device and process integration challenges for thin film...

25
Amorphous Silicon Devices and Integrated Circuits Group Device and Process Integration Challenges for Thin Film Transistors Arokia Nathan Electrical and Computer Eng., University of Waterloo Waterloo, Ontario, N2L 3G1, Canada *currently on leave at Dept. of Engineering, University of Cambridge, UK Can we spread electronics at the nano-scale over large surfaces to monitor/control/modify surface characteristics in an integrated fashion?

Upload: lediep

Post on 11-Mar-2018

218 views

Category:

Documents


3 download

TRANSCRIPT

Amorphous Silicon Devices and Integrated Circuits Group

Device and Process Integration Challenges for Thin Film Transistors

Arokia NathanElectrical and Computer Eng., University of Waterloo

Waterloo, Ontario, N2L 3G1, Canada

*currently on leave at Dept. of Engineering, University of Cambridge, UK

Can we spread electronics at the nano-scale over large surfaces to monitor/control/modify surface characteristics in an integrated fashion?

Amorphous Silicon Devices and Integrated Circuits Group

Acknowledgements• Profs. Bill Milne, John Robertson, Gehan Amaratunga, Cambridge

University• Prof. Denis Striakhilev, Dr. Yuriy Vygranenko, Sanjiv Sambandan,

Shahin J. Ashtiani, Stefan Alexander, Reza Chaji, Rick Huang, Clement Ng, Alex Wang, University of Waterloo, Canada

• Dr. Bob Reuss, Program Manager, DARPA Microsystems Technology • Prof. Ghassan Jabbour, Flexible Display Center, Army Research

Labs., Arizona State University• Prof. John Rowlands, Sunnybrook/University of Toronto• Prof. Safa Kasap, University of Saskatchewan• Paul Arsenault, Corbin Church, IGNIS Innovation Inc., Canada• Dr. Mike Hack, UDC, USA

Amorphous Silicon Devices and Integrated Circuits Group

OUTLINE• Large Area Electronics

applications, material technologies, active matrix• Thin Film Transistor Scaling

lateral and vertical TFTs, lithography constraints• Nano-scale Vertical Transistors

anisotropic etching, output characteristics•Nano-crystalline Si

crystallinity, microstructure, composition• High-mobility Ambipolar TFTs

silicided contacts, N- and P-channel TFTs, inverter• Conclusions

Amorphous Silicon Devices and Integrated Circuits Group

Technologies for Large Area Electronics

Drivers• Active matrix organic light emitting diode displays (AMOLEDs) and bio-medical imagers• RF ID tags and smart cards

Requirements• Low processing temperature: ~300˚C glass, ~350˚C metal foils, ~150˚C plastic.• TFTs with low leakage current, high ON/OFF ratio, low voltage operation, and small area.• High uniformity/ device matching, high stability and lifetime.

promisinguncertainpromisingpromisingFlexible substrate

potentially lowhighlowlowCost

has potentialnewRF PECVD?matureManufacturability

yesyesyesyesCompensation circuitry for lifetime/non-uniformity

improvingimprovingpotentially highhighMobility uniformity

improvingimprovinghighhighVT uniformity

improvingstable more stable than a-Si:H

issueStability (ΔVT)

large W/Lto reduce VG

small W/L at small VG

small W/L at small VG

large W/Lto reduce VG

Drive capacity (ION)

lowhighmuch higher than a-Si:H

lowMobility (µ)

PMOSNMOS/PMOSNMOS/PMOSNMOSCircuit type

organicpoly-Sinc-Si:Ha-Si:HAttribute

Amorphous Silicon Devices and Integrated Circuits Group

Active Matrix Arrays

Cs

V-

V+

Address Line

DataLine

signalTFT

Detector

Imaging Pixel

Read-out /

Driver C

ircuit

Addressing Circuit

Cs

V-Address Line

Data Line

signalTFT1

V+

OLED

V-

TFT2

Display Pixelanode

cathode

Data Lines

Sensor

OLE

D

TFT circuit Address Lines

or

eventually flexible.…..

14.1” fully-compensated AMOLED display

flat panel x-ray imager

Amorphous Silicon Devices and Integrated Circuits Group

Unity gain frequency:

21 ( ) 2

( )

DS FE i G T

DSm FE i G T

G

WI C V VL

I Wg C V VV L

μ

μ

= −

∂= = −∂

Thin Film Transistor and Scaling Issues

Drive current and transconductance:

need W/L >> 1 but (W.L) small, µFE: material attribute

Need to increase fT !

• Decrease channel length, L - but nano-scale lithography is not feasible! Can we use the highly controllable thickness of thin films to define channel length! Vertical thin film transistors?

• Increase µFE – can material be nano-engineered to improve structural order! Nanocrystalline silicon?

undoped a-Si:H

glassLateral TFT

n+ n+

gate metal

L = 5-10 μm

insulator

insulator

source metaldrain metal

2 ( )m

Tgs gd

gfC Cπ

=+

Amorphous Silicon Devices and Integrated Circuits Group

VTFT Evolution

Uchida, Nara, Matsumura, IEEE EDL, vol. 5, 1984

n+M

n+

undoped a-Si:H

glass

drain metal

source metal

gate metal

Vertical TFT

L = 0.1-1 mμ

insulator

insulator

Holmes and Salama, Solid State Electron.,

1974

VMOS - for high current, high power applications

VTFT - for high switching speed applications

Amorphous Silicon Devices and Integrated Circuits Group

Stutzmann, Friend, Sirringhaus(2003)

Saitoh and Matsumura(1997)

M

M

MDrain

Gate

SourceLv

Lh

pblocklayer

+i a-Si:H

n+

I

Glass

n+

Channel = L + Lh vn+M

n+

i a-Si:H

Glass

Gate

Drain

Source

L M

M

M

SiNx

SiNx

n-type Si substraten+ Source

DrainDrain

n+ poly-Si

i poly-Si

n+ n+

i poly-Si

MM M

SiO2L

SiO2

Gate

Glass

Drain

Source

Gate

SiNx

M

M

M

i a-Si:H

n+ poly-Si

n+ poly-Si

L

Uchida, Nara, Matsumura(1984)

Hack, Shaw, Shur(1988)

Zhao, Cao, Saraswat, Plummer(1994)

• High contact resistance• S/D alignment issues with

multiple RIE

• High leakage current - poor gate control in vertical a-Si region

600°C poly-Si/LTO deposition with ion implanted S/D

• Lightly doped a-Si layer with ELA S/D

• High leakage current

VTFT Structures

• µc-Si S/D contacts• S/D alignment – single RIE• Hidden in an active matrix

Chan, Nathan(2005)

Organic TFTs with channels mirocutby embossing

Amorphous Silicon Devices and Integrated Circuits Group

Gate lines

LpL

pa

Lp

LTFT

WTFT

lateralTFT

Data lines

(source)

Lg

Ls

Lpa

SG

D

f ≈ 85% for VTFT with 5-micron design rules Can meet detection specs for mammography!

High Aperture Ratio Pixelslateral vs vertical

High Aperture Ratio Pixelslateral vs vertical

2

2

2

2 )(

p

pa

p

TFTTFTpa

L

L

L

WLLf ⇒

×−=Pixel Fill Factor:

5 μm

VTFT

65 μm

gatepixel

electrode(drain)

source

VTFT

LateralTFT

Amorphous Silicon Devices and Integrated Circuits Group

Vertical TFT Fabrication

Glass

Drain

Source

Gate

ChannelAl

Al100 nm300 nm

0.1 or 1 mμ

100 nm50 nm

100 or 250 nm100 nm250 nm

1 mμ

300 nm

Cr

Cr

Cr

a-SiN :Hx

a-SiN :Hx

Cr

a-SiN :HxCr

Cr

undoped a-Si:H undoped a-Si:H

n c-Si or a-Si+ μ

Glass

a-SiN :Hx

a-SiN :Hx

a-SiN :Hx

n c-Si or a-Si+ μ

n c-Si or a-Si+ μ

Amorphous Silicon Devices and Integrated Circuits Group

Mask Mask

Anisotropic EtchingIsotropic Etching

EV

ELSubstrate

EV

Etching of a Substrate Material

Mask Mask(a)

Etching of Multiple Films (endpoint: one possiple case)

MaskMask Mask

Etching of Multiple Films (endpoint: another possible case)

Mask MaskMask Mask

Substrate

Substrate

(b)Mask

MultipleFilms

MultipleFilms

Substrate

Substrate

Vertical Profile Requirements

Mo n+ a-Si:H

n+ a-Si:H

a-SiNx:H

Photoresist

Mo

n+ a-Si:H

n+ a-Si:H

a-SiNx:H

Photoresist

SF6/O2: 50/50, 30s over-etch

Pure SF6, 60s over-etch

Amorphous Silicon Devices and Integrated Circuits Group

Anisotropic Reactive Ion Etching (RIE)

CF4

CFx F

SiF4

CFx

pol

ymer

Glassa-Si:H

Mask Mask

(1) Ion-assisted etching

(4) Sputter removal of polymerfrom horizontal surface

(3) Polymer depositionon vertical surface

(2)

(2) H scavanges F density2

CFx

pol

ymer

e-

CF3+ F-

SiF layerx

e- H2

H

HF

(3)

(4)(1)CFx

Vertical profile

Crn+ a-Si:H

a-SiNx:H

n+ a-Si:H

100 nm300 nm

1 μm

300 nm

CFCF44/H/H22 RIE processRIE process

Amorphous Silicon Devices and Integrated Circuits Group

Structural attributes•All the films in multi-layer vertical structure are fully self-aligned.

•Channel length can be precisely defined - 100 nm in this case but can be scaled down.

Process attributes• Semiconductor and

dielectric films by PECVD; metal films by sputter deposition.

• Vertical channel by RIE.

Vertical Thin Film Transistor

Cr

250

100 250 50

Cr

a - SiNx:H

100

300

100

300

Gate

Drain

Channel Source

n + a - Si :H

Gate

100

a - SiN x :H un. a- Si :H

n + a - Si :H

Cra - SiN x :H

400

200

(Values in nm)

Chan, Nathan, APL, vol. 86 (2005) 253501

Amorphous Silicon Devices and Integrated Circuits Group

Transfer and I-V CharacteristicsTransfer and I-V Characteristics

-10 -5 0 5 10 15 2010-16

10-14

10-12

10-10

10-8

10-6

10-4

n+ μc-Si:HtSiNx = 250 nm

0.5

4.5VD (V)(1 V/step)

W/L = 11/0.1 (μm)

S = 0.8 V/decVT = 2.8 VON/OFF ratio > 108IOFF = 10-15 AAt VD = 1.5 V:

μFE = 0.052 cm2/Vs

I D (A

)

VG (V) 0 1 2 3 4 5 60

2

4

6

8

10

12

14

16

18

n+ μc-Si:H

W/L = 11/0.1 (μm)tSiNx = 250 nm

05

10

15

20VG (V)

I D (μA

)VD (V)

~0.8Sub-threshold Slope (V/dec)~2.8Threshold Voltage (V)~1OFF Current (fA)

> 10ON Current (μA)> 108ON/OFF Current Ratio

ValuesVDS = 0.5 V

0 5 10 15 200

2

4

6

8

10

12

14

16

18

510

15

20

25

30VG (V)

n+ μc-Si:HtSiNx = 250 nmW = 100/1 (μm)

I D (μA

)VD (V)

Amorphous Silicon Devices and Integrated Circuits Group

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

10

12

tSiNx:H= 50 nm

Normalized Distance from Drain

Inte

rfac

e Po

tent

ial [

V]

VG= 12 V

Back VD= 10 VVD= 0.1 VFront

L=100 nm

ta-Si= 25 nm

Lack of Gate Control

VTFT Short Channel Issues

0 2 4 6 8 100

10

20

30

40

50

n+ μc-Si:H

tSiNx = 50 nmW/L = 100/0.1 (μm) VG (V) 30

25

20

510

15

Dra

in C

urre

nt (μ

A)

Drain Voltage (V)

Possible Solutions• Decrease gate dielectric thickness for better

gate control - Cgate, Igate!• Use double gate structure and ground 2nd

gate• Sandwich a p+ layer to n+ S/D – halo doping

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

10

12

Normalized Distance from Drain

Inte

rfac

e Po

tent

ial [

V]

VG= 0 V

Back

tSiNx:H= 50 nm

VD= 10 VVD= 0.1 VFront

L=100 nm

ta-Si= 25 nm

Amorphous Silicon Devices and Integrated Circuits Group

Source Drain

Vertical ChannelW/L = 20/0.1 (μm)

10 μm

0.333 μm/div

Gate

2 μm

Total gate overlap area

NMOS NMOS VTFT VTFT

inverterinverterVin T2

T1

VDD

Vout

-5 0 5 10 15

50

60

70

80

90

100

10 kHzAC signal

TFT size: 10 μm x 10 μm

CG-SD = 48 fF

n+ μc-Si:HtSiNx = 125 nmW/L = 20/0.1 (μm)

100 kHz

Tota

l Gat

e In

put C

apac

itanc

e (fF

)

Gate Voltage (V)-4 -3 -2 -1 0 1 2 3 4

0

1

2

3

4 W/L = 40/0.1 (μm)3

2

1

VDD = 4 (V)

Out

put V

olta

ge, V

out (

V)

Input Voltage, Vin (V)

C-V and NMOS Inverter CharacteristicsC-V and NMOS Inverter Characteristics

VTFT VTFT top top

viewview

Lateral TFT – 3 µm DRCG-SD ~ 15 pF

Amorphous Silicon Devices and Integrated Circuits Group

The Quest for High Mobility!The Quest for High Mobility!Need high mobility TFTs for high frame-rate and thin film CMOS

peripheral drivers for eventual system-on-panel integration

State-of-the-art devices - re-crystallized poly-Si TFTsIn a-Si:H TFTs, field effect mobility is fundamentally limited and too low (1-2 cm2V-1s-1 for electrons, 0.01 cm2V-1s-1 for holes);Poly-Si devices have higher field effect mobility (100-200 cm2V-1s-1 for electrons, 10-50 cm2V-1s-1 for holes) but costly and complex processing and large area non-uniformity in µ, VT.

Alternative - direct deposition of nc-Si:H thin films Princeton (Wagner et al.) and Cambridge (Milne et al.)

10–45 cm2V-1s-1 electron field effect mobility has been achieved in lab TFTs.Use of thick (∼700 nm) nc-Si:H layer and high temperature (∼400°C).Use of non-conventional deposition techniques (ECR-CVD, VHF-PECVD).

Why not conventional RF PECVD for nc-Si:H films?High density of defects and high oxygen incorporation at the grain boundaries.

Amorphous Silicon Devices and Integrated Circuits Group

Nucleation phase

Steady stateGrowth phase

Incubation layerSubstrate

Gate Dielectric

Substrate

Gate Metal

DS

Top-gate TFTs - higher mobility (quasi poly-Si structure)

Gate Dielectric

SubstrateGate Metal

DS

Bottom-gate TFTs - lower mobility (quasi a-Si:H structure)

If If grain sizegrain size << << channel lengthchannel length Uniform device characteristicsUniform device characteristics (V(VTT, I, IONON, I, IOFFOFF, , µµFEFE) over large area. ) over large area. But will we get sufficient grain boundary But will we get sufficient grain boundary passivationpassivation??

REQUIREMENTS FOR HIGH MOBILITYLow defect density & high crystallinity channelThin incubation layer for bottom gate TFTsHigh surface smoothness channel for top-gate TFT Thin channel layers to reduce series resistance High conductivity contact layers to reduce S/D contact resistanceHigh quality gate dielectric with good interface integrity

Amorphous Silicon Devices and Integrated Circuits Group

0 50 100 150 200 250 300 35010-10

10-9

10-8

10-7

10-6

10-5

H2/(SiH4 + H2)=99 %

Cry

stal

line

Vol

ume

Frac

tion

(%)

Dar

k C

ondu

ctiv

ity (S

/cm

)

Film Thickness (nm)

40

50

60

70

80

90

100

20 30 40 50 60 70 80

300 nm nc-Si:Hgrain size 25-30 nm

<222><111>

Inte

nsity

(a.u

.)

Degree (2θ)

PECVD PECVD ncnc--Si:HSi:H Films: Growth Rate and Films: Growth Rate and CrystallinityCrystallinity

95 96 97 98 99 1002

3

4

5

6

7

8

9

Cry

stal

line

Volu

me

Frac

tion

(%)

Gro

wth

Rat

e (n

m/m

in)

H2 / (SiH4 + H2) (%)

70

75

80

85

100 nm thick film

99 % dilution, growth rate 2.7 nm/min, Xc 80–82 % σdark~10-6 S/cm, Xc~85 %

High density of atomic hydrogen in the plasma favors etching weak Si-Si bonds.

High hydrogen surface coverage promotes structural ordering onto stable nucleation sites at the growth surface.

►► Controlled Controlled depdep of hof high igh crystallinitycrystallinity thin thin ncnc--Si:HSi:H film seems achievable!film seems achievable!

Standard 13. 56 MHz PlasmaTherm 790

Lee et al., APL, vol. 86 (2005) 222106 and Virtual J. Nanoscale Science & Technology vol. 11, 2005

Amorphous Silicon Devices and Integrated Circuits Group

RF PECVD nc-Si:H Film Microstructure

Dense columnar-like growth

Amorphous incubation layer (~5nm)

Glass substrate

TEM Cross-Section Raman Spectrum

400 450 500 550 600

nano phase ~500 cm-1

amorphous phase ~480 cm-1

crystalline phase ~520 cm-1

H2 / (H2 + SiH4)= 99 %Raman crystallinity ~ 85 %

Nor

mal

ized

Inte

nsity

(a.u

.)

Raman Shift (cm-1)

film thickness ~ 300 nm

Electron diffraction patterns - central bright circular region <111> and <220> rings and weak <311> rings with diffraction spots.

TEM, Raman and XRD all confirm high crystallinity

Amorphous Silicon Devices and Integrated Circuits Group

0 100 200 300 400 500 6001016

1017

1018

1019

1020

1021

1022

H2/(SiH4 + H2) = 99 %

Oxygen

nc-Si:H film c-Si substrate

Hydrogen

Con

cent

ratio

n (a

t./cm

3 )

Depth (nm)

Hydrogen concentration ~ 1.5x1021 cm-3

Oxygen concentration ~1017 cm-3 (comparable to UHV deposition)

Surface RMS roughness ~33 Å (for 100 nm thick film)

Grain size ~ tens of nm, and reasonably uniform

►Hydrogen also appears to passivate grain boundary defects and thus prevents oxygen incorporation leading to high purity high purity ncnc--Si:HSi:H

RF PECVD RF PECVD ncnc--Si:HSi:H Film CompositionFilm Composition

Amorphous Silicon Devices and Integrated Circuits Group

Top Gate nc-Si:H TFTs with a-SiOx

-8 -7 -6 -5 -4 -3 -2 -1 00.0

0.5

1.0

1.5

2.0

VDS = - 3 V

VDS = - 4 V

VDS = - 5 V

W / L = 200 μm / 50 μm

Dra

in-S

ourc

e C

urre

nt (

μA

)

Drain-Source Voltage (V)0 1 2 3 4 5 6 7 8

0

10

20

30

40

VGS = 3 V

VGS = 5 V

VGS = 4 V

W / L = 200 μm / 50 μm

Dra

in-S

ourc

e C

urre

nt (μ

A)

Drain-Source Voltage (V)

P-channel TFT N-channel TFT

Onset of lateral p-n diode formation at |VDS| > |VGS| - |VT|

glassnc-Si:Ha-SiOx

AlAl Al 50 nm nc-Si:H/Cr

S/D silicidedohmic contact

300 nm300 nm

90 nm

glassnc-Si:Ha-SiOx

AlAl Al 50 nm nc-Si:H/Cr

S/D silicidedohmic contact

300 nm300 nm

90 nma-SiO

Al

Cr CrDrainSource

Gate

x

nc-Si:Helectronsholes

Amorphous Silicon Devices and Integrated Circuits Group

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 210-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

Fiel

d-E

ffect

Mob

ility

(cm

2 /Vs)W / L = 200 μm / 50 μm

VSD = -1 V

Sou

rce-

Dra

in C

urre

nt (

A )

Gate-Drain Voltage (V)

0

10

20

30

40

VDS = -1 V

μeFE ~150 cm2/VsVT ~1.8 V

S ~0.3 V/dec

TFT Transfer Characteristics

-3 -2 -1 0 1 2 3 4 5 6 7 810-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

W / L = 200 μm / 50 μm VDS = 1 V

Dra

in-S

ourc

e C

urre

nt (A

)

Gate-Source Voltage (V)

0

50

100

150

200

Fiel

d-E

ffect

Mob

ility

(cm

2 / V

s)PMOS

μhFE ~25 cm2/VsVT ~ -3.8 V

S ~0.25 V/dec

NMOSg m

L/(W

CO

XVD

S) (

cm2 /V

s)

g mL/

(WC

OXV

DS) (

cm2 /V

s)

Amorphous Silicon Devices and Integrated Circuits Group

0 2 4 6 80

2

4

6

8

10

0

2

4

6

8

10

Out

put V

olta

ge G

ain

VDD = 8 V

Out

put V

olta

ge (V

)

Input Voltage (V)

CMOS Inverter

VOUT

VDD

VIN

VSS

P

N

PMOS: 200µm/50µm

NMOS: 200µm/100µm

Output voltage gain: 7.2

Amorphous Silicon Devices and Integrated Circuits Group

• Vertical thin film transistors based on a well-defined and reproducible vertical device structure: ON/OFF current ratio ~108, threshold voltage ~2.8V, and sub-threshold slope of ~0.8 V/dec. Device can be easily scaled to sub-100 nm channel lengths but need device optimization to reduce short channel effects.

• Direct deposition of nc-Si:H using standard 13.56 MHz PECVD from 99 % H2 diluted SiH4 yields high purity and high crystallinitync-Si:H thin films.

• Ambipolar TFTs made of nc-Si:H show n-channel mobility about 150 cm2V-1s-1 and p-channel mobility of 30 cm2V-1s-1. Highest reported to-date and first demonstration of PECVD CMOS.

• Integration approaches presented are very promising for x-ray imaging and displays with extremely high fill factor and resolution, as well as for system-on-panel integration!

Conclusions