delay systems - coria · delay systems batz-sur-mer october 17-21 2011 thomas erneux université...

48
Delay systems Batz-sur-Mer October 17-21 2011 Thomas Erneux Université Libre de Bruxelles Optique Nonlinéaire Théorique T. Erneux, “Applied Delay Differential Equations”, Springer (2009)

Upload: others

Post on 08-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Delay systems - CORIA · Delay systems Batz-sur-Mer October 17-21 2011 Thomas Erneux Université Libre de Bruxelles Optique Nonlinéaire Théorique T. Erneux, “Applied Delay Differential

Delay systemsBatz-sur-Mer October 17-21 2011

Thomas ErneuxUniversité Libre de Bruxelles

Optique Nonlinéaire ThéoriqueT. Erneux, “Applied Delay Differential Equations”, Springer (2009)

Page 2: Delay systems - CORIA · Delay systems Batz-sur-Mer October 17-21 2011 Thomas Erneux Université Libre de Bruxelles Optique Nonlinéaire Théorique T. Erneux, “Applied Delay Differential

1. Familiar problems

2. Emerging problems

3. Delay equation ?

4. Biology

5. Engineering

6. Optical feedback

7. Stabilization with delay

8. Delayed negative feedback (Leon Glass)

9. Square-waves (Laurent Larger)

10.Control theory (Jean-Pierre Richard)

PLAN

Page 3: Delay systems - CORIA · Delay systems Batz-sur-Mer October 17-21 2011 Thomas Erneux Université Libre de Bruxelles Optique Nonlinéaire Théorique T. Erneux, “Applied Delay Differential

• The hot shower problem

( )( ( ) )

1

0.5 ( 0)

d

d

dT ta T t T

dta T

T t

τ

ττ

= − − −

= = == − < ≤

Delay: time for the increased (or decreased) hot/cold water to flow from the tap to the shower head

time t

T

Tdesired

Tcold

τ0

1. Familiar delay problems

Page 4: Delay systems - CORIA · Delay systems Batz-sur-Mer October 17-21 2011 Thomas Erneux Université Libre de Bruxelles Optique Nonlinéaire Théorique T. Erneux, “Applied Delay Differential

( )( ( ) )

1

0.5 ( 0)

d

d

dT ta T t T

dta T

T t

τ

ττ

= − − −

= = == − < ≤

2

1

8( )

0.36 : damped oscillations

/ 2 1.57 : growing oscillations

large: high human sensitivity

large: low , large

l

p R

a e

a

a

p l

µτ

ττ π

τ

=∆

> ≈> ≈

time t

T

Tdesired

Tcold

τ0

Page 5: Delay systems - CORIA · Delay systems Batz-sur-Mer October 17-21 2011 Thomas Erneux Université Libre de Bruxelles Optique Nonlinéaire Théorique T. Erneux, “Applied Delay Differential

• Remote controlImages are sent to Earth and a signal is sent back

For the Moon, the time delay in the control loop is 2-10 sFor Mars, it is 40 minutes !

Page 6: Delay systems - CORIA · Delay systems Batz-sur-Mer October 17-21 2011 Thomas Erneux Université Libre de Bruxelles Optique Nonlinéaire Théorique T. Erneux, “Applied Delay Differential

• Traffic flow

1 2

2 1 2a (t + τ) = α(v - v )

braking speed difference

τ: reaction time

Page 7: Delay systems - CORIA · Delay systems Batz-sur-Mer October 17-21 2011 Thomas Erneux Université Libre de Bruxelles Optique Nonlinéaire Théorique T. Erneux, “Applied Delay Differential

• Traffic flow

1 2

2 1 2

2 1 2

-1

1

1 2

a (t + τ) = α(v - v )

v '(t + τ) = α(v - v )

0.5 s , 1 s

v (km/h) 80 20( ) ( 0)

'

t t

d v v

α ττ τ

= == + − − ≤ <

= −

t/τ-1 0 1 2 3 4 5 6 7 8 9 10

d

4

5

6

7

8

9

10

11

-1 0 1 2 3 4 5 6 7 8 9 10

v

50

60

70

80

90

v1

v2

d

Page 8: Delay systems - CORIA · Delay systems Batz-sur-Mer October 17-21 2011 Thomas Erneux Université Libre de Bruxelles Optique Nonlinéaire Théorique T. Erneux, “Applied Delay Differential

1 2

2 1 2a (t + τ) = α(v - v )

: reaction timeτ

t/τ-1 0 1 2 3 4 5 6 7 8 9 10

v

60

70

80

90

τ = 1.5 s

τ = 1 s

sober driver

τ 1s

0.5g/l in blood

1 shot

= 2 glasses of wine

= 2 cans of beer

τ 1.5s

=

=

=

Page 9: Delay systems - CORIA · Delay systems Batz-sur-Mer October 17-21 2011 Thomas Erneux Université Libre de Bruxelles Optique Nonlinéaire Théorique T. Erneux, “Applied Delay Differential

• Wind instruments such as the clarinet

reed pressure waves

Researchers (J.-P. Dalmont Université du Maine) et J. Kergomard (Université d’Aix-Marseille) study how it works

Goal: synthesize the sound of a clarinet or a trumpet

Delay = round trip of the pressure wave

2. Emerging problems

Page 10: Delay systems - CORIA · Delay systems Batz-sur-Mer October 17-21 2011 Thomas Erneux Université Libre de Bruxelles Optique Nonlinéaire Théorique T. Erneux, “Applied Delay Differential

• Neuron synchronization (Parkinson disease)

Researchers J. Henry (INRIA Bordeaux)A. Beuter, J. Modolo (Université Bordeaux 2) model networks of coupled neurons

Tremors result from a a too synchronized population of neurons

What is the role of the delayed communication between neurons ?

Page 11: Delay systems - CORIA · Delay systems Batz-sur-Mer October 17-21 2011 Thomas Erneux Université Libre de Bruxelles Optique Nonlinéaire Théorique T. Erneux, “Applied Delay Differential

• Anticipation mechanismsThe reflex time is too long. Researchers think that the brain develop anticipation mechanisms to compensate for the delay.

For example, our hand is preparing itself to catch the ball

signal hand – brain = 0.1 s

signal round trip time = 0.2 s

Too long!

Page 12: Delay systems - CORIA · Delay systems Batz-sur-Mer October 17-21 2011 Thomas Erneux Université Libre de Bruxelles Optique Nonlinéaire Théorique T. Erneux, “Applied Delay Differential

( )( ) exp( )

dy tky t y A kt

dt= − → = −

t

y

3. Delay Equation ?

Page 13: Delay systems - CORIA · Delay systems Batz-sur-Mer October 17-21 2011 Thomas Erneux Université Libre de Bruxelles Optique Nonlinéaire Théorique T. Erneux, “Applied Delay Differential

( )( ) exp( )

dy tky t y A kt

dt= − → = −

( )( ) y sin( t)

if 2

dy tky t A

dtτ ω

πωτ

= − − → =

=

t

y

t

y

3. Delay Equation ?

Page 14: Delay systems - CORIA · Delay systems Batz-sur-Mer October 17-21 2011 Thomas Erneux Université Libre de Bruxelles Optique Nonlinéaire Théorique T. Erneux, “Applied Delay Differential

( )( ) exp( )

dy tky t y A kt

dt= − → = −

( )( ) y sin( t)

if 2

dy tky t A

dtτ ω

πωτ

= − − → =

=

t

y

t

y

[ ]

Check

cos( ) sin( ( ))

cos( ) sin( ) cos( ) cos( ) sin( )

(1) sin( ) (2) cos( ) 0

/ 2 and

A t kA t

t k t t

k

k

ω ω ω τω ω ω ωτ ω ωτ

ω ωτ ωτωτ π ω

= − −= − −

= == =

3. Delay Equation ?

Page 15: Delay systems - CORIA · Delay systems Batz-sur-Mer October 17-21 2011 Thomas Erneux Université Libre de Bruxelles Optique Nonlinéaire Théorique T. Erneux, “Applied Delay Differential

1. A time delay is taken into account when a mechanical or physiological feedback takes time

2. Oscillatory regimes possible

Summary

Page 16: Delay systems - CORIA · Delay systems Batz-sur-Mer October 17-21 2011 Thomas Erneux Université Libre de Bruxelles Optique Nonlinéaire Théorique T. Erneux, “Applied Delay Differential

2009 – 2011

1. T. Erneux, “Applied Delay Differential Equations”, Springer (2009)2. A. Balachandran, T. Kamár-Nagy, D.E. Gilsinn, Eds. “Delay Differential

Equations, Recent Advances and New Directions”, Springer (2009)3. F.M. Atay, Ed. “Complex Time-Delay Systems” , Springer (2010)4. Theme Issue “Delay effects in brain dynamics” compiled by G. Stepan,

Phil. Trans. Roy. Soc A 367, 1059 (2009)5. Theme Issue “Delayed complex systems” compiled by W. Just, A. Pelster,

M. Schanz and E. Schöll, Phil. Trans. Roy. Soc A 368, 303 (2010)6. Special Issue on Time Delay Systems, T. Kalmár-Nagy, N. Olgac, and G.

Stépán, Eds., J. Vibration & Control, June/July 16 (2010)7. Hal Smith, An Introduction to Delay Differential Equations with

Applications to the Life Sciences, Springer (2010)8. M. Lakshmanan and D.V. Senthilkumar, Dynamics of Nonlinear Time-

Delay Systems , Springer Series in Synergetics (2011)9. T. Insperger and G. Stépán, Semi-discretization for time-delay systems –

Engineering applications, Springer (2011)

Page 17: Delay systems - CORIA · Delay systems Batz-sur-Mer October 17-21 2011 Thomas Erneux Université Libre de Bruxelles Optique Nonlinéaire Théorique T. Erneux, “Applied Delay Differential

Population dynamics• Density of lemmings (number of individuals per hectare) in the Churchill area in

Canada (T.J. Case, Oxford 2002)

broken line: solution of the

delayed logistic equation

(1 ( ))

r 1/(0.3 years),

τ 0.72 years

dNrN N t

dtτ= − −

==Delay: the population growth depends on the

present food levels

Plant levels depends on the number of grazers that lived between now and τ time steps earlier

4. Biology

Page 18: Delay systems - CORIA · Delay systems Batz-sur-Mer October 17-21 2011 Thomas Erneux Université Libre de Bruxelles Optique Nonlinéaire Théorique T. Erneux, “Applied Delay Differential

• The pupil eye reflex(Beuter et al. Eds., Nonlinear Dynamics in Physiolog y and Medicine, Springer 2003)

When a narrow pencil of light is placed at the iris margin, a cycle of contraction and dilatation of the pupil is possible

P = 0,9 s useful for clinical tests

τ = 0,3 s

Slit lamp beam

Page 19: Delay systems - CORIA · Delay systems Batz-sur-Mer October 17-21 2011 Thomas Erneux Université Libre de Bruxelles Optique Nonlinéaire Théorique T. Erneux, “Applied Delay Differential

• Physiological diseases• Sustained periodic breathing (PB)

patients with cardiac problems sleep in altitude

( ( ))

dpM pV p t

dtτ= − −

↑ ↑

Model p = pressure of CO2

production ventilation

CO2 high in lungs Blood carried the information to the brain The brain commands ventilation of the lungs after a delay τ (0.3 – 0.5 minutes)

• Blood disorders showing oscillatory clinical data

Page 20: Delay systems - CORIA · Delay systems Batz-sur-Mer October 17-21 2011 Thomas Erneux Université Libre de Bruxelles Optique Nonlinéaire Théorique T. Erneux, “Applied Delay Differential

Control air/fuel ratio (best 15:1 = 15 parts of air for one part of fuel)

sensors

5. Engineering

Page 21: Delay systems - CORIA · Delay systems Batz-sur-Mer October 17-21 2011 Thomas Erneux Université Libre de Bruxelles Optique Nonlinéaire Théorique T. Erneux, “Applied Delay Differential

• Mechanical engineering

High speed machining (aeronautics, tool fabrication)

Danger: self-sustained vibrations = chatter

Page 22: Delay systems - CORIA · Delay systems Batz-sur-Mer October 17-21 2011 Thomas Erneux Université Libre de Bruxelles Optique Nonlinéaire Théorique T. Erneux, “Applied Delay Differential

22

[ ]20

Tool equation:

'' ' ( ) y y y F y y tε ω τ+ + = − −

Stépan, Retarded Dynamical Systems, Longman, London, 1989

Machine-tool vibrations chatter instabilities

-1 -20

-1 -1 -2

ω 579 s T 10 s

14 turns s τ Ω 7 10 s

= → ≈

Ω = → = = ×

wave fromcurrent pass

y(t)

wave fromprevious pass

y(t-τ)

Page 23: Delay systems - CORIA · Delay systems Batz-sur-Mer October 17-21 2011 Thomas Erneux Université Libre de Bruxelles Optique Nonlinéaire Théorique T. Erneux, “Applied Delay Differential

23

• Semiconductor laser-12

photons

-9round-trip

τ 10 s

τ 10 s

=

=

6. Optical feedback

Page 24: Delay systems - CORIA · Delay systems Batz-sur-Mer October 17-21 2011 Thomas Erneux Université Libre de Bruxelles Optique Nonlinéaire Théorique T. Erneux, “Applied Delay Differential

24

• Semiconductor laser-12

photons

-9round-trip

τ 10 s

τ 10 s

=

=

Large delay = oscillations = noise

Undesirable in optical communication

6. Optical feedback

Page 25: Delay systems - CORIA · Delay systems Batz-sur-Mer October 17-21 2011 Thomas Erneux Université Libre de Bruxelles Optique Nonlinéaire Théorique T. Erneux, “Applied Delay Differential

y'' y 0

'' ( )

delayed control

' ...

' ..

'' ' 0

damping

y y y t y

y y y

y

y y y

τ

ττ

τ

+ =

+ = − −

= − + −= − +

+ + =↑

t0 5 10 15 20

y

-1.0

-0.5

0.0

0.5

1.0

t0 5 10 15 20

y

-1.0

-0.5

0.0

0.5

1.0

τ = 0.5

7. Stabilization with delay

Page 26: Delay systems - CORIA · Delay systems Batz-sur-Mer October 17-21 2011 Thomas Erneux Université Libre de Bruxelles Optique Nonlinéaire Théorique T. Erneux, “Applied Delay Differential

Container cranesGoal: move the container fast (24 tons)Danger: oscillations

Idea: use a delayed control

y

2

2( ) ( ( ) )

d yF y k y t y

dtτ= + − −

↑ ↑Newton delayed control

Erneux and Kalmár-Nagy, J. of Vib. and Contr. 13 603–6 16 (2007) Erneux, J. of Vib. and Contr. 16, 1141-1149 (2010)

Page 27: Delay systems - CORIA · Delay systems Batz-sur-Mer October 17-21 2011 Thomas Erneux Université Libre de Bruxelles Optique Nonlinéaire Théorique T. Erneux, “Applied Delay Differential

Model scale 1:10for a 65 tons crane Masoud and DaqaqJJMIE 1, 57 (2007)

Results:

Oscillations are quickly damped when the control in ON

Page 28: Delay systems - CORIA · Delay systems Batz-sur-Mer October 17-21 2011 Thomas Erneux Université Libre de Bruxelles Optique Nonlinéaire Théorique T. Erneux, “Applied Delay Differential

Summary

• Oscillatory instabilities caused by a delay occur in all scientific disciplines

• The way we explore them depends on our background

• A delayed feedback can be used to stabilize a system

Page 29: Delay systems - CORIA · Delay systems Batz-sur-Mer October 17-21 2011 Thomas Erneux Université Libre de Bruxelles Optique Nonlinéaire Théorique T. Erneux, “Applied Delay Differential

1. Negative feedback

1

1 p

dyby

dt y= −

+

protein

A protein represses the transcription of its own gene [for example, PER in the circadian control system of fruit flies]

τ is the time delay that is required for transcription and translation

2. Delayed negative feedback

1

1 ( )p

dyby

dt y t τ= −

+ −

8. Delayed negative feedback (Leon)

Page 30: Delay systems - CORIA · Delay systems Batz-sur-Mer October 17-21 2011 Thomas Erneux Université Libre de Bruxelles Optique Nonlinéaire Théorique T. Erneux, “Applied Delay Differential

Numerous applications in biology• Mackey 1996: Periodic crashes in circulating red blood cells (RBC).

p = 7.6 τ = 1.8• Pupil eye reflex

Other sciencesEl-Nino/Southern-Oscillations (ENSO) variabilityForced DDE for surface Temperature T (Ghil 2008, 2009)

Delayed negative feedback

1

1 ( )p

dyby

dt y t τ= −

+ −

tanh( ( )) cos(2 )dT

T t tdt

κ τ π= − − +

Delayed negative feedback atmosphere – ocean coupling Seasonal cycle in the trade winds

κ = 100, τ = 0.01 κ = 100, τ = 0.01 κ = 100, τ = 0.01 κ = 100, τ = 0.01 −−−− 1111

Page 31: Delay systems - CORIA · Delay systems Batz-sur-Mer October 17-21 2011 Thomas Erneux Université Libre de Bruxelles Optique Nonlinéaire Théorique T. Erneux, “Applied Delay Differential

1

2

1

2

1

1 ( )

1 11. Steady state : 0

1 (1 )

2. Stability : ( | | 1)

( )(1 )

3. Try : exp( )

exp( ) exp( ((1 )

p

sp ps s s

s

ps

ps

ps

ps

dyby

dt y t

by by y y

y y u u

pyduu t bu

dt y

u c t

pyc t c

y

τ

τ

λ

λ λ λ

= −+ −

− = → =+ +

= + <<

→ = − − −+

=

= −+

1

2

1

)) exp( )

exp( )(1 )

exp( )

is the characteristic equation for

ps

ps

ps

t bc t

pyb

y

pby b

τ λ

λ λτ

λ λτλ

+

− −

= − − −+

→ = − − −

Page 32: Delay systems - CORIA · Delay systems Batz-sur-Mer October 17-21 2011 Thomas Erneux Université Libre de Bruxelles Optique Nonlinéaire Théorique T. Erneux, “Applied Delay Differential

1

1

1

1

1

2 1 1

1

(1 )

exp( )

Hopf conditions

exp( )

Re : 0 cos( )

Im : sin( )

3 equations for b, y and

2

1

1 ln( ) ( )

ps s

ps

ps

ps

ps

s

H

H

by y

pby b

i

i pby i b

pby b

pby

p

bp

bp p O p

λ λτλ ω

ω ωτωτ

ω ωτω

πτ

+

+

+

+

− −

=+

= − − −=

= − − −

= − −

=

→ ∞

≈− + p=20

τ0.0 0.5 1.0 1.5 2.0

b

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1

2

Page 33: Delay systems - CORIA · Delay systems Batz-sur-Mer October 17-21 2011 Thomas Erneux Université Libre de Bruxelles Optique Nonlinéaire Théorique T. Erneux, “Applied Delay Differential

min

1 1max

1

1 ( )

0 ( ) 1by

1 ( ) 1

y exp( b )

y (1 b )exp( b ) b

p

dyby

dt y t

p

y tdy

y tdt

τ

ττ

ττ− −

= −+ −

→ ∞− >

= − +− <

= −

= − − +b = 0.4, p = 20, τ = 1.8

t-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

y

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

y(t - τ)

Page 34: Delay systems - CORIA · Delay systems Batz-sur-Mer October 17-21 2011 Thomas Erneux Université Libre de Bruxelles Optique Nonlinéaire Théorique T. Erneux, “Applied Delay Differential

b0.0 0.5 1.0

0

1

2

3

0

1

2

3p = = = = 7.6

p = = = = 20

y

y

Bifurcation diagrams

min

1 1max

y exp( b )

y (1 b )exp( b ) b

ττ− −

= −

= − − +

Page 35: Delay systems - CORIA · Delay systems Batz-sur-Mer October 17-21 2011 Thomas Erneux Université Libre de Bruxelles Optique Nonlinéaire Théorique T. Erneux, “Applied Delay Differential

35

0.0 0.2 0.4 0.6 0.8 1.0 1.2

x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

b0.0 0.2 0.4 0.6 0.8 1.0 1.2

period/τ

2.5

3.0

3.5

4.0

4.5

5.0

min

1 1max

1 max min

min max

p 20

y exp( b )

y (1 b )exp( b ) b

1period ln

1

by yb

by y

ττ− −

=

= −

= − − +

−= − −

Page 36: Delay systems - CORIA · Delay systems Batz-sur-Mer October 17-21 2011 Thomas Erneux Université Libre de Bruxelles Optique Nonlinéaire Théorique T. Erneux, “Applied Delay Differential

36

1

1

( ( 1))

0

( ( 1)) 0

( )n n

dxx f x t

dt

x f x t

x f x

ε

ε τ

ε

+

= − + −

→− + − =

=

t2000 2002 2004 2006 2008 2010

x(t)

1.0

1.5

2.0

2.5

3.0

3.5

2τ – periodic square - waves of scalar DDEs

1983 - 1996: S.N. Chow, J. Mallet-Paret, R.D. Nussbaum, J.K. Hale and W. Huang

9. Square-waves (Laurent)

Page 37: Delay systems - CORIA · Delay systems Batz-sur-Mer October 17-21 2011 Thomas Erneux Université Libre de Bruxelles Optique Nonlinéaire Théorique T. Erneux, “Applied Delay Differential

37

' - ( ( -1))

11 cos( ( 1))

2

x x f x t

f x t

ε

β

= +

= + −

Larger et al. JOSA B 18, 1063 (2001)

Experiments using an optoelectronic oscillator modeled by a scalar DDE

Page 38: Delay systems - CORIA · Delay systems Batz-sur-Mer October 17-21 2011 Thomas Erneux Université Libre de Bruxelles Optique Nonlinéaire Théorique T. Erneux, “Applied Delay Differential

38

1

' - ( ( -1))

11 cos( ( 1))

2

( ( 1)) 0

( )n n

x x f x t

f x t

x f x t

x f x

ε

β

+

= +

= + −

− + − ==

Hopf1 Hopf2 Chaos

map 2.08 5.04 6.59

experiment 2.07 5.30 6.69

Larger et al. JOSA B 18, 1063 (2001)

Experiments using an optoelectronic oscillator modeled by a scalar DDE

β1 2 3 4 5 6 7 8

xn

0

2

4

6

8

10

12

Page 39: Delay systems - CORIA · Delay systems Batz-sur-Mer October 17-21 2011 Thomas Erneux Université Libre de Bruxelles Optique Nonlinéaire Théorique T. Erneux, “Applied Delay Differential

39

Experiments in Besançon

Opto electronic oscillator

- periodic solutionτ

Page 40: Delay systems - CORIA · Delay systems Batz-sur-Mer October 17-21 2011 Thomas Erneux Université Libre de Bruxelles Optique Nonlinéaire Théorique T. Erneux, “Applied Delay Differential

40

-3 -3

'

' ( ( 1))

ε 10 δ 8 10

y x

x x y f x tε δ== − − + −

= = ×

Page 41: Delay systems - CORIA · Delay systems Batz-sur-Mer October 17-21 2011 Thomas Erneux Université Libre de Bruxelles Optique Nonlinéaire Théorique T. Erneux, “Applied Delay Differential

41

-3 -3

'

' ( ( 1))

ε 10 δ 8 10

y x

x x y f x tε δ== − − + −

= = ×

10007 10008 10009 s

x

-0.8

0.0

0.8

s0

0.5 1.0 1.5 2.0β β0.5 1.0 1.5 2.0

s0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

1 - s0(a) (b) (c)

Numerical solution Asymptotic analysis

Page 42: Delay systems - CORIA · Delay systems Batz-sur-Mer October 17-21 2011 Thomas Erneux Université Libre de Bruxelles Optique Nonlinéaire Théorique T. Erneux, “Applied Delay Differential

10. Control theory (Jean-Pierre)

x' ax

x 0 stable if a0

Can we do better?

x' ax bx(t 1)

== <

= + −

control

Page 43: Delay systems - CORIA · Delay systems Batz-sur-Mer October 17-21 2011 Thomas Erneux Université Libre de Bruxelles Optique Nonlinéaire Théorique T. Erneux, “Applied Delay Differential

x' ax bx(t 1) = + −

The characteristic equation is

a bexp(- ) 0

real: exp( )( )

complex:

exp( )cos( ) 0

exp( )sin( ) 0

b a

i

a b

b

σ σσ σ σσ σ γ ωγ γ ωω γ ω

− − == −

= +− − − =+ − =

Page 44: Delay systems - CORIA · Delay systems Batz-sur-Mer October 17-21 2011 Thomas Erneux Université Libre de Bruxelles Optique Nonlinéaire Théorique T. Erneux, “Applied Delay Differential

a-3 -2 -1 0 1 2

b

-3

-2

-1

0

1

2

σ=0

σ=iω

stable

x' ax bx(t 1) = + −

The characteristic equation is

a bexp(- ) 0

real: exp( )( )

complex:

exp( )cos( ) 0

exp( )sin( ) 0

b a

i

a b

b

σ σσ σ σσ σ γ ωγ γ ωω γ ω

− − == −

= +− − − =+ − =

tan( )tan( )

xp( )sin( )

0 :

0 : , tan( ) sin( )

aa

b e

b a

a b

ω ωω γγ ω

ωγω

σω ωγ

ω ω

= − → = −−

= −

= = −

= = = −

Stable if a 1<

Page 45: Delay systems - CORIA · Delay systems Batz-sur-Mer October 17-21 2011 Thomas Erneux Université Libre de Bruxelles Optique Nonlinéaire Théorique T. Erneux, “Applied Delay Differential

Act and wait

x' ax G(t)x(t 1)

0 (0 1)G(t)

(1 2)

( ) ( 2 ) 1,2,...

t

b t

G t G t k k

= + −

< <=

< <= + =

Page 46: Delay systems - CORIA · Delay systems Batz-sur-Mer October 17-21 2011 Thomas Erneux Université Libre de Bruxelles Optique Nonlinéaire Théorique T. Erneux, “Applied Delay Differential

a-3 -2 -1 0 1 2

b

-5

-4

-3

-2

-1

0

1

2

µ=1µ=0

µ=−1

stable0 0

0

0

Act and wait

x' ax G(t)x(t 1)

0 (0 1)G(t)

(1 2)

( ) ( 2 ) 1,2,...

0 1: ' , (0) exp( )

1 2 : ' exp( ( 1)),

(1) exp( )

At

t

b t

G t G t k k

t x ax x x x x at

t x ax bx a t

x x a

= + −

< <=

< <= + =

< < = = → =

< < = + −=

0 0

t 2

x(2) exp(2 )(1 exp( ))

stable if | | 1, when t 2k increases

The stability domain is limited by the lines 1

x a b a xµµ

µ

== + − =

< == ±

stable if a 1>

Page 47: Delay systems - CORIA · Delay systems Batz-sur-Mer October 17-21 2011 Thomas Erneux Université Libre de Bruxelles Optique Nonlinéaire Théorique T. Erneux, “Applied Delay Differential

a-3 -2 -1 0 1 2

b

-5

-4

-3

-2

-1

0

1

2

µ=1µ=0

µ=−1

stable

Full delayed feedback control

' ( 1)

stable if 1

Act and wait control

x' ax G(t)x(t 1)

0 (0 1)G(t)

(1 2)

( ) ( 2 ) 1,2,...

stable if 1

x ax bx t

a

t

b t

G t G t k k

a

= + −<

= + −

< <=

< <= + =

>

a-3 -2 -1 0 1 2

b

-3

-2

-1

0

1

2

σ=0

σ=iω

stable

Page 48: Delay systems - CORIA · Delay systems Batz-sur-Mer October 17-21 2011 Thomas Erneux Université Libre de Bruxelles Optique Nonlinéaire Théorique T. Erneux, “Applied Delay Differential

SummaryAnalytical tools

1. Delayed negative feedback

• Linear stability and Hopf bifurcation

• Delay is moderate but feedback can be strong (limit of strong feedback)

2. Square-waves

• The large delay limit and maps

3. Control theory

• New forms of delayed feedback are designed