development of affordable bioelectronic interfaces using medically relevant soluble enzymes brian l....

23
Development of Affordable Bioelectronic Interfaces Using Medically Relevant Soluble Enzymes Brian L. Hassler 1 , Maris Laivenieks 2 , Claire Vieille 2 , J. Gregory Zeikus 2 , and Robert M. Worden 1 1 -Department of Chemical Engineering and Materials Science 2 -Department of Biochemistry and Molecular Biology Michigan State University, East Lansing, Michigan 2006 AIChE Annual Meeting San Francisco, CA

Upload: evelyn-mcdonald

Post on 17-Jan-2016

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Development of Affordable Bioelectronic Interfaces Using Medically Relevant Soluble Enzymes Brian L. Hassler 1, Maris Laivenieks 2, Claire Vieille 2, J

Development of Affordable Bioelectronic Interfaces Using Medically Relevant Soluble Enzymes

Brian L. Hassler1, Maris Laivenieks2, Claire Vieille2, J. Gregory Zeikus2, and Robert M. Worden1

1-Department of Chemical Engineering and Materials Science2-Department of Biochemistry and Molecular Biology

Michigan State University, East Lansing, Michigan

2006 AIChE Annual MeetingSan Francisco, CA

Page 2: Development of Affordable Bioelectronic Interfaces Using Medically Relevant Soluble Enzymes Brian L. Hassler 1, Maris Laivenieks 2, Claire Vieille 2, J

Presentation Outline Motivation Dehydrogenase enzymes Formation of bioelectronic interfaces Characterization techniques Results Summary

Page 3: Development of Affordable Bioelectronic Interfaces Using Medically Relevant Soluble Enzymes Brian L. Hassler 1, Maris Laivenieks 2, Claire Vieille 2, J

Motivation Rapid detection Identification of multiple analytes High throughput screening Affordable fabrication

Page 4: Development of Affordable Bioelectronic Interfaces Using Medically Relevant Soluble Enzymes Brian L. Hassler 1, Maris Laivenieks 2, Claire Vieille 2, J

Dehydrogenase Enzymes Catalyze electron transfer reactions Cofactor dependence: NAD(P)+

Challenge: cofactor recycling

Substrate

Product

NAD(P)+

NAD(P)HDehydrogenase

Enzyme Reaction

cofactorcofactorenzymeenzymeSubstrate

Product

NAD(P)+

NAD(P)HDehydrogenase

Enzyme Reaction

cofactorcofactorenzymeenzyme

MEDox

MEDred

Cofactor Regeneration

mediatormediator

Page 5: Development of Affordable Bioelectronic Interfaces Using Medically Relevant Soluble Enzymes Brian L. Hassler 1, Maris Laivenieks 2, Claire Vieille 2, J

Enzyme Interface Assembly Cysteine: branched, trifunctional linker

Thiol group: self assembles on gold Carboxyl group: binds to electron mediator Amine group: binds to cofactor

Mediator used Toluidine Blue O (TBO)

HS

O

CH3

N

S

N

H3C

H3C

NH

HN

O

O

O B

P

O

O

O

O P

O

O

HO

O

N

N

NN

NH2

O

OH

OHN

O

NH2

O

O

O

Page 6: Development of Affordable Bioelectronic Interfaces Using Medically Relevant Soluble Enzymes Brian L. Hassler 1, Maris Laivenieks 2, Claire Vieille 2, J

Reaction Mechanism

Hassler et al., Biosensors and Bioelectronics, 21(11), 2146-2154 (2006)

Cysteine TBO

EDC+/NHS*

CBA

EDC/NHSGold Gold Gold Gold

NAD(P)+ Protein

Gold Gold Gold

*N-Hydroxysulfosuccinimide +N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide

Page 7: Development of Affordable Bioelectronic Interfaces Using Medically Relevant Soluble Enzymes Brian L. Hassler 1, Maris Laivenieks 2, Claire Vieille 2, J

Presentation Outline Motivation Sensing mechanisms Formation of bioelectronic interfaces Characterization techniques Results Summary

Page 8: Development of Affordable Bioelectronic Interfaces Using Medically Relevant Soluble Enzymes Brian L. Hassler 1, Maris Laivenieks 2, Claire Vieille 2, J

Chronoamperometry Technique:

Step change in potential Measure current vs. time

Parameters obtained: Electron transfer coefficients (ket) Charge (Q) Surface coverage ()

Time

Po

ten

tia

l

E1

E2

Time

Cu

rre

nt

Q

nFA

' ' " "

et et et et

' 'I = k Qexp(-k t)+k Qexp(-k t)*

et etI = k Q exp(-k t)

*

Zayats et al., Journal of the American Chemical Society, 124, 14724-15735 (2002)Katz, E. and I. Willner, Langmuir, 13(13), 3364-3373 (1997)

Page 9: Development of Affordable Bioelectronic Interfaces Using Medically Relevant Soluble Enzymes Brian L. Hassler 1, Maris Laivenieks 2, Claire Vieille 2, J

Cyclic Voltammetry Technique:

Conduct potential sweep Measure current

Parameters obtained: Sensitivity (slope) Maximum turnover (TRmax)

max

satcat oI I

TRFn A

Time

Po

ten

tia

l

E1

E2

E1

Potential

Cu

rre

nt

ConcentrationC

urr

ent

Page 10: Development of Affordable Bioelectronic Interfaces Using Medically Relevant Soluble Enzymes Brian L. Hassler 1, Maris Laivenieks 2, Claire Vieille 2, J

Constant Potential Amperometry Technique:

Set constant potential Vary analyte concentration

Parameters obtained: Sensitivity

Time

Cu

rre

nt

Concentration

Cu

rren

t

Page 11: Development of Affordable Bioelectronic Interfaces Using Medically Relevant Soluble Enzymes Brian L. Hassler 1, Maris Laivenieks 2, Claire Vieille 2, J

Presentation Outline Motivation Sensing mechanisms Formation of bioelectronic interfaces Characterization techniques Results Summary

Page 12: Development of Affordable Bioelectronic Interfaces Using Medically Relevant Soluble Enzymes Brian L. Hassler 1, Maris Laivenieks 2, Claire Vieille 2, J

The Current System Protein array

4 working electrodes Diameter: 3 mm Counter electrode

Electrode formation: Reservoir in PDMS*

Molecular self-assembly Different enzymes

* Polydimethylsiloxane (PDMS)

Page 13: Development of Affordable Bioelectronic Interfaces Using Medically Relevant Soluble Enzymes Brian L. Hassler 1, Maris Laivenieks 2, Claire Vieille 2, J

Sorbitol Dehydrogenase (SDH) Organism: Pseudomonas sp. KS-E1806 Cofactor dependence: NAD+

Temperature stability: 30-50C

Sorbitol

Fructose

NAD+

NADHDehydrogenase

Enzyme Reaction

cofactorcofactorenzymeenzyme

MEDox

MEDred

Cofactor Regeneration

mediatormediator

Page 14: Development of Affordable Bioelectronic Interfaces Using Medically Relevant Soluble Enzymes Brian L. Hassler 1, Maris Laivenieks 2, Claire Vieille 2, J

Chronoamperometric Response Substrate: Sorbitol Concentration: 5 mM Kinetic parameters:

k’= 690 s-1

k”= 87 s-1

Surface coverage: ’= 8.710-12 mol cm-2

”= 8.010-12 mol cm-2

0

20

40

60

80

100

120

0 0.01 0.02 0.03 0.04 0.05

Time (s)

Cu

rren

t (m

A)

Page 15: Development of Affordable Bioelectronic Interfaces Using Medically Relevant Soluble Enzymes Brian L. Hassler 1, Maris Laivenieks 2, Claire Vieille 2, J

Cyclic Voltammetric Response Concentration range: 3-21 mM Sensitivity: 3.4 mA mM-1 cm-2

TRmax=38 s-1

-15

-10

-5

0

5

10

15

-300-100100300

Voltage (mV)

Cu

rren

t (m

A)

0

2

4

6

8

10

12

14

0 10 20 30

Concentration (mM)

Cu

rren

t (m

A)

Page 16: Development of Affordable Bioelectronic Interfaces Using Medically Relevant Soluble Enzymes Brian L. Hassler 1, Maris Laivenieks 2, Claire Vieille 2, J

Amperometric Response Potential: -200 mV Concentration range: 1-6 mM Sensitivity: 2.8 mA mM-1 cm-2

0

1

2

3

4

5

0 20 40 60 80

Time (s)

Cu

rren

t (m

A)

0

2

4

6

8

10

0 2 4 6 8

Concentration (mM)

Cu

rren

t (m

A)

Page 17: Development of Affordable Bioelectronic Interfaces Using Medically Relevant Soluble Enzymes Brian L. Hassler 1, Maris Laivenieks 2, Claire Vieille 2, J

Other Enzymes UsedMannitol dehydrogenase

Organism: Lactobacillus reuteri Reaction: Fructose Mannitol Cofactor specificity: NAD+

Thermal stability: 50C-90C

Page 18: Development of Affordable Bioelectronic Interfaces Using Medically Relevant Soluble Enzymes Brian L. Hassler 1, Maris Laivenieks 2, Claire Vieille 2, J

Other Enzymes UsedSecondary alcohol dehydrogenase

Organism: Thermoanaerobacter ethanolicus Reaction: 2-Propanol Acetone Cofactor specificity: NADP+

Thermal stability: 30C-100C

Page 19: Development of Affordable Bioelectronic Interfaces Using Medically Relevant Soluble Enzymes Brian L. Hassler 1, Maris Laivenieks 2, Claire Vieille 2, J

Chronoamperometric Results

* Chronoamperometric measurements were made at a concentration of 5 mM of the substrate.

Enzyme Substrate

k'et(s-1) k"et(s

-1) '(10-12 mol cm-2) "(10-12 mol cm-2)SDH Sorbitol 6843.2 870.3 8.70.4 8.00.9MDH Mannitol 5059.3 452.1 7.20.3 6.00.1

2 ADH 2-Propanol 69013 NA 161.3 NA

Electron Transfer Coefficient Surface Coverage

Page 20: Development of Affordable Bioelectronic Interfaces Using Medically Relevant Soluble Enzymes Brian L. Hassler 1, Maris Laivenieks 2, Claire Vieille 2, J

Cyclic Voltammetry Results

Enzyme Substrate Saturation Current Sensitivity Turnover Rate

(Isat-mA) (mA mM-1 cm-2) Low (mM) High (mM) (s-1)SDH Sorbitol 11.60.3 3.40.4 3 21 38.11.2MDH Mannitol 9.90.1 8.40.5 1 11 20.10.32 ADH 2-Propanol 7.10.4 2.50.2 3 21 28.50.4

Concentration Range

Page 21: Development of Affordable Bioelectronic Interfaces Using Medically Relevant Soluble Enzymes Brian L. Hassler 1, Maris Laivenieks 2, Claire Vieille 2, J

Conclusions Developed self-assembling biosensor array Multiple analyte detection

Sorbitol Mannitol 2-Propanol

Characterized interfaces electrochemically Chronoamperometry Cyclic voltammetry Constant potential amperometry

Page 22: Development of Affordable Bioelectronic Interfaces Using Medically Relevant Soluble Enzymes Brian L. Hassler 1, Maris Laivenieks 2, Claire Vieille 2, J

Acknowledgments- Ted Amundsen (CHEMS-MSU) Yue Huang (EECS-MSU) Kikkoman Corporation Funding sources

Michigan Technology Tri-Corridor (MTTC) IRGP programs at MSU Department of Education GAANN Fellowship

Page 23: Development of Affordable Bioelectronic Interfaces Using Medically Relevant Soluble Enzymes Brian L. Hassler 1, Maris Laivenieks 2, Claire Vieille 2, J

Thank you

Questions?