d. jason koskinen fnal collab 12/2006 1 geant4 numi monte carlo uncertainties

20
D. Jason FNAL Collab 12/2006 1 Geant4 NuMI Monte Carlo Uncertainties

Upload: walter-conley

Post on 30-Jan-2016

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: D. Jason Koskinen FNAL Collab 12/2006 1 Geant4 NuMI Monte Carlo Uncertainties

D. Jason Koskinen FNAL Collab 12/2006 1

Geant4 NuMI Monte CarloUncertainties

Page 2: D. Jason Koskinen FNAL Collab 12/2006 1 Geant4 NuMI Monte Carlo Uncertainties

D. Jason Koskinen FNAL Collab 12/2006 2

Page 3: D. Jason Koskinen FNAL Collab 12/2006 1 Geant4 NuMI Monte Carlo Uncertainties

D. Jason Koskinen FNAL Collab 12/2006 3

The end goal of calculating the flux from Muon Monitor data relies upon ongoing work in the following areas:

GNuMI Monte Carlo reweighting for muons (provides muon distribution at End Cap)

Muon Monitor calibration and data consistency

G4NuMI Monte Carlo uncertainties in Muon Flux

Fitting Muon Monitor data to Monte Carlo

Page 4: D. Jason Koskinen FNAL Collab 12/2006 1 Geant4 NuMI Monte Carlo Uncertainties

D. Jason Koskinen FNAL Collab 12/2006 4

Uncertainties

Density/Geometry– 8 Aluminum Absorber Core blocks

– 10 Steel Absorber Core blocks

– BluBlocks

● Recesses for crane– Concrete in shielding

● Recesses for crane– Rock between Muon Alcoves

Geometry– Steel plates in gaps between Core and BluBlock shielding

– Excavated wall depth

Page 5: D. Jason Koskinen FNAL Collab 12/2006 1 Geant4 NuMI Monte Carlo Uncertainties

D. Jason Koskinen FNAL Collab 12/2006 5

Page 6: D. Jason Koskinen FNAL Collab 12/2006 1 Geant4 NuMI Monte Carlo Uncertainties

D. Jason Koskinen FNAL Collab 12/2006 6

3d Absorber in 2d view– Density g/cm3 g/cm2

– A – Absorber Core● Covers 32.1%● Al and Stl blocks

– B – Gaps● 5.3%

– C – BluBlocks● 60%

– H2O pipes● 2.6%

Excluding tilt

A

B

C

H20 pipes

Muon View

Page 7: D. Jason Koskinen FNAL Collab 12/2006 1 Geant4 NuMI Monte Carlo Uncertainties

D. Jason Koskinen FNAL Collab 12/2006 7

Aluminum Core blocks8 blocks in Absorber Core

Machined from 6061-T6 Heavy Duty Aluminum– Density 2.70 +/- 0.01 g/cm3

– Tolerances are +/- .5 inch

Cooling pipes– Constitutes ~2.2% of block volume for 32 pipes

● Avg. Aluminum block has 32/2 pipes, 1.1% volume

– Dealt w/ in separate analysis

Uncertainty contribution (g/cm2)– +/- .01 g/cm3 * (8 blocks * 30.48 cm) * 98.9% = 2.41 g/cm2

– +/- 1.27 cm * 8 blocks * 98.9% * 2.70 g/cm3 = 27.13 g/cm2

Page 8: D. Jason Koskinen FNAL Collab 12/2006 1 Geant4 NuMI Monte Carlo Uncertainties

D. Jason Koskinen FNAL Collab 12/2006 8

Steel Core blocks

10 blocks in Absorber Core

Flame cut from Continuous Cast Salvage steel– Density 7.842 +/-.001 g/cm3 (9 random samples)

– Tolerances are +/- .25 inch

– Cooling pipes same as Aluminum Block treatment

Uncertainty contribution (g/cm2)– +/- .001 g/cm3 * (10 blocks * 23.11 cm) * 97.8% = .226 g/cm2

– +/- .635 cm * 10 blocks * 97.8% * 7.842 g/cm3 = 48.70 g/cm2

Page 9: D. Jason Koskinen FNAL Collab 12/2006 1 Geant4 NuMI Monte Carlo Uncertainties

D. Jason Koskinen FNAL Collab 12/2006 9

BluBlocks

Form Cast by Duratek, INC– Reclaimed steel from demolished building at Oak Ridge

lab

88 Duratek BluBlocks– Density 7.25 +/-.35 g/cm3 (21 sheets QC)

– Tolerances are +/- .50 inch

Uncertainty contribution (g/cm2)– +/- .35 g/cm3 * 530cm = 185.05 g/cm2

– +/- 1.27 cm * 4 blocks * 7.25 g/cm3 = 36.83 g/cm2

Page 10: D. Jason Koskinen FNAL Collab 12/2006 1 Geant4 NuMI Monte Carlo Uncertainties

D. Jason Koskinen FNAL Collab 12/2006 10

Concrete Blocks

FNAL concrete blocks with rebar support– Weight 10150 +/- 50 lbs

– 7' x 3' x 3' with .5' and .25' tolerances

– 2 recesses for hoist hooks 15” x 7” x 5”

– Density is 2.61 +/- .02 g/cm3

Uncertainty contribution (g/cm2)– +/- .02 g/cm3 * 91.5 cm = 1.83 g/cm2

– +/- .635 cm * 1 block * 2.61 g/cm3 = 1.66 g/cm2

Page 11: D. Jason Koskinen FNAL Collab 12/2006 1 Geant4 NuMI Monte Carlo Uncertainties

D. Jason Koskinen FNAL Collab 12/2006 11

Density % Dimensions % TotalAl Core 2.41 0.37 27.13 4.12 658.37Steel Core 0.23 0.01 48.70 2.91 1675.77BluBlocks 185.30 4.50 36.82 0.89 4114Concrete 1.83 0.77 1.65 0.69 238.28Gaps ???? ???? 1171

Table of Uncertainties (g/cm2) for Data in Muon Monitor 1

Most extra material the muon can travel through

Page 12: D. Jason Koskinen FNAL Collab 12/2006 1 Geant4 NuMI Monte Carlo Uncertainties

D. Jason Koskinen FNAL Collab 12/2006 12

RockMaquoketa Group - Brainerd Formation– 6 (8) Samples from S-1271 over 10' range

● vertical range of Muon Monitors

– 2.79 +/-.04 g/cm3

– ~40' of rock between MM1 and MM2, and ~60' of rock between MM2 and MM3

Uncertainty contribution (g/cm2)– +/- .04 g/cm3 * 1219 cm = 48.77 g/cm2 (MM1-2)

– +/- .04 g/cm3 * 1829 cm = 73.15 g/cm2 (MM2-3)

– Dimension uncertainty will come from survey analysis

● Placeholders are +/- 1.5' for MM1-2 and +/- 1' for MM2-3

Page 13: D. Jason Koskinen FNAL Collab 12/2006 1 Geant4 NuMI Monte Carlo Uncertainties

D. Jason Koskinen FNAL Collab 12/2006 13

Shokrete

Conrete sprayed onto walls– 2.4 +/- .2 g/cm3

● Bounded by Decay Tunnel backfill(2.22 g/cm3) and FNAL concrete blocks (2.61 g/cm3)

– 4” was the Shokrete target thickness w/ a 3” uncertainty because of surface undulation

Uncertainty contribution (g/cm2)– +/- .2 g/cm3 * 45.72 cm = 9.14 g/cm2 (MM1-2)

– +/- .2 g/cm3 * 30.48 cm = 6.1 g/cm2 (MM2-3)

– +/- 15.24 cm * 2.4 g/cm3 = 36.58 g/cm2 (MM1-2 and 2-3)

Page 14: D. Jason Koskinen FNAL Collab 12/2006 1 Geant4 NuMI Monte Carlo Uncertainties

D. Jason Koskinen FNAL Collab 12/2006 14

Table contributions to uncertainty in g/cm2 Density % Dimensions % Total % AreaAl Core 2.41 0.37 27.13 4.12 658.37 16.1Steel Core 0.23 0.01 48.70 2.91 1675.77 16.1BluBlocks 185.30 4.50 36.82 0.89 4114 60Gaps ???? ???? ???? ???? 1171 5.32H2O ???? ???? ???? ???? 1901 2.6Concrete 1.83 0.77 1.65 0.69 238.28MM1-2 Rock 48.77 1.41 43.10 1.25 3447.9 Shockrete 9.14 12.49 36.58 50.01 73.15MM2-3 Rock 73.15 1.41 32.04 0.62 5171.85 Shokrete 6.10 12.51 36.58 75.01 48.77

MM1 MM2 MM3Total 3194.2 6715.25 15130.06uncertainty 149.385 286.98 434.85

Page 15: D. Jason Koskinen FNAL Collab 12/2006 1 Geant4 NuMI Monte Carlo Uncertainties

D. Jason Koskinen FNAL Collab 12/2006 15

Uncertainty to Flux

The flux is the integrated muon distribution in each Muon Alcove 1, 2, 3. To get each distribution an efficiency plots of muons at the end of the Decay Pipe is multiplied by a provided(Zarko) distribution at the end of the Decay Pipe.

The uncertainty in efficiency is directly related to energy loss which is in turn directly related to material between the end of the Decay Pipe and the Muon Alcoves

Page 16: D. Jason Koskinen FNAL Collab 12/2006 1 Geant4 NuMI Monte Carlo Uncertainties

D. Jason Koskinen FNAL Collab 12/2006 16

Efficiency Plots

Metric to examine the effect that changes to the G4NuMI MC have on muon flux is to look at an 'Efficiency'– E = (# muon traversing muon monitor (1,2,3))/(#

muons produced)

– 30,000 muons

– mono-energetic muon beam uniformally distributed across Decay Pipe End Cap

– Samples at 1-120 GeV

Uncertainty in g/cm2 is equivalent to density change

Page 17: D. Jason Koskinen FNAL Collab 12/2006 1 Geant4 NuMI Monte Carlo Uncertainties

D. Jason Koskinen FNAL Collab 12/2006 17

Page 18: D. Jason Koskinen FNAL Collab 12/2006 1 Geant4 NuMI Monte Carlo Uncertainties

D. Jason Koskinen FNAL Collab 12/2006 18

Page 19: D. Jason Koskinen FNAL Collab 12/2006 1 Geant4 NuMI Monte Carlo Uncertainties

D. Jason Koskinen FNAL Collab 12/2006 19

Page 20: D. Jason Koskinen FNAL Collab 12/2006 1 Geant4 NuMI Monte Carlo Uncertainties

D. Jason Koskinen FNAL Collab 12/2006 20

Conclusions

Look at uncertainty from survey points

Combine uncertainties more constructively

Convert g/cm2 uncertainty to Efficiency uncertainty