.doi.org/10.1016/j.matbio.2013.

PRO

OF

gene frameshift mutations associated with dominant cutis laxa. J. Biol. Chem. 287,22055–22067.

Sullivan, K.M., Bissonnette, R., Yanagisawa, H., Hussain, S.N., Davis, E.C., 2007. Fibulin-5functions as an endogenous angiogenesis inhibitor. Lab. Invest. 87, 818–827.

Syx, D., Malfait, F., Van Laer, L., Hellemans, J., Hermanns-Le, T., Willaert, A., Benmansour, A.,De Paepe, A., Verloes, A., 2010. The RIN2 syndrome: a new autosomal recessive connec-tive tissue disorder caused by deficiency of Ras and Rab interactor 2 (RIN2). Hum.Genet. 128, 79–88.

Szabo, Z., Crepeau, M.W., Mitchell, A.L., Stephan, M.J., Puntel, R.A., Yin Loke, K., Kirk, R.C.,Urban, Z., 2006. Aortic aneurysmal disease and cutis laxa caused by defects in theelastin gene. J. Med. Genet. 43, 255–258.

Uitto, J., Li, Q., Urban, Z., 2013. The complexity of elastic fibre biogenesis in the skin–aperspective to the clinical heterogeneity of cutis laxa. Exp. Dermatol. 22, 88–92.

Urban, Z., 2012. The complexity of elastic fiber biogenesis: the paradigm of cutis laxa.J. Invest. Dermatol. 132, E12–E14.

Urban, Z., Hucthagowder, V., Schurmann, N., Todorovic, V., Zilberberg, L., Choi, J., Sens, C.,Brown, C.W., Clark, R.D., Holland, K.E., Marble, M., Sakai, L.Y., Dabovic, B., Rifkin, D.B.,Davis, E.C., 2009. Mutations in LTBP4 cause a syndrome of impaired pulmonary,gastrointestinal, genitourinary, musculoskeletal, and dermal development. Am.J. Hum. Genet. 85, 593–605.

van Rooij, E., Sutherland, L.B., Thatcher, J.E., DiMaio, J.M., Naseem, R.H., Marshall, W.S., Hill,J.A., Olson, E.N., 2008. Dysregulation of microRNAs after myocardial infarction revealsa role of miR-29 in cardiac fibrosis. Proc. Natl. Acad. Sci. U. S. A. 105, 13027–13032.

Wachi, H., Nonaka, R., Sato, F., Shibata-Sato, K., Ishida, M., Iketani, S., Maeda, I., Okamoto,K., Urban, Z., Onoue, S., Seyama, Y., 2008. Characterization of the molecular interac-tion between tropoelastin and DANCE/fibulin-5. J. Biochem. 143, 633–639.

Weikkolainen, K., Keski-Oja, J., Koli, K., 2003. Expression of latent TGF-beta bindingprotein LTBP-1 is hormonally regulated in normal and transformed human lungfibroblasts. Growth Factors 21, 51–60.

Willaert, A., Khatri, S., Callewaert, B.L., Coucke, P.J., Crosby, S.D., Lee, J.G., Davis, E.C., Shiva,S., Tsang, M., De Paepe, A., Urban, Z., 2012. GLUT10 is required for the development ofthe cardiovascular system and the notochord and connects mitochondrial function toTGFbeta signaling. Hum. Mol. Genet. 21, 1248–1259.

Yanagisawa, H., Davis, E.C., Starcher, B.C., Ouchi, T., Yanagisawa,M., Richardson, J.A., Olson,E.N., 2002. Fibulin-5 is an elastin-binding protein essential for elastic fibre develop-ment in vivo. Nature 415, 168–171.

D

E

f elastic fiber biogenesis, TGFβ signaling, the secretory pathway and07.006