d6.4 energysavingspotential4scs final · 2014-08-11 · 5.5 m² per inhabitant (rdp), which...

42
The sole responsibility for the content of this publication lies with the authors. It does not necessarily reflect the opinion of the European Union. Neither the EACI nor the European Commission are responsible for any use that may be made of the information contained therein. CombiSol Project Solar Combisystems Promotion and Standardisation D6.4 : Energy Savings Potential of Solar Combisystems in Austria, Denmark, Germany, France, Sweden and Europe (EU27) Created by: Gabriele Kuhness Alexander Thür (Staff members of AEE INTEC) Philippe Papillon (contribution to chapter 7) (2010) Date 14/12/2010 Version Final Revision 1

Upload: others

Post on 30-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: D6.4 EnergySavingsPotential4SCS Final · 2014-08-11 · 5.5 m² per inhabitant (RDP), which corresponds to 115 million m² (BAU) and 363 million m² (RDP), where 65.34 million m²

The sole responsibility for the content of this publication lies with the authors. It does not necessarily reflect the

opinion of the European Union. Neither the EACI nor the European Commission are responsible for any use that may

be made of the information contained therein.

CombiSol Project

Solar Combisystems Promotion and Standardisation

D6.4 : Energy Savings Potential of Solar Combisyste ms in Austria, Denmark, Germany, France, Sweden and Europe (EU27)

Created by:

Gabriele Kuhness Alexander Thür

(Staff members of AEE INTEC) Philippe Papillon (contribution to chapter 7)

(2010)

Date 14/12/2010 Version Final Revision 1

Page 2: D6.4 EnergySavingsPotential4SCS Final · 2014-08-11 · 5.5 m² per inhabitant (RDP), which corresponds to 115 million m² (BAU) and 363 million m² (RDP), where 65.34 million m²

D6.4_Energy Savings Potential of Solar Combisystems page 2

TABLE OF CONTENTS

Executive Summary .................................. .................................... 3

Kurzfassung ........................................ .......................................... 4

Synthèse ........................................... ............................................. 5

Dansk summary ...................................... ...................................... 6

Sammanfattning ..................................... ....................................... 7

1 General ............................................ ........................................ 8

2 Solar Thermal Potential for EU 27.................. ..................... 10

2.1 Short-term potential EU 27 – 2020 .................. .............................................................10

2.2 Medium-term potential EU 27 – 2030 ................. ..........................................................11

2.3 Long-term potential EU 27 – 2050.................. .............................................................11

2.4 Solar Thermal Potential of Austria................. ..............................................................14

2.5 Solar Thermal Potential of Denmark................. ...........................................................18

2.6 Solar Thermal Potential of Germany................. ...........................................................22

2.7 Solar Thermal Potential of France .................. .............................................................26

2.8 Solar Thermal Potential of Sweden.................. ............................................................28

3 Potential of collector area only for SCS........... .................. 30

3.1 Present situation of SCS contribution.............. ...........................................................30

3.2 SCS Potential - Generally .......................... ...................................................................31

3.3 SCS Potential of Austria ........................... ....................................................................31

3.4 SCS Potential of Denmark ........................... .................................................................33

3.5 SCS Potential of France............................ ....................................................................35

3.6 SCS Potential of Germany........................... .................................................................38

3.7 SCS Potential of Sweden............................ ..................................................................40

4 References ......................................... ................................... 42

Page 3: D6.4 EnergySavingsPotential4SCS Final · 2014-08-11 · 5.5 m² per inhabitant (RDP), which corresponds to 115 million m² (BAU) and 363 million m² (RDP), where 65.34 million m²

D6.4_Energy Savings Potential of Solar Combisystems page 3

Executive Summary

The present report is a summary of the study “POTENTIAL OF SOLARTHERMAL IN EUROPE” prepared for the European Solar Thermal Industry Federation (ESTIF) within the 6th framework program by the Vienna University of Technology – Energy Economics Group (EEG), Peter Biermayr, and the AEE – Institute for Sustainable Technologies (AEE INTEC), Werner Weiss [ESTIF, 2009]. Furthermore, this report includes the latest statistic data from the IEA-SHC report “Solar Heat Worldwide 2008”.1 The determination of the potential of solar thermal energy in the European Union (EU 27) in this document is based on detailed country studies concerning the solar thermal potential in the five reference countries Austria, Denmark, Germany, Poland and Spain representing a good mix of all climate zones in Europe, varied subsidy models and different solar thermal market developments. The potential study is based on a model, which accounts for many factors like e.g. share of new buildings, energy index of buildings, the quality of retrofits, economic state, subsidy structure and also limited factors like availability of space for solar collectors. The model delivers the potential of the solar thermal market for 2020, 2030 and 2050. This potential results in three differently ambitious scenarios - „BAU-“ (Business As Usual), „AMD-” (Advanced Market Deployment) and „RDP-scenario” (Full Research Development and Policy). First it was evaluated in detail for the five countries Austria, Germany, Denmark, Poland and Spain and based on that derived for the EU 27. Because of missing results within this study for France and Sweden, the solar thermal potentials for these countries were derived from other countries with similar structures. The French potential is based on Spain, the Swedish potential is based on Denmark. The result of the potential study for solar thermal in general and for Solar Combisystems especially can be summarized for EU 27 and the CombiSol partner countries as following: The overall solar thermal long-term potential of the EU 27 for 2050 results in a specific collector area between 2 m² (BAU) and 8 m² per inhabitant (RDP), which corresponds to 970 million m² (BAU) and 3,880 million m² (RDP). This collector area corresponds to an energy saving of 1,552 TWh and would reduce the CO2 emission to 687 million tons per year. The long-term potential of Austria for 2050 results in a specific collector area between 2 m² (BAU) and 8 m² per inhabitant (RDP), which corresponds to 16 million m² (BAU) and 66 million m² (RDP), where 20.46 million m² are expected to be only used for Solar Combisystems (RDP). This collector area corresponds to an energy production of 6.4 TWh which equals 2.0 million tons CO2 emissions (oil equivalent) per year. The long-term potential of Denmark for 2050 results in a specific collector area between 2 m² (BAU) and 8 m² per inhabitant (RDP), which corresponds to 10.9 million m² (BAU) and 43.4 million m² (RDP), where 4.34 million m² are expected to be only used for Solar Combisystems (RDP). This collector area corresponds to an energy production of 1,328 GWh which equals 423,000 tons CO2 emissions (oil equivalent) per year. The long-term potential of Germany for 2050 results in a specific collector area between 2 m² (BAU) and 8 m² per inhabitant (RDP), which corresponds to 165 million m² (BAU) and 662 million m² (RDP), where 152.26 million m² are expected to be only used for Solar Combisystems (RDP).This collector area corresponds to an energy production of 47.2 TWh which equals 15.0 million tons CO2 emissions (oil equivalent) per year. The long-term potential of France for 2050 results in a specific collector area between 1.8 m² (BAU) and 5.5 m² per inhabitant (RDP), which corresponds to 115 million m² (BAU) and 363 million m² (RDP), where 65.34 million m² are expected to be only used for Solar Combisystems (RDP). This collector area corresponds to an energy production of 20.1 TWh which equals 6.4 million tons CO2 emissions (oil equivalent) per year. The long-term potential of Sweden for 2050 results in a specific collector area between 1.5 m² (BAU) and 4.6 m² per inhabitant (RDP), which corresponds to 14 million m² (BAU) and 43 million m² (RDP), where 26.72 million m² are expected to be only used for Solar Combisystems (RDP). This collector area corresponds to an energy production of 8.3 TWh which equals 2.6 million tons CO2 emissions (oil equivalent) per year.

1 Source : Solar Heat Worldwide Edition of 2005 to 2008 [Werner Weiss, Gerhard Faninger, Irene Bergmann, Roman Stelzer, Franz Mauthner, 2007-2010]

Page 4: D6.4 EnergySavingsPotential4SCS Final · 2014-08-11 · 5.5 m² per inhabitant (RDP), which corresponds to 115 million m² (BAU) and 363 million m² (RDP), where 65.34 million m²

D6.4_Energy Savings Potential of Solar Combisystems page 4

Kurzfassung

Der vorliegende Bericht ist eine Zusammenfassung der Studie “POTENTIAL OF SOLARTHERMAL IN EUROPE”, vom AEE – Institut für Nachhaltige Technologien (AEE INTEC), Werner Weiss in Zusammenarbeit mit der Technischen Universität Wien – Energy Economics Group (EEG), Peter Biermayr, innerhalb des 6ten Rahmenprogramms für die ESTIF (European Solar Thermal Industry Federation) erstellt [ESTIF, 2009]. Zusätzlich wurden aktuelle Statistikdaten2 der betreffenden Länder hinzugefügt. Die Potentialstudie basiert auf einem Modell, welches die vielfältigen und veränderlich wirkenden Faktoren, wie z.B. Anteil des Neubaus und deren Energiezahl, Qualität der Gebäudesanierungen, unterschiedliche wirtschaftliche Lage, verschiedene Förderbedingungen, usw. aber auch limitierende Faktoren wie die zur Verfügung stehende Fläche für Solarkollektoren berücksichtigt. Mit Hilfe dieser Faktoren wurde das zu erwartende Wachstum der Solarthermiebranche bis 2020, 2030 und 2050 errechnet. Dies wurde für 3 unterschiedlich stark ambitionierte Szenarien - das „BAU-“ (Business As Usual), das „AMD-” (Advanced Market Deployment) und das „RDP-Szenario” (Full Research Development and Policy) - vorerst für die Länder Dänemark, Deutschland, Österreich, Polen und Spanien ausgewertet und aufbauend auf diese auf die gesamte EU hochgerechnet. Da in der gegenständlichen Studie keine detaillierten Ergebnisse für Frankreich und Schweden enthalten sind, wurden diese basierend auf den Resultaten anderer Länder abgeleitet. Für Schweden wurde Dänemark und für Frankreich wurde Spanien als Grundlage herangezogen. Die Ergebnisse der Potentialstudie für Solarthermie im Allgemeinen und für Kombianlagen im Speziellen sind im Folgenden für die EU 27 und für die CombiSol-Partnerländer aufgelistet: Für die EU27 liefert die Langzeitstudie bis 2050 eine spezifische Kollektorfläche von 2 m² pro Einwohner (BAU) bis 8 m² pro Einwohner (RDP), welches einer Gesamtkollektorfläche von 970 Millionen m² (BAU) bis 3.880 Millionen m² (RDP) entspricht. Diese Kollektorfläche entspricht einer Energieeinsparung von 1,552 TWh und würde die CO2-Emissionen um 687 Millionen Tonnen pro Jahr reduzieren. Für Österreich liefert die Langzeitstudie bis 2050 eine spezifische Kollektorfläche von 2 m² pro Einwohner (BAU) bis 8 m² pro Einwohner (RDP), welches einer Gesamtkollektorfläche von 16 Millionen m² (BAU) bis 66 Millionen m² (RDP) entspricht, wovon 20,46 Million m² für Solare Kombianlagen angenommen werden (RDP). Diese Kollektorfläche entspricht einer Energieproduktion von 6,4 TWh und einer CO2-Einsparung (Heizöläquivalent) von 2,0 Millionen Tonnen pro Jahr. Für Dänemark liefert die Langzeitstudie bis 2050 eine spezifische Kollektorfläche von 2 m² pro Einwohner (BAU) bis 8 m² pro Einwohner (RDP), welches einer Gesamtkollektorfläche von 10,9 Millionen m² (BAU) bis 43,4 Millionen m² (RDP) entspricht, wovon 4,3 Million m² für Solare Kombianlagen angenommen werden (RDP). Diese Kollektorfläche entspricht einer Energieproduktion von 1,328 GWh und einer CO2-Einsparung (Heizöläquivalent) von 423000 Tonnen pro Jahr. Für Deutschland liefert die Langzeitstudie bis 2050 eine spezifische Kollektorfläche von 2 m² pro Einwohner (BAU) bis 8 m² pro Einwohner (RDP), welches einer Gesamtkollektorfläche von 165 Millionen m² (BAU) bis 662 Millionen m² (RDP) entspricht, wovon 152,26 Million m² für Solare Kombianlagen angenommen werden (RDP). Diese Kollektorfläche entspricht einer Energieproduktion von 47,2 TWh und einer CO2-Einsparung (Heizöläquivalent) von 15,0 Millionen Tonnen pro Jahr. Für Frankreich liefert die Langzeitstudie bis 2050 eine spezifische Kollektorfläche von 1,8 m² pro Einwohner (BAU) bis 5,5 m² pro Einwohner (RDP), welches einer Gesamtkollektorfläche von 115 Millionen m² (BAU) bis 363 Millionen m² (RDP) entspricht, wovon 65 Million m² für Solare Kombianlagen angenommen werden (RDP). Diese Kollektorfläche entspricht einer Energieproduktion von 20,1 TWh und einer CO2-Einsparung (Heizöläquivalent) von 6,4 Millionen Tonnen pro Jahr. Für Schweden liefert die Langzeitstudie bis 2050 eine spezifische Kollektorfläche von 1,5 m² pro Einwohner (BAU) bis 4,6 m² pro Einwohner (RDP), welches einer Gesamtkollektorfläche von 14 Millionen m² (BAU) bis 43 Millionen m² (RDP) entspricht, wovon 26,72 Million m² für Solare Kombianlagen angenommen werden (RDP). Diese Kollektorfläche entspricht einer Energieproduktion von 8,3 TWh und einer CO2- Einsparung (Heizöläquivalent) von 2.6 Millionen Tonnen pro Jahr.

2 Quelle: Solar Heat Worldwide Ausgaben für 2005 bis 2008 [Werner Weiss, Gerhard Faninger, Irene Bergmann, Roman Stelzer, Franz Mauthner, 2007-2010]

Page 5: D6.4 EnergySavingsPotential4SCS Final · 2014-08-11 · 5.5 m² per inhabitant (RDP), which corresponds to 115 million m² (BAU) and 363 million m² (RDP), where 65.34 million m²

D6.4_Energy Savings Potential of Solar Combisystems page 5

Synthèse

Le présent rapport est un résumé de l’étude “POTENTIEL DU SOLAIRE THERMIQUE EN EUROPE” réalisée pour la Fédération Européenne des Entreprises du Solaire Thermique (ESTIF) dans le cadre du 6ème Programme Cadre pour la Recherche et le Développement (6th Framework Program) par l’Université de Technologie de Vienne – Groupe Energie et Economie (EEG), Peter Biermayr, et l’ AEE – Institut pour les Technologies Durables (AEE INTEC), Werner Weiss [ESTIF, 2009]. De plus, ce rapport inclut les dernières données statistiques issues du rapport “Chaleur Solaire Mondiale 2008“ (Solar Heat Worldwide 20083 de l’AIE-SHC. Dans ce document, l’évaluation du potentiel solaire thermique dans l’Union Européenne (UE 27) est basée sur des études nationales détaillées de ce potentiel pour les cinq pays de référence, Allemagne, Autriche, Danemark, Espagne et Pologne, représentant un échantillon de toutes les zones climatiques Européennes, des différents modes de subvention et de différents états de développement du marché solaire thermique. L’étude de potentiel est basée sur un modèle, prenant en compte de nombreux facteurs comme la part de bâtiments neufs, l’indice énergétique des bâtiments, la qualité des rénovations, la situation économique, la structure des subventions mais aussi les facteurs limitants, comme la surface disponible pour les panneaux solaires. Le modèle donne le potentiel du marché solaire thermique pour 2020, 2030 et 2050. Ce potentiel est calculé pour trois scénarios de différents niveaux d’engagement – “BAU-” (Business As Usual : Evolution naturelle), « AMD-» (Advanced Market Deployment : Déploiement avancé du marché) et “RDP-scénario“ (Full Research Development and Policy : Développement intensif de la recherche et des politiques). Il a été tout d’abord évalué en détails pour les cinq pays de référence, puis, décliné aux autres pays de l’Union Européenne (UE 27). Par manque de résultats dans cette étude pour la France et la Suède, leur potentiel a été estimé à partir d’autres pays ayant une structure similaire. Le potentiel français est basé sur l’Espagne, et le suédois sur le Danemark. Le résultat de l’étude de potentiel solaire thermique en général et des systèmes solaire combinés en particulier, peut être résumé pour l’Europe des 27 et les pays partenaires du projet CombiSol comme suit : A long terme, le potentiel solaire thermique total de l’UE 27 pour 2050 représente une surface de panneaux comprise entre 2 m² (BAU) et 8 m² par habitant (RDP), ce qui correspond à une surface totale comprise entre 970 millions de m² (BAU) et 3 880 million de m² (RDP). Cette surface de panneaux permettrait une économie d’énergie de 1 552 TWh et réduirait les émissions de CO2 de 687 millions de tonnes par an. Le potentiel à long terme de l’Allemagne pour 2050 représente une surface de panneaux comprise entre 2 m² (BAU) et 8 m² par habitant (RDP), correspondant à 165 millions de m² (BAU) et 662 millions de m² (RDP), dont 152,26 millions de m² dédiés uniquement aux Systèmes Solaire Combinés (RDP). Cette surface de panneaux correspond à une production de 47,2 TWh équivalent à l’émission de 15 millions de tonnes de CO2 (équivalent pétrole) par an. Le potentiel à long terme de l’Autriche pour 2050 représente une surface de panneaux comprise entre 2 m² (BAU) et 8 m² (RDP) par habitant, correspondant à 16 millions de m² (BAU) et 66 millions de m² (RDP), dont 20,46 millions de m² dédiés uniquement aux Systèmes Solaire Combinés (RDP). Cette surface de panneaux correspond à une production de 6.4 TWh équivalent à l’émission de 2 millions de tonnes de CO2 (équivalent pétrole) par an. Le potentiel à long terme du Danemark pour 2050 représente une surface de panneaux comprise entre 2 m² (BAU) et 8 m² (RDP) par habitant, correspondant à 10,9 millions de m² (BAU) et 43.4 millions de m² (RDP), dont 4,34 millions de m² dédiés uniquement aux Systèmes Solaire Combinés (RDP). Cette surface de panneaux correspond à une production de 1,328 GWh équivalent à l’émission de 423.000 tonnes de CO2 (équivalent pétrole) par an. Le potentiel à long terme de la France pour 2050 représente une surface de panneaux comprise entre 1,8 m² (BAU) et 5,5 m² (RDP) par habitant, correspondant à 115 millions de m² (BAU) et 363 millions de m² (RDP), dont 65,34 millions de m² dédiés uniquement aux Systèmes Solaire Combinés (RDP). Cette surface de panneaux correspond à une production de 20,1 TWh équivalent à l’émission de 6,4 millions de tonnes de CO2 (équivalent pétrole) par an. Le potentiel à long terme de la Suède pour 2050 représente une surface de panneaux comprise entre 1,5 m² (BAU) et 4,6 m² (RDP) par habitant, correspondant à 14 millions de m² (BAU) et 43 millions de m² (RDP), dont 26,72 millions de m² dédiés uniquement aux Systèmes Solaire Combinés (RDP). Cette surface de panneaux correspond à une production de 8,3 TWh équivalent à l’émission de 2,6 millions de tonnes de CO2 (équivalent pétrole) par an.

3 Source : Solar Heat Worldwide Edition of 2005 to 2008 [Werner Weiss, Gerhard Faninger, Irene Bergmann, Roman Stelzer, Franz Mauthner, 2007-2010]

Page 6: D6.4 EnergySavingsPotential4SCS Final · 2014-08-11 · 5.5 m² per inhabitant (RDP), which corresponds to 115 million m² (BAU) and 363 million m² (RDP), where 65.34 million m²

D6.4_Energy Savings Potential of Solar Combisystems page 6

Dansk summary

Denne rapport er et summary af projektet “POTENTIAL OF SOLARTHERMAL IN EUROPE” udført for den Europæiske solvarmebrancheorganisation European Solar Thermal Industry Federation (ESTIF) indenfor EU’s 6’te rammeprogram af Vienna University of Technology – Energy Economics Group (EEG), Peter Biermayr, og AEE – Institute for Sustainable Technologies (AEE INTEC), Werner Weiss [ESTIF, 2009]. I tillæg er inkluderet de sidste statistikdata fra IEA-SHC rapporten “Solar Heat Worldwide 2008”.[1]

Bestemmelsen af solvarmepotentialet i den Europæiske Union (EU 27) er baseret på detaillerede studier i 5 referencelande Østrig, Danmark, Tyskland, Polen and Spanien som repræsenterer et godt mix af alle klimazoner i Europa, diverse tilskudsmodeller og forskellige markedsudviklinger.

Potentialestudiet er baseret på en model, der tager højde for mange faktorer som f.eks.: andel af nye bygninger, bygningers energiindeks, graden af af bygningsrenovering, økonomisk stade, stuktur i evt. tilskudsordning samt begrænsende faktorer såsom tilgængeligt areal til solfangere. Modellen leverer potentialet for solvarmemarkederne i 2020, 2030 and 2050.

Der gives resultater for 3 scenarier med forskellige ambitionsniveauer - „BAU“ (Business As Usual), „AMD” (Advanced Market Deployment) og „RDP-scenario” (Full Research Development and Policy). Først evaleret i detailjer for de 5 lande Østrig, Danmark, Tyskland, Polen and Spanien og - baseret herpå - tilsvarende resulataer for hele EU 27.

Potentialer i Frankrig er baseret på resultater for Spanien; potentialer for Sverige er baseret på resultater for Danmark.

Hovedresultaterne for solvarmepotentialerne generelt - og for Combisystemer specielt - for EU 27 og for CombiSol partner landene er som følger:

Langtidspotentialet (2050) i EU 27 er et solfangerareal mellem 2 m² (BAU) og 8 m² (RDP) pr. indbygger, hvilket svarer til 970 millioner m² (BAU) and 3,880 millioner m² (RDP). Det sidstnævnte solfangerareal svarer til en energibesparelse på 1,552 TWh og vil reducere CO2 emissionen med 687 millioner tons pr. år.

Langtidspotentialet (2050) i Østrig er et solfangerareal mellem 2 m² (BAU) og 8 m² (RDP) pr. indbygger, hvilket svarer til 16 millioner m² (BAU) and 66 millioner m² (RDP) - 20 millioner af disse forventes brugt i forbindelse med Combisystemer (RDP). Det sidstnævnte solfangerareal svarer til en energibesparelse på 6.4 TWh og vil reducere CO2 emissionen med 2.0 millioner tons pr. år (sammenlignet med et tilsvarende olieforbrug).

Langtidspotentialet (2050) i Danmark er et solfangerareal mellem 2 m² (BAU) og 8 m² (RDP) pr. indbygger, hvilket svarer til 11 millioner m² (BAU) and 43 millioner m² (RDP) - 4.3 millioner af disse forventes brugt i forbindelse med Combisystemer (RDP). Det sidstnævnte solfangerareal svarer til en energibesparelse på 1.3 TWh og vil reducere CO2 emissionen med 0.4 millioner tons pr. år (sammenlignet med et tilsvarende olieforbrug).

Langtidspotentialet (2050) i Tyskland er et solfangerareal mellem 2 m² (BAU) og 8 m² (RDP) pr. indbygger, hvilket svarer til 165 millioner m² (BAU) and 662 millioner m² (RDP) - 152 millioner af disse forventes brugt i forbindelse med Combisystemer (RDP). Det sidstnævnte solfangerareal svarer til en energibesparelse på 47 TWh og vil reducere CO2 emissionen med 15 millioner tons pr. år (sammenlignet med et tilsvarende olieforbrug).

Langtidspotentialet (2050) i Frankrig er et solfangerareal mellem 1.8 m² (BAU) og 5.5 m² (RDP) pr. indbygger, hvilket svarer til 115 millioner m² (BAU) and 363 millioner m² (RDP) - 65 millioner af disse forventes brugt i forbindelse med Combisystemer (RDP). Det sidstnævnte solfangerareal svarer til en energibesparelse på 20 TWh og vil reducere CO2 emissionen med 6.4 millioner tons pr. år (sammenlignet med et tilsvarende olieforbrug).

Langtidspotentialet (2050) i Sverige er et solfangerareal mellem 1.5 m² (BAU) og 4.6 m² (RDP) pr. indbygger, hvilket svarer til 14 millioner m² (BAU) and 43 millioner m² (RDP) - 27 millioner af disse forventes brugt i forbindelse med Combisystemer (RDP). Det sidstnævnte solfangerareal svarer til en energibesparelse på 8.3 TWh og vil reducere CO2 emissionen med 2.6 millioner tons pr. år (sammenlignet med et tilsvarende olieforbrug).

Page 7: D6.4 EnergySavingsPotential4SCS Final · 2014-08-11 · 5.5 m² per inhabitant (RDP), which corresponds to 115 million m² (BAU) and 363 million m² (RDP), where 65.34 million m²

D6.4_Energy Savings Potential of Solar Combisystems page 7

Sammanfattning

Denna rapport är en sammanfattning av studien “POTENTIAL OF SOLARTHERMAL IN EUROPE” (Potentialen för solvärme i Europa) framtagen för European Solar Thermal Industry Federation (ESTIF) inom 6e ramprogrammet av Vienna University of Technology – Energy Economics Group (EEG), Peter Biermayr och AEE - Institute for Sustainable Technologies (AEE INTEC), Werner Weiss [ESTIF, 2009]. Vidare inkluderar denna rapport den senaste statistiken från IEA-SHCs rapport “Solar Heat Worldwide 2008”.4 Fastställandet av potentialen för solvärme i Europeiska Unionen (EU 27) är baserad på detaljerade länderstudier rörande solvärmens potential inom de fem referensländerna Österrike, Danmark, Tyskland, Polen och Spanien, vilka representerar en bra variation av klimatzoner i Europa, varierande bidragsmodeller samt olika utvecklingar på solvärmemarknaden. Potentialstudien baseras på en modell som tar hänsyn till många faktorer som till exempel andel nya byggnader, byggnaders energiindex, kvaliteten på renoveringar, ekonomisk situation, bidragsstruktur samt även begränsande faktorer som tillgängligt utrymme för solfångare. Modellen levererar potentialen för solvärmemarknaden för år 2010, 2030 och 2050. Den här potentialen resulterar i tre scenarier av olika ambitionsnivå – “BAU” (Business As Usual, “AMD” (Advanced Market Deployment, långtgående marknadslansering), “RDP” (Full Research Development and Policy, fullständig FoU och policy). Utvärderingen skedde först i detalj för de fem länderna Österrike, Tyskland, Danmark, Polen och Spanien och anpassades baserat på detta för EU 27. På grund av avsaknaden av resultat inom studien från Frankrike och Sverige, uppskattades potentialen i dessa länder baserat på andra länder med liknande struktur. Potentialen i Frankrike är baserad på Spanien och den i Sverige är baserad på Danmark. Resultaten från potentialstudien för solvärme i allmänhet och kombisolvärmesystem i synnerhet kan summeras för EU 27 och medlemsländerna inom CombiSol som följer: Den övergripande långsiktiga potentialen för solvärme inom EU 27 för 2050 resulterar i en specifik solfångararea på mellan 2 (BAU) och 8 (RDP) m2 per invånare, vilket motsvarar 970 miljoner m2 (BAU) och 3880 miljoner m2 (RDP). Den här solfångararean motsvarar en energibesparing på 1552 TWh och skulle minska utsläppen av CO2 med 687 miljoner ton per år. Den långsiktiga potentialen för Österrike för 2050 resulterar i en solfångararea på mellan 2 (BAU) och 8 (RPD) m2 per invånare, vilket motsvarar 16 miljoner m2 (BAU) och 66 miljoner m2 (RDP), där 20,46 miljoner m2 förväntas användas för solkombisystem (RDP). Den här solfångararean motsvarar en energiproduktion på 6,4 TWh vilket motsvarar 2,0 miljoner ton CO2-utsläpp (oljeekvivalenter) per år. Den långsiktiga potentialen för Danmark för 2050 resulterar i en solfångararea på mellan 2 (BAU) och 8 (RPD) m2 per invånare, vilket motsvarar 10,9 miljoner m2 (BAU) och 43,4 miljoner m2 (RDP), där 4,34 miljoner m2 förväntas vara användas för solkombisystem (RDP). Den här solfångararean motsvarar en energiproduktion på 1,328 GWh vilket motsvarar 423 000 ton CO2-utsläpp (oljeekvivalenter) per år. Den långsiktiga potentialen för Tyskland för 2050 resulterar i en solfångararea på mellan 2 (BAU) och 8 (RPD) m2 per invånare, vilket motsvarar 165 miljoner m2 (BAU) och 662 miljoner m2 (RDP), där 152,26 miljoner m2 förväntas användas för solkombisystem (RDP). Den här solfångararean motsvarar en energiproduktion på 47,2 TWh vilket motsvarar 15,0 miljoner ton CO2-utsläpp (oljeekvivalenter) per år. Den långsiktiga potentialen för Frankrike för 2050 resulterar i en solfångararea på mellan 1,8 (BAU) och 5,5 (RPD) m2 per invånare, vilket motsvarar 115 miljoner m2 (BAU) och 363 miljoner m2 (RDP), där 65,34 miljoner m2 förväntas användas för solkombisystem (RDP). Den här solfångararean motsvarar en energiproduktion på 20,1 TWh vilket motsvarar 6,4 miljoner ton CO2-utsläpp (oljeekvivalenter) per år. Den långsiktiga potentialen för Sverige för 2050 resulterar i en solfångararea på mellan 1,5 (BAU) och 4,6 (RPD) m2 per invånare, vilket motsvarar 14 miljoner m2 (BAU) och 43 miljoner m2 (RDP), där 26,72 miljoner m2 förväntas vara användas för solkombisystem (RDP). Den här solfångararean motsvarar en energiproduktion på 8,3 TWh vilket motsvarar 2,6 miljoner ton CO2-utsläpp (oljeekvivalenter) per år.

4 Källa: Solar Heat Worldwide Edition of 2005 to 2008 [Werner Weiss, Gerhard Faninger, Irene Bergmann, Roman Stelzer, Franz Mauthner, 2007-2010]

Page 8: D6.4 EnergySavingsPotential4SCS Final · 2014-08-11 · 5.5 m² per inhabitant (RDP), which corresponds to 115 million m² (BAU) and 363 million m² (RDP), where 65.34 million m²

D6.4_Energy Savings Potential of Solar Combisystems page 8

1 General

The content of this document is a summary of the study “POTENTIAL OF SOLARTHERMAL IN EUROPE” prepared for the European Solar Thermal Industry Federation (ESTIF) within the 6th framework program by the Vienna University of Technology – Energy Economics Group (EEG), Peter Biermayr, and the AEE – Institute for Sustainable Technologies (AEE INTEC), Werner Weiss [ESTIF, 2009]. Furthermore, this report includes the latest statistic data from the IEA-SHC report “Solar Heat Worldwide 2008”. Due to the fact that heat accounts for 49% of the overall final energy demand of the European Union, the renewable heating sector will have to provide a major contribution in order to reach the renewable energy target. Given the fact that just three renewable sources (biomass, geothermal and solar) are available for providing heat, it is essential to show the potential and the areas of application for these renewable energy sources. Since geothermal sources are limited to only a few locations in Europe and shallow geothermal is considered as energy efficiency technology; biomass should also be used for transport fuels, electricity generation and medium to high temperature applications, it is apparent that solar thermal systems will need to provide a substantial share of the low temperature heat. Taking also the exergy aspect into consideration, it is a must to use the geothermal and biomass sources mainly for the high exergetic applications while using solar thermal for the low temperature applications, such as space heating, hot water preparation, low temperature industrial heat, and air conditioning and cooling. This low temperature heat (<250°C) account s for 70 - 75% of the overall heat demand in the European Union. The determination of the potential of solar thermal in the European Union (EU 27) in this document is based on detailed country studies concerning the solar thermal potential in the five reference countries Austria, Denmark, Germany, Poland and Spain representing a good mix of all climate zones in Europe, varied subsidy models and different solar thermal market developments. By means of a non-recursive economic optimization model the low temperature heat and cooling demand for 2020, 2030 and 2050 is calculated and presented in three scenarios. These different ambitious scenarios reach from „Business As Usual (BAU)” - , „Advanced Market Deployment (AMD)” - and „Full Research Development and Policy – scenario (RDP)”. The development of space heating (as the most important potential of heat demand for solar thermal) strongly depends on the stock of the buildings and on the quality and the frequency of retrofit activities in the future. It is taken into account that the renovation rate market is limited by e.g. financial resources of the building owners. If the energy index of the existing residential buildings in a region has a low value also the potential is lower than in other regions where the building stock shows a high energy consumption (e.g. in Poland) . These points were differently weighted in these scenarios. For the calculation of the cooling demand the different development of both, the penetration of the market with new technologies and the global warming were considered. Besides low prices of fossil fuels, lack of skilled human resources as well as lack of political awareness, one of the major technical limiting factors for the installation of solar thermal systems the availability of space for the installation of the solar thermal collectors was considered. In this context the report “Potential for Building integrated Photovoltaics” [IEA, 2002] might be referred. Other limiting factors for a high market penetration are the availability of key components like thermal storages with a high energy density and the availability of appropriate materials for the mass production of collectors. These limiting factors acted as the basis for the definition of the three scenarios and the related growth rates. In the „Business As Usual (BAU)” – scenario no reduction of the heating and cooling demand is assumed. This scenario is based on a concept with moderate political support mechanisms, low R&D rate and low growth rate and penetration of the solar thermal market with mainly solar thermal plants for domestic hot water.

Page 9: D6.4 EnergySavingsPotential4SCS Final · 2014-08-11 · 5.5 m² per inhabitant (RDP), which corresponds to 115 million m² (BAU) and 363 million m² (RDP), where 65.34 million m²

D6.4_Energy Savings Potential of Solar Combisystems page 9

In the „Advanced Market Deployment (AMD)” – scenario a moderate reduction of the heating demand is assumed. This scenario is based on a concept with more political support mechanisms (like solar obligations for all new buildings), medium R&D rate and medium growth rate as well as the assumption that mainly solar combisystems are installed. In the „Full Research Development and Policy – scenario (R DP)” – a significant reduction of the heating demand is assumed. This scenario is based on a concept with high political support mechanisms (like solar obligations for all - new and existing - buildings), high R&D rate (especially high energy density heat storages) and high growth rate and penetration of the solar thermal market with solar combisystems with high solar fraction from 2020 on. In the following chapters now the results of the detailed studies for the CombiSol partner countries Austria, Denmark and Germany of the ESTIF study “POTENTIAL OF SOLARTHERMAL IN EUROPE” are summarized. For the CombiSol partner countries France and Sweden based on the same principles as done in the ESTIF study, the potential for solar thermal is derived from countries with similar structure. Market potential of Sweden is based on the detailed results of Denmark, France is based on the detailed results of Spain. Afterwards the potential for solar thermal energy in the EU27 countries is summarized based on the ESTIF study. Finally the report shows the part of the whole solar potential only for SCS.

Page 10: D6.4 EnergySavingsPotential4SCS Final · 2014-08-11 · 5.5 m² per inhabitant (RDP), which corresponds to 115 million m² (BAU) and 363 million m² (RDP), where 65.34 million m²

D6.4_Energy Savings Potential of Solar Combisystems page 10

2 Solar Thermal Potential for EU 27

In EU 27 about the half of the final energy demand in 2005 (13,609 TWh) was due to energy demand for space heating and cooling (6,668 TWh). The low temperature consumption, which is the main part of the theoretical potential for solar thermal energy accounts substantially for 34% of the total final energy consumption, which means 4,640 TWh. (See Fig. 1)

Fig. 1: Total final energy consumption in EU 27 and share of heat in 2005; Source: [ESTIF, 2009]

The solar thermal market in EU 27 during the last years (2006 to 2008) is well growing. At the end of 2006 20.3 million m² collectors were installed, which corresponds to an installed capacity of 14.2 GWth or 0.04 m²/inhabitant. In the end of 2008, 26.8 million m² collectors were installed, which corresponds to an installed capacity of 18.7 GWth

2.1 Short-term potential EU 27 – 2020

The 3 different scenarios BAU, AMD and RDP – described in chapter 0 – show that the potential of solar thermal contribution in 2020 is between 0.8% and 3.6% of the low temperature heat demand. The corresponding annual solar yields would be 38 TWh (BAU) and 155 TWh (RDP). The specific collector area needed to reach these goals would be between 0.2 m² (BAU) and 0.8 m² (RDP) per inhabitant. The resulting total collector area would be between 97 million m² (BAU) and 388 m² (RDP). (for more details see table in Tab. 1 and illustrated development of the solar thermal potential in Fig. 2 and Fig. 3 respectively) The BAU scenario is based on a reduction of low temperature heat demand of 0% and the RDP scenario is based on a reduction of 9%, compared to 2006. If solar thermal is to contribute significantly to EU’s overall heating demand then the primary focus will need to shift to space heating applications, otherwise the EU 2020 renewable energy goal of 20% of the total final energy demand will be limited. Related to the necessary 11.5 percentage points increase of renewable energies (Reference share 2005 = 8.5%) in the EU 27 countries until 2020, the contribution of solar thermal would be 12% according to the RDP scenario, 4.5% under the AMD scenario and 2.9% under the BAU scenario. The RDP-scenario assumes that an annual average market growth rate of 26% until 2020 in relation to 2006 is reached.

Page 11: D6.4 EnergySavingsPotential4SCS Final · 2014-08-11 · 5.5 m² per inhabitant (RDP), which corresponds to 115 million m² (BAU) and 363 million m² (RDP), where 65.34 million m²

D6.4_Energy Savings Potential of Solar Combisystems page 11

2.2 Medium-term potential EU 27 – 2030

In 2030, the contribution of solar thermal to the low temperature heat demand of the European Union (EU 27) will be between 4% in the BAU scenario and 15% in the RDP scenario. The corresponding annual solar yields are 198 TWh (BAU) and 582 TWh (RDP). The specific collector area needed to reach these goals will be between 1 m² (BAU) and 3 m² (RDP) per inhabitant. The resulting total collector area will be between 485 million m² (BAU) and 1.45 billion m² (RDP). (for more details see table Tab. 1 and illustrated development of the solar thermal potential in Fig. 2 and Fig. 3 respectively) According to the RDP scenario the effect on employment would be considerable. Without taking export effects into consideration there would be 1,300,000 jobs in the solar thermal sector in 2030. This number is for the European domestic market only. The BAU scenario is based on a reduction of the low temperature heat demand until 2030 of 0% and the RDP scenario is based on a reduction of 20% compared to 2006.

2.3 Long-term potential EU 27 – 2050

In 2050, the contribution of solar thermal to the low temperature heat demand of the European Union (EU27) will be between 8% in the BAU scenario and 47% in the RDP scenario. The corresponding annual solar yields are 391 TWh (BAU) and 1,552 TWh (RDP). The specific collector area needed to reach these goals will be between 2 m² (BAU) and 8 m² (RDP) per inhabitant. The resulting total collector area will be between 970 million m² (BAU) and 3.88 billion m² (RDP). (for more details see table in Tab. 1 and illustrated development of the solar thermal potential in Fig. 2 and Fig. 3 respectively) The BAU scenario is based on a reduction of the low temperature heat demand until 2050 of 0% and the RDP-scenario is based on a reduction of 31% compared to 2006. The savings in fossil fuel (oil equivalent) was ascertained from the energy equivalent of the fuel and the rate of efficiency of the boiler. The calculations are based on an energy equivalent of 36,700 kJ (10.2 kWh) per litre of oil. To obtain an exact statement on the CO2 emissions avoided, the substituted energy medium would have to be ascertained for each EU 27 country. Since this could only be done in a very detailed survey, which goes beyond the scope of this study, the energy savings and the CO2 emissions avoided relate only to oil. The energy savings by solar thermal systems in 2050 – according to the “Full R&D and Policy” Scenario would be 217 billion t oil equivalent and that corresponds to 687 million t CO2 per year.

Page 12: D6.4 EnergySavingsPotential4SCS Final · 2014-08-11 · 5.5 m² per inhabitant (RDP), which corresponds to 115 million m² (BAU) and 363 million m² (RDP), where 65.34 million m²

D6.4_Energy Savings Potential of Solar Combisystems page 12

Tab. 1: Solar thermal potential in the EU 27 based on three scenarios; Source: [ESTIF, 2009]

Page 13: D6.4 EnergySavingsPotential4SCS Final · 2014-08-11 · 5.5 m² per inhabitant (RDP), which corresponds to 115 million m² (BAU) and 363 million m² (RDP), where 65.34 million m²

D6.4_Energy Savings Potential of Solar Combisystems page 13

2005 2010 2015 2020 2025 2030 2035 2040 2045 20500

500

1000

1500

2000

2500

3000

3500 Market Development 2005 - 2050 according to 3 Szenarios - EuropeG

Wth

Business as usual Advanced market deployment Full R&D and Policy Scenario

Fig. 2: Solar thermal potential in EU 27 based on the three scenarios; Source: [ESTIF, 2009]

0,00

500,00

1000,00

1500,00

2000,00

2500,00

3000,00

3500,00

4000,00

4500,00

5000,00

[TWh]

Heating/CoolingDemand EU 27 -

2006

Solar Thermal2006

Heat Demand2020 -9%

Solar Thermal2020

Heat Demand 2030 -20%

Solar Thermal2030

Heat Demand2050 -31%

Solar Thermal2050

Contribution of Solar Thermal to the EU 27 Heating and Cooling Demand by Sector

Industrial Heat - Low Temp.

Air conditioning Service

Space Heating Service

Air conditioning Residential

Water Heating Residential - MFH

Space Heating Residential - MFH

Water Heating Residential - SFH

Space Heating Residential - SFH

Fig. 3: Total heating and cooling demand of EU 27 and contribution of solar thermal by sector

according to the Full R&D and Policy scenario (RDP) ; Source: [ESTIF, 2009]

Page 14: D6.4 EnergySavingsPotential4SCS Final · 2014-08-11 · 5.5 m² per inhabitant (RDP), which corresponds to 115 million m² (BAU) and 363 million m² (RDP), where 65.34 million m²

D6.4_Energy Savings Potential of Solar Combisystems page 14

2.4 Solar Thermal Potential of Austria

In Austria about half of the final energy demand in 2006 (311 TWh) was due to energy demand for space heating and cooling (155 TWh). The low temperature consumption, which is the main part of the theoretical potential for solar thermal energy accounts substantially for 35% of the total final energy consumption that means 108 TWh. (See Fig. 4)

Fig. 4: Total final energy consumption in Austria and share of heat in 2006; Source: [ESTIF, 2009]

2.4.1 Actual statistic data The Austrian solar thermal market during the last years (2006 to 2009) is slightly growing. At the end of 2006 2.7 million m² collectors were installed, which corresponds to an installed capacity of 1.9 GWth or 0.3 m²/inhabitant At the end of 2009, 4.3 million m² collectors were installed, which corresponds to an installed capacity of 3.0 GWth and 0.5 m²/inhabitant. Therefore during these three years in average 533,000 m2 collector area (0.37 GWth or 0.06m2/inhabitant) per year were installed. This results in an average growth rate of 15% from 2004 to 2009. See the development of the Austrian solar thermal market in Fig. 5.

191,

494

239,

540

299,

604

289,

681

362,

923

364,

887

-

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

3,500,000

4,000,000

4,500,000

2004 2005 2006 2007 2008 2009

year

development of the Austrian solar thermal market

total installed at the end of the year

annual new installed collector area

Fig. 5: The annual growth rate and the total installed collector area of Austria; Source: [IEA, 2010]

Page 15: D6.4 EnergySavingsPotential4SCS Final · 2014-08-11 · 5.5 m² per inhabitant (RDP), which corresponds to 115 million m² (BAU) and 363 million m² (RDP), where 65.34 million m²

D6.4_Energy Savings Potential of Solar Combisystems page 15

2.4.2 Short-term potential – 2020 The 3 different scenarios BAU, AMD and RDP – described in chapter 0 – show that the potential of solar thermal contribution in 2020 is between 3% and 10% of the low temperature heat demand. The corresponding annual solar yields would be 3.3 TWh (BAU) and 9.9 TWh (RDP). The specific collector area needed to reach these goals would be between 1 m² (BAU) and 3 m² (RDP) per inhabitant. The resulting total collector area would be between 8.2 million m² (BAU) and 24.7 million m² (RDP) (for more details see table in Tab. 2 and illustrated development of the solar thermal potential in Fig. 6 and Fig. 7 respectively). The BAU scenario is based on a reduction of low temperature heat demand of 0% and the RDP scenario is based on a reduction of 8%, compared to 2006. If solar thermal is to contribute significantly to Austria’s overall heating demand then the primary focus will need to shift to space heating applications, otherwise the Austrian 2020 renewable energy goal of 34% of the total final energy demand will be limited. Related to the necessary 10.7 percentage points increase of renewable energies (Reference share 2006 = 23.3%) in Austria until 2020, the contribution of solar thermal would be 40% according to the RDP scenario, 25% under the AMD scenario and 13% under the BAU scenario. The RDP-scenario assumes that an annual average market growth rate of 20% until 2020 in relation to 2006 is reached, which could be possible by implementing appropriate support mechanisms. For comparison the average growth rate in Austria from 2000 to 2009 was 9%, from 2004 to 2009 it was 15% in average.

2.4.3 Medium-term potential – 2030 In 2030, the contribution of solar thermal to the low temperature heat demand of Austria will be between 5% in the BAU scenario and 19% in the RDP scenario. The corresponding annual solar yields are 5.6 TWh (BAU) and 16.5 TWh (RDP). The specific collector area needed to reach these goals will be between 1.7 m² (BAU) and 5 m² (RDP) per inhabitant. The resulting total collector area will be between 14 million m² (BAU) and 41 million m² (RDP). (for more details see table in Tab. 2 and illustrated development of the solar thermal potential in Fig. 6 and Fig. 7 respectively) According to the RDP scenario the effect on employment would be considerable. Without taking export effects into consideration there would be 25,200 jobs in the solar thermal sector in 2030. This number is for the Austrian domestic market only. The BAU scenario is based on a reduction of the low temperature heat demand until 2030 of 0% and the RDP scenario is based on a reduction of 20% compared to 2006.

2.4.4 Long-term potential – 2050 In 2050, the contribution of solar thermal to the low temperature heat demand of Austria will be between 6% in the BAU scenario and 40% in the RDP scenario. The corresponding annual solar yields are 6.6 TWh (BAU) and 26.3 TWh (RDP). The specific collector area needed to reach these goals will be between 2 m² (BAU) and 8 m² (RDP) per inhabitant. The resulting total collector area will be between 16 million m² (BAU) and 66 million m² (RDP). (for more details see table in Tab. 2 and illustrated development of the solar thermal potential in Fig. 6 and Fig. 7 respectively) The BAU scenario is based on a reduction of the low temperature heat demand until 2050 of 0% and the RDP-scenario is based on a reduction of 39% compared to 2006. By means of the results of the related report it is shown that if the whole potential for solar thermal is used nevertheless enough building area will rest for other utilization like e.g. photovoltaic cells. The most

Page 16: D6.4 EnergySavingsPotential4SCS Final · 2014-08-11 · 5.5 m² per inhabitant (RDP), which corresponds to 115 million m² (BAU) and 363 million m² (RDP), where 65.34 million m²

D6.4_Energy Savings Potential of Solar Combisystems page 16

ambitious target of the scenarios with 8 m²/inhabitant in 2050 would need only 25% of suitable façade area and about 38% of suitable roof area and none remarkable share of suitable land area.

Tab. 2: Solar thermal potential in Austria based on three scenarios; Source: [ESTIF, 2009]

Page 17: D6.4 EnergySavingsPotential4SCS Final · 2014-08-11 · 5.5 m² per inhabitant (RDP), which corresponds to 115 million m² (BAU) and 363 million m² (RDP), where 65.34 million m²

D6.4_Energy Savings Potential of Solar Combisystems page 17

Fig. 6: Solar thermal potential in Austria based on the three scenarios; Source: [ESTIF, 2009]

Fig. 7: Total heating and cooling demand of Austria and contribution of solar thermal by sector

according to the Full R&D and Policy scenario (RDP) ; Source: [ESTIF, 2009]

Page 18: D6.4 EnergySavingsPotential4SCS Final · 2014-08-11 · 5.5 m² per inhabitant (RDP), which corresponds to 115 million m² (BAU) and 363 million m² (RDP), where 65.34 million m²

D6.4_Energy Savings Potential of Solar Combisystems page 18

2.5 Solar Thermal Potential of Denmark

In Denmark more than half of the final energy demand in 2006 (181 TWh) was due to energy demand for space heating and cooling (100 TWh). The low temperature consumption, which is the main part of the theoretical potential for solar thermal energy accounts substantially for 40% of the total final energy consumption that means 72 TWh (See Fig. 8 )

Total Final Energy Consumption in Denmark and share of heat - 2006

[Total: 181 TWh]

High temperature heat >250°C

15%

Low temperature heat <250°C

40%

Electricity and Transport

45%

Fig. 8: Total final energy consumption in Denmark and share of heat in 2006; Source: [ESTIF, 2009]

2.5.1 Actual statistic data The Danish solar thermal market is well growing, during the last years (2004 – 2008). At the end of 2006 370,000 m² collectors were installed, which corresponds to an installed capacity of 260 MWth or 0.07 m²/inhabitant. Although 2007 the annual installed capacity shows a reduction of about 19%, the average annual growth rate from 2004 to 2008 is 18%. In the end of 2008, 454.830 m² were installed, which corresponds to a specific collector area of 0,08 m² / inhabitant. See the development of the Danish solar thermal market in Fig. 9.

17,0

00

21,2

50

38,1

00

30,9

00

33,0

00

-

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

450,000

500,000

2004 2005 2006 2007 2008

year

development of the Danish solar thermal market

total installed at the end of the year

annual new installed collector area

Fig. 9: the annual growth rate and the total installed collector area of Denmark; Source: [IEA, 2010]

Page 19: D6.4 EnergySavingsPotential4SCS Final · 2014-08-11 · 5.5 m² per inhabitant (RDP), which corresponds to 115 million m² (BAU) and 363 million m² (RDP), where 65.34 million m²

D6.4_Energy Savings Potential of Solar Combisystems page 19

2.5.2 Short-term potential – 2020 The 3 different scenarios BAU, AMD and RDP – described in chapter 0 – show that the potential of solar thermal contribution in 2020 is between 0.5% and 2% of the low temperature heat demand. The corresponding annual solar yields would be 0.4 TWh (BAU) and 1.1 TWh (RDP). The specific collector area needed to reach these goals would be between 0.2 m² (BAU) and 0.6 m² (RDP) per inhabitant. The resulting total collector area would be between 1.1 million m² (BAU) and 3.3 million m² (RDP). (for more details see Tab. 3 and illustrated development of the solar thermal potential in Fig. 10 and Fig. 11 respectively) The BAU scenario is based on a reduction of low temperature heat demand of 0% and the RDP scenario is based on a reduction of 11%, compared to 2006. It should be noted that Denmark has quite a high number of district heating systems compared to other European countries. A major share of the country’s hot water and space heating is provided by these district heating systems and therefore offers excellent opportunities to install large-scale solar thermal plants that feed solar heat into the existing district heating networks. If solar thermal is to contribute significantly to Denmark’s overall heating demand then also low temperature process heat for industry should be supplied to a greater extent with solar thermal otherwise the Denmark 2020 renewable energy goal of 30% of the total final energy demand will be limited. Related to the necessary 13 percentage points increase of renewable energies (Reference share 2006 = 17%) in Denmark until 2020, the contribution of solar thermal would be 6.5% according to the RDP scenario; 4.3% according to the AMD scenario and 2% under the BAU scenario. The RDP-scenario assumes that an annual average market growth rate of 24% until 2020 in relation to 2006 is reached, which could be possible by implementing appropriate support mechanisms. For comparison the average growth rate in Denmark from 2000 to 2006 was 18%.

2.5.3 Medium-term potential – 2030 In 2030, the contribution of solar thermal to the low temperature heat demand of Denmark will be between 2% in the BAU scenario and 9% in the RDP scenario. The corresponding annual solar yields are 1.5 TWh (BAU) and 4.8 TWh (RDP). The specific collector area needed to reach these goals will be between 0.8 m² (BAU) and 2.5m² (RDP) per inhabitant. The resulting total collector area will be between 4.5 million m² (BAU) and 13.6 million m² (RDP). (for more details see Tab. 3 and illustrated development of the solar thermal potential in Fig. 10 and Fig. 11 respectively) According to the RDP scenario the effect on employment would be considerable. Without taking export effects into consideration there would be 12,000 jobs in the solar thermal sector in 2030. This number is for the Denmark domestic market only. The BAU scenario is based on a reduction of the low temperature heat demand until 2030 of 0% and the RDP scenario is based on a reduction of 25% compared to 2006.

2.5.4 Long-term potential – 2050 In 2050, the contribution of solar thermal to the low temperature heat demand of Denmark will be between 5% in the BAU scenario and 32% in the RDP scenario. The corresponding annual solar yields are 3.8 TWh (BAU) and 15.2 TWh (RDP). The specific collector area needed to reach these goals will be between 2 m² (BAU) and 8 m² (RDP) per inhabitant. The resulting total collector area will be between 10.9 million m² (BAU) and 43.4 million m² (RDP). (for more details see Tab. 3 and illustrated development of the solar thermal potential in Fig. 10 and Fig. 11 respectively) The BAU scenario is based on a reduction of the low temperature heat demand until 2050 of 0% and the RDP-scenario is based on a reduction of 35% compared to 2006.

Page 20: D6.4 EnergySavingsPotential4SCS Final · 2014-08-11 · 5.5 m² per inhabitant (RDP), which corresponds to 115 million m² (BAU) and 363 million m² (RDP), where 65.34 million m²

D6.4_Energy Savings Potential of Solar Combisystems page 20

By means of the results of the related report it is shown that if the whole potential for solar thermal is used nevertheless enough building area will rest for other utilization like e.g. photovoltaic cells. The most ambitious target of the scenarios with 8 m²/inhabitant in 2050 would need only 26% of suitable façade area and about 39% of suitable roof area and none remarkable share of suitable land area.

Tab. 3: Solar thermal potential in Denmark based on three scenarios; Source: [ESTIF, 2009]

Page 21: D6.4 EnergySavingsPotential4SCS Final · 2014-08-11 · 5.5 m² per inhabitant (RDP), which corresponds to 115 million m² (BAU) and 363 million m² (RDP), where 65.34 million m²

D6.4_Energy Savings Potential of Solar Combisystems page 21

2010 2020 2030 2040 20500

5

10

15

20

25

30

35

40 Market Development 2005 - 2050 according to 3 Szenarios - Denmark

GW

th Business as usual Advanced market deployment Full R&D and Policy Scenario

Fig. 10: Solar thermal potential in Denmark based on the three scenarios; Source: [IEA, 2010]

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

[TWh]

Heating/CoolingDemand DK -

2006

Solar Thermal2006

Heat Demand DK- 2020 -11%

Solar Thermal2020

Heat Demand DK- 2030 -25%

Solar Thermal2030

Heat Demand DK- 2050 -35%

Solar Thermal2050

Contribution of Solar Thermal to the Danish Heating and Cooling Demand by Sector

Industrial Heat - Low Temp.

Air conditioning Service

Space Heating Service

Air conditioning Residential

Water Heating Residential - MFH

Space Heating Residential - MFH

Water Heating Residential - SFH

Space Heating Residential - SFH

32

Fig. 11: Total heating and cooling demand of Denmark and contribution of solar thermal by sector according to the

Full R&D and Policy scenario (RDP) ; Source: [IEA, 2010]

Page 22: D6.4 EnergySavingsPotential4SCS Final · 2014-08-11 · 5.5 m² per inhabitant (RDP), which corresponds to 115 million m² (BAU) and 363 million m² (RDP), where 65.34 million m²

D6.4_Energy Savings Potential of Solar Combisystems page 22

2.6 Solar Thermal Potential of Germany

In Germany about the half of the final energy demand in 2006 (2,594 TWh) was due to energy demand for space heating and cooling (1,376 TWh). The low temperature consumption, which is the main part of the theoretical potential for solar thermal energy accounts substantially for 38% of the total final energy consumption that means 980 TWh. (See Fig. 12)

Fig. 12: Total final energy consumption in Germany and share of heat in 2006; Source: [IEA, 2010]

2.6.1 Actual statistic data The German solar thermal market is well growing, during the last years (2004 – 2008). At the end of 2006 8.05 million m² collectors were installed, which corresponds to an installed capacity of 5.64 GWth or 0.1 m²/inhabitant. Although 2007 the annual installed capacity shows a reduction of about 37%, the average annual growth rate from 2004 to 2008 is even 28%. In the end of 2008, 11.1 million m² were installed, which corresponds to a specific collector area of 0.14 m² / inhabitant. See the development of the German solar thermal market in Fig. 13.

780,

000

950,

000

1,53

0,00

0

970,

000

2,10

6,90

0

-

2,000,000

4,000,000

6,000,000

8,000,000

10,000,000

12,000,000

2004 2005 2006 2007 2008

year

development of the German solar thermal market

total installed at the end of the year

annual new installed collector area

Fig. 13: the annual growth rate and the total installed collector area of Germany; Source: [IEA, 2010]

Page 23: D6.4 EnergySavingsPotential4SCS Final · 2014-08-11 · 5.5 m² per inhabitant (RDP), which corresponds to 115 million m² (BAU) and 363 million m² (RDP), where 65.34 million m²

D6.4_Energy Savings Potential of Solar Combisystems page 23

2.6.2 Short-term potential – 2020 The 3 different scenarios BAU, AMD and RDP – described in chapter 0– show that the potential of solar thermal contribution in 2020 is between 1.5% and 5% of the low temperature heat demand. The corresponding annual solar yields would be 14.7 TWh (BAU) and 43.4 TWh (RDP). The specific collector area needed to reach these goals would be between 0.5 m² (BAU) and 1.5 m² (RDP) per inhabitant. The resulting total collector area would be between 41 million m² (BAU) and 124 million m² (RDP). (for more details see table in Tab. 4 and illustrated development of the solar thermal potential in Fig. 14 and Fig. 15 respectively) The BAU scenario is based on a reduction of low temperature heat demand of 0% and the RDP scenario is based on a reduction of 10%, compared to 2006. If solar thermal is to contribute significantly to Germany’s overall heating demand then the primary focus will need to shift to space heating applications, otherwise the German 2020 renewable energy goal of 18% of the total final energy demand will be limited. Related to the necessary 12.2 percentage points increase of renewable energies (Reference share 2006 = 5.8%) in Germany until 2020, the contribution of solar thermal would be 16% according to the RDP scenario. 10% under the AMD scenario and 5.5% under the BAU scenario. The RDP-scenario assumes that an annual average market growth rate of 21% until 2020 in relation to 2006 is reached, which could be possible by implementing appropriate support mechanisms. For comparison the average growth rate in Germany from 2000 to 2006 was 21%, too. The average growth rate from 2004 to 2008 was even 28%.

2.6.3 Medium-term potential – 2030 In 2030, the contribution of solar thermal to the low temperature heat demand of Germany will be between 4% in the BAU scenario and 15% in the RDP scenario. The corresponding annual solar yields are 37.2 TWh (BAU) and 115.8 TWh (RDP). The specific collector area needed to reach these goals will be between 1.3 m² (BAU) and 4 m² (RDP) per inhabitant. The resulting total collector area will be between 107 million m² (BAU) and 331 million m² (RDP). (for more details see Tab. 4 and illustrated development of the solar thermal potential in Fig. 14 and Fig. 15 respectively) According to the RDP scenario the effect on employment would be considerable. Without taking export effects into consideration there would be 236,000 jobs in the solar thermal sector in 2030. This number is for the German domestic market only. The BAU scenario is based on a reduction of the low temperature heat demand until 2030 of 0% and the RDP scenario is based on a reduction of 21% compared to 2006.

2.6.4 Long-term potential – 2050 In 2050, the contribution of solar thermal to the low temperature heat demand of Germany will be between 6% in the BAU scenario and 34% in the RDP scenario. The corresponding annual solar yields are 57.8 TWh (BAU) and 231.5 TWh (RDP). The specific collector area needed to reach these goals will be between 2 m² (BAU) and 8 m² (RDP) per inhabitant. The resulting total collector area will be between 165 million m² (BAU) and 662 million m² (RDP). (for more details see Tab. 4 and illustrated development of the solar thermal potential in Fig. 14 and Fig. 15 respectively) The BAU scenario is based on a reduction of the low temperature heat demand until 2050 of 0% and the RDP-scenario is based on a reduction of 31% compared to 2006. By means of the results of the related report it is shown that if the whole potential for solar thermal is used nevertheless enough building area will rest for other utilization like e.g. photovoltaic cells. The most ambitious target of the scenarios with 8 m²/inhabitant in 2050 would need only 27% of suitable façade area and about 41% of suitable roof area and none remarkable share of suitable land area.

Page 24: D6.4 EnergySavingsPotential4SCS Final · 2014-08-11 · 5.5 m² per inhabitant (RDP), which corresponds to 115 million m² (BAU) and 363 million m² (RDP), where 65.34 million m²

D6.4_Energy Savings Potential of Solar Combisystems page 24

Tab. 4: Solar thermal potential in Germany based on three scenarios; Source: [IEA, 2010]

Page 25: D6.4 EnergySavingsPotential4SCS Final · 2014-08-11 · 5.5 m² per inhabitant (RDP), which corresponds to 115 million m² (BAU) and 363 million m² (RDP), where 65.34 million m²

D6.4_Energy Savings Potential of Solar Combisystems page 25

Fig. 14: Solar thermal potential in Germany based on the three scenarios; Source: [IEA, 2010]

Fig. 15: Total heating and cooling demand of Germany and contribution of solar thermal

by sector according to the Full R&D and Policy scenario (RDP) ; Source: [IEA, 2010]

Page 26: D6.4 EnergySavingsPotential4SCS Final · 2014-08-11 · 5.5 m² per inhabitant (RDP), which corresponds to 115 million m² (BAU) and 363 million m² (RDP), where 65.34 million m²

D6.4_Energy Savings Potential of Solar Combisystems page 26

2.7 Solar Thermal Potential of France

2.7.1 Actual statistic data The French solar thermal market is well growing, during the last years (2004 – 2008). At the end of 2006 1.160 million m² collectors were installed, which corresponds to an installed capacity of 815 MWth or 0.02 m²/inhabitant. Although 2007 some European countries reduce their annual growth rate, the annual installed capacity by solar thermal in France shows an increase of 7 %. The average annual growth rate from 2004 to 2008 is even 35%. At the end of 2008, 1.87 million m² were installed, which corresponds to a specific collector area of 0.03 m² / inhabitant. See the development of the French solar thermal market in Fig. 16.

116,

915

164,

389

301,

000

323,

000

390,

000

-

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

1,800,000

2,000,000

2004 2005 2006 2007 2008

year

development of the French solar thermal market

total installed at the end of the year

annual new installed collector area

Fig. 16: The annual growth rate and the total installed collector area of France; Source: [IEA, 2010]

The following data are derived from the calculated values of Spain, which was investigated in detail within the ESTIF report..

2.7.2 Short-term potential – 2020 In 2020. the specific collector area will be between 0.2 m² (BAU) and 0.5 m² (RDP) per inhabitant. The resulting total collector area will be between 12.3 million m² (BAU) and 30.1 million m² (RDP). The corresponding annual solar yields are 4.1 TWh (BAU) and 10.0 TWh (RDP). According to the RDP scenario the effect on employment would be considerable. Without taking export effects into consideration there would be 40,410 jobs in the solar thermal sector in 2020. This number is for the French domestic market only. For more details see Tab. 5. The European goal in France for 2020 is to reach 23% from the whole energy demand with renewable energy. In 2005 only 10.3% are covered by renewable energy.5

2.7.3 Medium-term potential – 2030 In 2030. the specific collector area will be between 1.2 m² (BAU) and 2.8 m² (RDP) per inhabitant. The resulting total collector area will be between 76 million m² (BAU) and 181 million m² (RDP). The corresponding annual solar yields are 25 TWh (BAU) and 60 TWh (RDP).

5 Source: www.euractiv.com

Page 27: D6.4 EnergySavingsPotential4SCS Final · 2014-08-11 · 5.5 m² per inhabitant (RDP), which corresponds to 115 million m² (BAU) and 363 million m² (RDP), where 65.34 million m²

D6.4_Energy Savings Potential of Solar Combisystems page 27

According to the RDP scenario the effect on employment would be considerable. Without taking export effects into consideration there would be 176,060 jobs in the solar thermal sector in 2030. This number is for the French domestic market only. For more details see Tab. 5.

2.7.4 Long-term potential – 2050 In 2050. the specific collector area will be between 1.8 m² (BAU) and 5.5 m² (RDP) per inhabitant. The resulting total collector area will be between 115 million m² (BAU) and 363 million m² (RDP). The corresponding annual solar yields are 43 TWh (BAU) and 136 TWh (RDP).

Tab. 5: Solar thermal potential in France based on three scenarios

Page 28: D6.4 EnergySavingsPotential4SCS Final · 2014-08-11 · 5.5 m² per inhabitant (RDP), which corresponds to 115 million m² (BAU) and 363 million m² (RDP), where 65.34 million m²

D6.4_Energy Savings Potential of Solar Combisystems page 28

2.8 Solar Thermal Potential of Sweden

2.8.1 Actual statistic data The Swedish solar thermal market is moderately growing during the last years (2004 – 2008). At the end of 2006 0.298 million m² collectors were installed, which corresponds to an installed capacity of 267 MWth or 0.03 m² / inhabitant. Although 2007 some European countries reduced their annual growth rate of solar thermal, the annual installed capacity by solar thermal in Sweden showed an increase of 9 %. The average annual growth rate from 2004 to 2008 is 18%. At the end of 2008, 0.381 million m² were installed, which corresponds to a specific collector area of 0.04 m² / inhabitant. See the development of the Sweden solar thermal market in Fig. 17.

28,8

74

35,4

90

41,9

54

45,9

00

55,4

61

-

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

2004 2005 2006 2007 2008year

development of the Swedish solar thermal market

total installed at the end of the year

annual new installed collector area

Fig. 17: The annual growth rate and the total installed collector area of Sweden; Source: [IEA, 2010] The following data are derived from the calculated values of Denmark.

2.8.2 Short-term potential – 2020 In 2020. the specific collector area will be between 0.1 m² (BAU) and 0.3 m² (RDP) per inhabitant. The resulting total collector area will be between 1.3 million m² (BAU) and 3.2 million m² (RDP). The corresponding annual solar yields are 0.4 TWh (BAU) and 1.0 TWh (RDP). According to the RDP scenario the effect on employment would be considerable. Without taking export effects into consideration there would be 4,040 jobs in the solar thermal sector in 2020. This number is for the Swedish domestic market only. For more details see Tab. 6. The European goal in Sweden for 2020 is to reach 49% from the whole energy demand with renewable energy. At 2005, only 39,8% are covered by renewable energy.6

2.8.3 Medium-term potential – 2030 In 2030. the specific collector area will be between 0.6 m² (BAU) and 1.4 m² (RDP) per inhabitant. The resulting total collector area will be between 5.8 million m² (BAU) and 13.4 million m² (RDP). The corresponding annual solar yields are 1.8 TWh (BAU) and 4.2 TWh (RDP). According to the RDP scenario the effect on employment would be considerable. Without taking export effects into consideration there would be 11,940 jobs in the solar thermal sector in 2030. This number is for the Sweden domestic market only. For more details see Tab. 6.

6 Source: www.euractiv.com

Page 29: D6.4 EnergySavingsPotential4SCS Final · 2014-08-11 · 5.5 m² per inhabitant (RDP), which corresponds to 115 million m² (BAU) and 363 million m² (RDP), where 65.34 million m²

D6.4_Energy Savings Potential of Solar Combisystems page 29

2.8.4 Long-term potential – 2050 In 2050. the specific collector area will be between 1.5 m² (BAU) and 4.6 m² (RDP) per inhabitant. The resulting total collector area will be between 14.4 million m² (BAU) and 43.1 million m² (RDP). The corresponding annual solar yields are 4.5 TWh (BAU) and 13.4 TWh (RDP).

Tab. 6: Solar thermal potential in Sweden based on three scenarios SWEDEN derived from Denmark BAU AMD RDP

2008 Baseline

Specific collector area m²/inhab. 0.04 0.04 0.04

Total collector area Mill m² 0.38 0.38 0.38

Total installed capacity GW th 0.267 0.267 0.267

Solar yield TWh/a 0.118 0.118 0.118

2020

Specific collector area m²/inhab. 0.1 0.2 0.3

Total collector area Mill m² 1.3 2.3 3.2

Total installed capacity GW th 0.877 1.597 2.237

Solar yield TWh/a 0.388 0.707 0.991

% renewable energy in 2020 from the whole energy demand according to the EU goal [%] 49% 49% 49%Number of jobs (domestic market) 730 2,180 4,040

2030

Specific collector area m²/inhab. 0.6 1.1 1.4

Total collector area Mill m² 5.8 9.8 13.4

Total installed capacity GW th 4.075 6.888 9.413

Solar yield TWh/a 1.804 3.051 4.169Number of jobs (domestic market) 3,490 8,000 11,940

2050

Specific collector area m²/inhab. 1.5 3.4 4.6

Total collector area Mill m² 14.4 31.6 43.1

Total installed capacity GW th 10.093 22.148 30.176

Solar yield TWh/a 4.470 9.808 13.364

BAU=Business as usual; AMD=Advanced Market deployment; RDP=Full R&D and Policy Scenario

Page 30: D6.4 EnergySavingsPotential4SCS Final · 2014-08-11 · 5.5 m² per inhabitant (RDP), which corresponds to 115 million m² (BAU) and 363 million m² (RDP), where 65.34 million m²

D6.4_Energy Savings Potential of Solar Combisystems page 30

3 Potential of collector area only for SCS

3.1 Present situation of SCS contribution

In the following diagram Fig. 18 the different utilization of solar plants for Austria, Denmark, France and Germany in 2008 among other countries is shown. In 2008, 28% of the whole collector area in Austria was used for SCS, 1% of the whole collector area in Denmark was used for SCS, 15% of the whole collector area in France was used for SCS, 34% of the whole collector area in Germany was used for SCS and finally even 75% of the whole collector area in Sweden was used for SCS (see Tab. 7).

Fig. 18: distribution of different applications in the European top - 10 countries related to the total capacity in operation of glazed and evacuated tube collectors in 2008 (source: Solar Heat Worldwide 7)

Tab. 7: some statistic data for SCS (source Solar Heat Worldwide 8)

7 Solar Heat Worldwide Edition of 2008 [Werner Weiss, Franz Mauthner, 2010] 8 Solar Heat Worldwide Edition of 2007 and 2008 [Werner Weiss, Irene Bergmann, Roman Stelzer, Franz Mauthner, 2009-2010]

Page 31: D6.4 EnergySavingsPotential4SCS Final · 2014-08-11 · 5.5 m² per inhabitant (RDP), which corresponds to 115 million m² (BAU) and 363 million m² (RDP), where 65.34 million m²

D6.4_Energy Savings Potential of Solar Combisystems page 31

3.2 SCS Potential - Generally

Based on the solar potential study described in the previous chapters the part of potential for SCS is derived. On the one hand the following factor enables an increase of collector area used for SCS:

• Rise of solar fraction (because of more efficiency by compact storage with higher storage density)

But on the other hand there are also factors, which limit the growth of collector area for SCS: • Need for new and competent installers (It takes time to train them) • Growth of other markets that could be addressed with solar : large systems, district heating, solar

process heat, multi-family houses, … • Number of the Potential of houses that could be equipped with SCS , depending on the availability

of suitable area – like orientation, angle of the roof and shadow - for 2050, a limit of around 50 to 70% of the number of the detached houses equipped with SCS is suggested.

The energy production by solar collectors were derived from the oil equivalent with a heating value of 36,700 kJ (10.2 kWh) per litre of oil and CO2 emission value of 2.73 kg/l fuel oil, to allow for comparability in the different countries.

3.3 SCS Potential of Austria

Regarding the BAU-scenario , the following results can be expected: In the short-term potential to 2020 , 1.97 million m² will be used for Solar Combisystems, which accounts for 24% of the whole collector area. This collector area corresponds to an energy production of 0.6 TWh which equals 195,000 tons CO2 emissions (oil equivalent) per year. In the medium-term potential to 2030 , 3.64 million m² will be used for Solar Combisystems, which accounts for 26% of the whole collector area. This collector area corresponds to an energy production of 1.1 TWh which equals 361,000 tons CO2 emissions (oil equivalent) per year. In the long-term potential to 2050 , 4.32 million m² will be used for Solar Combisystems, which accounts for 27% of the whole collector area. (see diagram Fig. 19) This collector area corresponds to an energy production of 1.3 TWh which equals 428,000 tons CO2 emissions (oil equivalent) per year.

AUSTRIA-solar potential SCS BAU-scenario

1,968,000 1,110,019

3,640,000 4,320,000

-

2,000,000

4,000,000

6,000,000

8,000,000

10,000,000

12,000,000

14,000,000

16,000,000

18,000,000

2008 2020 2030 2050year

colle

ctor

are

a (m

²)

-

10

20

30

40

50

60

70

80

90

100

perc

enta

ge r

ate

for

SC

S o

f the

w

hole

col

lect

or a

rea

(%)

whole collector area collector area for SCS SCS in % of the whole collector area

Fig. 19: SCS Potential for Austria - BAU-scenario

Page 32: D6.4 EnergySavingsPotential4SCS Final · 2014-08-11 · 5.5 m² per inhabitant (RDP), which corresponds to 115 million m² (BAU) and 363 million m² (RDP), where 65.34 million m²

D6.4_Energy Savings Potential of Solar Combisystems page 32

Regarding the AMD-scenario in Austria , the following results can be expected: In the short-term potential to 2020 , 3.96 million m² will be used for Solar Combisystems, which accounts for 24% of the whole collector area. This collector area corresponds to an energy production of 1.2 TWh which equals 392,000 tons CO2 emissions (oil equivalent) per year. In the medium-term potential to 2030 , 7.29 million m² will be used for Solar Combisystems, which accounts for 27% of the whole collector area. This collector area corresponds to an energy production of 2.3 TWh which equals 722,000 tons CO2 emissions (oil equivalent) per year. In the long-term potential to 2050 , 12.76 million m² will be used for Solar Combisystems, which accounts for 29% of the whole collector area. (see diagram Fig. 20) This collector area corresponds to an energy production of 4.0TWh which equals 1,264,000 tons CO2 emissions (oil equivalent) per year.

AUSTRIA-solar potential SCS AMD-scenario

1,110,019 3,960,000

7,290,000

12,760,000

-

5,000,000

10,000,000

15,000,000

20,000,000

25,000,000

30,000,000

35,000,000

40,000,000

45,000,000

50,000,000

2008 2020 2030 2050year

colle

ctor

are

a (m

²)

-

10

20

30

40

50

60

70

80

90

100

perc

enta

ge r

ate

for

SC

S o

f the

w

hole

col

lect

or a

rea

(%)

whole collector area collector area for SCS SCS in % of the whole collector area

Fig. 20: SCS Potential for Austria - AMD-scenario

Regarding the RDP-scenario in Austria , the following results can be expected: In the short-term potential to 2020 , 6.18 million m² will be used for Solar Combisystems, which accounts for 25% of the whole collector area. This collector area corresponds to an energy production of 1.9 TWh which equals 612,000 tons CO2 emissions (oil equivalent) per year. In the medium-term potential to 2030 , 11.48 million m² will be used for Solar Combisystems, which accounts for 28% of the whole collector area. This collector area corresponds to an energy production of 3.6 TWh which equals 1,138,000 tons CO2 emissions (oil equivalent) per year. In the long-term potential to 2050 , 20.46 million m² will be used for Solar Combisystems, which accounts for 31% of the whole collector area (see diagram Fig. 21). This collector area corresponds to an energy production of 6.4 TWh which equals 2,027,000 tons CO2 emissions (oil equivalent) per year. Consequently about 50% of the detached houses would be equipped with a SCS in 2050.

Page 33: D6.4 EnergySavingsPotential4SCS Final · 2014-08-11 · 5.5 m² per inhabitant (RDP), which corresponds to 115 million m² (BAU) and 363 million m² (RDP), where 65.34 million m²

D6.4_Energy Savings Potential of Solar Combisystems page 33

AUSTRIA-solar potential SCS RDP-scenario

1,110,019 6,175,000

11,480,000

20,460,000

0

10,000,000

20,000,000

30,000,000

40,000,000

50,000,000

60,000,000

70,000,000

2008 2020 2030 2050year

colle

ctor

are

a (m

²)

-

10

20

30

40

50

60

70

80

90

100

perc

enta

ge r

ate

for

SC

S o

f the

w

hole

col

lect

or a

rea

(%)

whole collector area collector area for SCS SCS in % of the whole collector area

Fig. 21: SCS Potential for Austria - RDP-scenario

3.4 SCS Potential of Denmark

Regarding the BAU-scenario , the following results can be expected: In the short-term potential to 2020 , 22,000 m² will be used for Solar Combisystems, which accounts for 2% of the whole collector area. This collector area corresponds to an energy production of 7 GWh which equals 2,000 tons CO2 emissions (oil equivalent) per year. In the medium-term potential to 2030 , 180,000 m² will be used for Solar Combisystems, which accounts for 4% of the whole collector area. This collector area corresponds to an energy production of 55 GWh which equals 18,000 tons CO2 emissions (oil equivalent) per year. In the long-term potential to 2050 , 654,000 m² will be used for Solar Combisystems, which accounts for 6% of the whole collector area. (see diagram Fig. 22) This collector area corresponds to an energy production of 200 GWh which equals 64,000 tons CO2 emissions (oil equivalent) per year.

DENMARK-solar potential SCS BAU-scenario

22,000

654,000 180,000

4,548

-

2,000,000

4,000,000

6,000,000

8,000,000

10,000,000

12,000,000

2008 2020 2030 2050year

colle

ctor

are

a (m

²)

-

10

20

30

40

50

60

70

80

90

100

perc

enta

ge r

ate

for

SC

S o

f the

w

hole

col

lect

or a

rea

(%)

whole collector area collector area for SCS SCS in % of the whole collector area

Fig. 22: SCS Potential for Denmark - BAU-scenario

Page 34: D6.4 EnergySavingsPotential4SCS Final · 2014-08-11 · 5.5 m² per inhabitant (RDP), which corresponds to 115 million m² (BAU) and 363 million m² (RDP), where 65.34 million m²

D6.4_Energy Savings Potential of Solar Combisystems page 34

Regarding the AMD-scenario in Denmark , the following results can be expected: In the short-term potential to 2020 , 44,000 m² will be used for Solar Combisystems, which accounts for 2% of the whole collector area. This collector area corresponds to an energy production of 13 GWh which equals 4,000 tons CO2 emissions (oil equivalent) per year. In the medium-term potential to 2030 , 455,000 m² will be used for Solar Combisystems, which accounts for 5% of the whole collector area. This collector area corresponds to an energy production of 139 GWh which equals 44,000 tons CO2 emissions (oil equivalent) per year. In the long-term potential to 2050 , 2.32 million m² will be used for Solar Combisystems, which accounts for 8% of the whole collector area. (see diagram Fig. 23) This collector area corresponds to an energy production of 710 GWh which equals 226,000 tons CO2 emissions (oil equivalent) per year.

DENMARK-solar potential SCS AMD-scenario

4,548 44,000 455,000

2,320,000

-

5,000,000

10,000,000

15,000,000

20,000,000

25,000,000

30,000,000

35,000,000

2008 2020 2030 2050year

colle

ctor

are

a (m

²)

-

10

20

30

40

50

60

70

80

90

100

perc

enta

ge r

ate

for

SC

S o

f the

w

hole

col

lect

or a

rea

(%)

whole collector area collector area for SCS SCS in % of the whole collector area

Fig. 23: SCS Potential for Denmark - AMD-scenario

Regarding the RDP-scenario in Denmark , the following results can be expected: In the short-term potential to 2020 , 66,000 m² will be used for Solar Combisystems, which accounts for 2% of the whole collector area. This collector area corresponds to an energy production of 20 GWh which equals 6,000 tons CO2 emissions (oil equivalent) per year. In the medium-term potential to 2030 , 816,000 m² will be used for Solar Combisystems, which accounts for 6% of the whole collector area. This collector area corresponds to an energy production of 250 GWh which equals 44,000 tons CO2 emissions (oil equivalent) per year. In the long-term potential to 2050 , 4.34 million m² will be used for Solar Combisystems, which accounts for 10% of the whole collector area (see diagram Fig. 24). This collector area corresponds to an energy production of 1,328 GWh which equals 423,000 tons CO2 emissions (oil equivalent) per year. Consequently about 14% of the detached houses would be equipped with a SCS in 2050.

Page 35: D6.4 EnergySavingsPotential4SCS Final · 2014-08-11 · 5.5 m² per inhabitant (RDP), which corresponds to 115 million m² (BAU) and 363 million m² (RDP), where 65.34 million m²

D6.4_Energy Savings Potential of Solar Combisystems page 35

DENMARK-solar potential SCS RDP-scenario

4,548 66,000 816,000 4,340,000

0

5,000,000

10,000,000

15,000,000

20,000,000

25,000,000

30,000,000

35,000,000

40,000,000

45,000,000

50,000,000

2008 2020 2030 2050year

colle

ctor

are

a (m

²)

-

10

20

30

40

50

60

70

80

90

100

perc

enta

ge r

ate

for

SC

S o

f the

w

hole

col

lect

or a

rea

(%)

whole collector area collector area for SCS SCS in % of the whole collector area

Fig. 24: SCS Potential for Denmark - RDP-scenario

3.5 SCS Potential of France

Regarding the BAU-scenario , the following results can be expected: In the short-term potential to 2020 , 1.48 million m² will be used for Solar Combisystems, which accounts for 12% of the whole collector area. This collector area corresponds to an energy production of 0.5 TWh which equals 145,000 tons CO2 emissions (oil equivalent) per year. In the medium-term potential to 2030 , 9.88 million m² will be used for Solar Combisystems, which accounts for 13% of the whole collector area. This collector area corresponds to an energy production of 3 TWh which equals 970,000 tons CO2 emissions (oil equivalent) per year. In the long-term potential to 2050 , 16.10 million m² will be used for Solar Combisystems, which accounts for 14% of the whole collector area. (see diagram Fig. 25) This collector area corresponds to an energy production of 5 TWh which equals 1,580,000 tons CO2 emissions (oil equivalent) per year.

Page 36: D6.4 EnergySavingsPotential4SCS Final · 2014-08-11 · 5.5 m² per inhabitant (RDP), which corresponds to 115 million m² (BAU) and 363 million m² (RDP), where 65.34 million m²

D6.4_Energy Savings Potential of Solar Combisystems page 36

FRANCE-solar potential SCS BAU-scenario

1,476,000

16,100,000 9,880,000

279,936

-

20,000,000

40,000,000

60,000,000

80,000,000

100,000,000

120,000,000

140,000,000

2008 2020 2030 2050year

colle

ctor

are

a (m

²)

-

10

20

30

40

50

60

70

80

90

100

perc

enta

ge r

ate

for

SC

S o

f the

w

hole

col

lect

or a

rea

(%)

whole collector area collector area for SCS SCS in % of the whole collector area

Fig. 25: SCS Potential for France - BAU-scenario Regarding the AMD-scenario in France , the following results can be expected: In the short-term potential to 2020 , 2.60 million m² will be used for Solar Combisystems, which accounts for 12% of the whole collector area. This collector area corresponds to an energy production of 0.8 TWh which equals 256,000 tons CO2 emissions (oil equivalent) per year. In the medium-term potential to 2030 , 18.34 million m² will be used for Solar Combisystems, which accounts for 14% of the whole collector area. This collector area corresponds to an energy production of 5.6 TWh which equals 1,800,000 tons CO2 emissions (oil equivalent) per year. In the long-term potential to 2050 , 41.92 million m² will be used for Solar Combisystems, which accounts for 16% of the whole collector area. (see diagram Fig. 26 ) This collector area corresponds to an energy production of 3 TWh which equals 970,000 tons CO2 emissions (oil equivalent) per year.

FRANCE-solar potential SCS AMD-scenario

279,936 2,604,000 18,340,000

41,920,000

-

50,000,000

100,000,000

150,000,000

200,000,000

250,000,000

300,000,000

2008 2020 2030 2050year

colle

ctor

are

a (m

²)

-

10

20

30

40

50

60

70

80

90

100

perc

enta

ge r

ate

for

SC

S o

f the

w

hole

col

lect

or a

rea

(%)

whole collector area collector area for SCS SCS in % of the whole collector area

Fig. 26: SCS Potential for France - AMD-scenario

Page 37: D6.4 EnergySavingsPotential4SCS Final · 2014-08-11 · 5.5 m² per inhabitant (RDP), which corresponds to 115 million m² (BAU) and 363 million m² (RDP), where 65.34 million m²

D6.4_Energy Savings Potential of Solar Combisystems page 37

Regarding the RDP-scenario in France , the following results can be expected: In the short-term potential to 2020 , 3.61 million m² will be used for Solar Combisystems, which accounts for 12% of the whole collector area. This collector area corresponds to an energy production of 1.1 TWh which equals 354,000 tons CO2 emissions (oil equivalent) per year. In the medium-term potential to 2030 , 27.15 million m² will be used for Solar Combisystems, which accounts for 15% of the whole collector area. This collector area corresponds to an energy production of 8.4 TWh which equals 2,664,000 tons CO2 emissions (oil equivalent) per year. In the long-term potential to 2050 , 65.34 million m² will be used for Solar Combisystems, which accounts for 18% of the whole collector area (see diagram Fig. 27). This collector area corresponds to an energy production of 20.1 TWh which equals 6,412,000 tons CO2 emissions (oil equivalent) per year. Consequently about 15% of the detached houses would be equipped with a SCS in 2050.

FRANCE-solar potential SCS RDP-scenario

279,936 3,612,000 27,150,000

65,340,000

0

50,000,000

100,000,000

150,000,000

200,000,000

250,000,000

300,000,000

350,000,000

400,000,000

2008 2020 2030 2050year

colle

ctor

are

a (m

²)

-

10

20

30

40

50

60

70

80

90

100

perc

enta

ge r

ate

for

SC

S o

f the

w

hole

col

lect

or a

rea

(%)

whole collector area collector area for SCS SCS in % of the whole collector area

Fig. 27: SCS Potential for France - RDP-scenario

Page 38: D6.4 EnergySavingsPotential4SCS Final · 2014-08-11 · 5.5 m² per inhabitant (RDP), which corresponds to 115 million m² (BAU) and 363 million m² (RDP), where 65.34 million m²

D6.4_Energy Savings Potential of Solar Combisystems page 38

3.6 SCS Potential of Germany

Regarding the BAU-scenario , the following results can be expected: In the short-term potential to 2020 , 12.3 million m² will be used for Solar Combisystems, which accounts for 30% of the whole collector area. This collector area corresponds to an energy production of 3.8 TWh which equals 1.2 million tons CO2 emissions (oil equivalent) per year. In the medium-term potential to 2030 , 27.82 million m² will be used for Solar Combisystems, which accounts for 26% of the whole collector area. This collector area corresponds to an energy production of 8.6 TWh which equals 2.7 million tons CO2 emissions (oil equivalent) per year. In the long-term potential to 2050 , 33.00 million m² will be used for Solar Combisystems, which accounts for 20% of the whole collector area. (see diagram Fig. 28) This collector area corresponds to an energy production of 10.2 TWh which equals 3.3 million tons CO2 emissions (oil equivalent) per year.

GERMANY-solar potential SCS BAU-scenario

12,300,000 3,764,396

27,820,000 33,000,000

-

20,000,000

40,000,000

60,000,000

80,000,000

100,000,000

120,000,000

140,000,000

160,000,000

180,000,000

2008 2020 2030 2050year

colle

ctor

are

a (m

²)

-

10

20

30

40

50

60

70

80

90

100

perc

enta

ge r

ate

for

SC

S o

f th

e w

hole

col

lect

or a

rea

(%)

whole collector area collector area for SCS SCS in % of the whole collector area

Fig. 28: SCS Potential for Germany - BAU-scenario Regarding the AMD-scenario in Germany , the following results can be expected: In the short-term potential to 2020 , 24.90 million m² will be used for Solar Combisystems, which accounts for 30% of the whole collector area. This collector area corresponds to an energy production of 7.7 TWh which equals 2.5 million tons CO2 emissions (oil equivalent) per year. In the medium-term potential to 2030 , 60.21 million m² will be used for Solar Combisystems, which accounts for 27% of the whole collector area. This collector area corresponds to an energy production of 18.7 TWh which equals 5.9 million tons CO2 emissions (oil equivalent) per year. In the long-term potential to 2050 , 96.36 million m² will be used for Solar Combisystems, which accounts for 22% of the whole collector area. (see diagram Fig. 29) This collector area corresponds to an energy production of 29.9 TWh which equals 9.5 million tons CO2 emissions (oil equivalent) per year.

Page 39: D6.4 EnergySavingsPotential4SCS Final · 2014-08-11 · 5.5 m² per inhabitant (RDP), which corresponds to 115 million m² (BAU) and 363 million m² (RDP), where 65.34 million m²

D6.4_Energy Savings Potential of Solar Combisystems page 39

GERMANY-solar potential SCS AMD-scenario

24,900,000 60,210,000

3,764,396

96,360,000

-

50,000,000

100,000,000

150,000,000

200,000,000

250,000,000

300,000,000

350,000,000

400,000,000

450,000,000

500,000,000

2008 2020 2030 2050year

colle

ctor

are

a (m

²)

-

10

20

30

40

50

60

70

80

90

100

perc

enta

ge r

ate

for

SC

S o

f the

w

hole

col

lect

or a

rea

(%)

whole collector area collector area for SCS SCS in % of the whole collector area

Fig. 29: SCS Potential for Germany - AMD-scenario

Regarding the RDP-scenario in Germany , the following results can be expected: In the short-term potential to 2020 , 38.44 million m² will be used for Solar Combisystems, which accounts for 31% of the whole collector area. This collector area corresponds to an energy production of 11.9 TWh which equals 3.8 million tons CO2 emissions (oil equivalent) per year. In the medium-term potential to 2030 , 95.99 million m² will be used for Solar Combisystems, which accounts for 29% of the whole collector area. This collector area corresponds to an energy production of 29.8 TWh which equals 9.5 million tons CO2 emissions (oil equivalent) per year. In the long-term potential to 2050 , 152.26 million m² will be used for Solar Combisystems, which accounts for 23% of the whole collector area (see diagram Fig. 30). This collector area corresponds to an energy production of 47.2 TWh which equals 15.0 million tons CO2 emissions (oil equivalent) per year. Consequently about 67% of the detached houses would be equipped with a SCS in 2050.

GERMANY-solar potential SCS RDP-scenario

38,440,000

95,990,000

152,260,000

3,764,396

0

100,000,000

200,000,000

300,000,000

400,000,000

500,000,000

600,000,000

700,000,000

2008 2020 2030 2050year

colle

ctor

are

a (m

²)

-

10

20

30

40

50

60

70

80

90

100

perc

enta

ge r

ate

for

SC

S o

f the

w

hole

col

lect

or a

rea

(%)

whole collector area collector area for SCS SCS in % of the whole collector area

Fig. 30: SCS Potential for Germany - RDP-scenario

Page 40: D6.4 EnergySavingsPotential4SCS Final · 2014-08-11 · 5.5 m² per inhabitant (RDP), which corresponds to 115 million m² (BAU) and 363 million m² (RDP), where 65.34 million m²

D6.4_Energy Savings Potential of Solar Combisystems page 40

3.7 SCS Potential of Sweden

Regarding the BAU-scenario , the following results can be expected: In the short-term potential to 2020 , 910,000 m² will be used for Solar Combisystems, which accounts for 70% of the whole collector area. This collector area corresponds to an energy production of 0.3 TWh which equals 90,000 tons CO2 emissions (oil equivalent) per year. In the medium-term potential to 2030 , 3.77 million m² will be used for Solar Combisystems, which accounts for 65% of the whole collector area. This collector area corresponds to an energy production of 1.2 TWh which equals 372,000 tons CO2 emissions (oil equivalent) per year. In the long-term potential to 2050 , 8.64 million m² will be used for Solar Combisystems, which accounts for 60% of the whole collector area. (see diagram Fig. 31) This collector area corresponds to an energy production of 2.7 TWh which equals 853,000 tons CO2 emissions (oil equivalent) per year.

SWEDEN-solar potential SCS BAU-scenario

910,000 285,750

3,770,000

8,640,000

0

2,000,000

4,000,000

6,000,000

8,000,000

10,000,000

12,000,000

14,000,000

16,000,000

2008 2020 2030 2050year

colle

ctor

are

a (m

²)

-

10

20

30

40

50

60

70

80

90

100

perc

enta

ge r

ate

for

SC

S o

f the

w

hole

col

lect

or a

rea

(%)

whole collector area collector area for SCS SCS in % of the whole collector area

Fig. 31: SCS Potential for Sweden - BAU-scenario

Regarding the AMD-scenario in Sweden , the following results can be expected: In the short-term potential to 2020 , 1.61 million m² will be used for Solar Combisystems, which accounts for 70% of the whole collector area. This collector area corresponds to an energy production of 0.5 TWh which equals 159,000 tons CO2 emissions (oil equivalent) per year. In the medium-term potential to 2030 , 6.47 million m² will be used for Solar Combisystems, which accounts for 66% of the whole collector area. This collector area corresponds to an energy production of 2 TWh which equals 639,000 tons CO2 emissions (oil equivalent) per year. In the long-term potential to 2050 , 19.09 million m² will be used for Solar Combisystems, which accounts for 61% of the whole collector area. (see diagram Fig. 32) This collector area corresponds to an energy production of 5.9 TWh which equals 1,886,000 tons CO2 emissions (oil equivalent) per year.

Page 41: D6.4 EnergySavingsPotential4SCS Final · 2014-08-11 · 5.5 m² per inhabitant (RDP), which corresponds to 115 million m² (BAU) and 363 million m² (RDP), where 65.34 million m²

D6.4_Energy Savings Potential of Solar Combisystems page 41

SWEDEN-solar potential SCS AMD-scenario

6,468,000

285,750 1,610,000

19,093,000

-

5,000,000

10,000,000

15,000,000

20,000,000

25,000,000

30,000,000

35,000,000

2008 2020 2030 2050year

colle

ctor

are

a (m

²)

-

10

20

30

40

50

60

70

80

90

100

perc

enta

ge r

ate

for

SC

S o

f the

w

hole

col

lect

or a

rea

(%)

whole collector area collector area for SCS SCS in % of the whole collector area

Fig. 32: SCS Potential for Sweden - AMD-scenario

Regarding the RDP-scenario in Sweden , the following results can be expected: In the short-term potential to 2020 , 2.24 million m² will be used for Solar Combisystems, which accounts for 70% of the whole collector area. This collector area corresponds to an energy production of 0.7 TWh which equals 221,000 tons CO2 emissions (oil equivalent) per year. In the medium-term potential to 2030 , 8.98 million m² will be used for Solar Combisystems, which accounts for 67% of the whole collector area. This collector area corresponds to an energy production of 2.8 TWh which equals 887,000 tons CO2 emissions (oil equivalent) per year. In the long-term potential to 2050 , 26.72 million m² will be used for Solar Combisystems, which accounts for 62% of the whole collector area (see diagram Fig. 33). This collector area corresponds to an energy production of 8.3 TWh which equals 2,639,000 tons CO2 emissions (oil equivalent) per year. Consequently about 64% of the detached houses would be equipped with a SCS in 2050.

SWEDEN-solar potential SCS RDP-scenario

26,722,000

285,750 2,240,000

8,978,000

-

5,000,000

10,000,000

15,000,000

20,000,000

25,000,000

30,000,000

35,000,000

40,000,000

45,000,000

50,000,000

2008 2020 2030 2050year

colle

ctor

are

a (m

²)

-

10

20

30

40

50

60

70

80

90

100

perc

enta

ge r

ate

for

SC

S o

f the

w

hole

col

lect

or a

rea

(%)

whole collector area collector area for SCS SCS in % of the whole collector area

Fig. 33: SCS Potential for Sweden - RDP-scenario

Page 42: D6.4 EnergySavingsPotential4SCS Final · 2014-08-11 · 5.5 m² per inhabitant (RDP), which corresponds to 115 million m² (BAU) and 363 million m² (RDP), where 65.34 million m²

D6.4_Energy Savings Potential of Solar Combisystems page 42

4 References

[IEA, 2010] IEA SHC: Solar Heat Worldwide, Edition 2008, Werner Weiss, et.al., 2010 [ESTIF, 2009] “POTENTIAL OF SOLARTHERMAL IN EUROPE”, European Solar Thermal Industry

Federation (ESTIF), AEE – Institute for Sustainable Technologies (AEE INTEC), Werner Weiss and Vienna University of Technology – Energy Economics Group (EEG), Peter Biermayr

[IEA, 2002] IEA PVPS T7-4: “Potential for Building Integrated Photovoltaics” , Marcel Gutschner and Stefan Nowak, Nowak Energy & Technology, Switzerland and Daniel Ruoss and Peter Toggweiler from Enecolo and Tony Schoen, Ecofys