diagnostics of infectious bacteria is dependent upon a

45
Diagnostics of Infectious Bacteria is Dependent upon a Reliable and Comprehensive Identification and Taxonomy Framework protein DNA genome proteome 3000 5000 7000 9000 11000 13000 M ass ( m/ z) 2117. 3 0 10 20 30 40 50 60 70 80 90 100 4424.2 9476.2 4861.0 8823.5 5897.8 6271.2 8054.3 6629.0 7424.9 12271.4 4738.6 6984.6 8383.8 6786.7 6533.3 9075.2 3132.3 6137.3 7209.8 8903.3 8610.6 10110.8 4765.4 10975.2 4026.9 4535.6 3311.8 10493.9 3491.4 9611.5 microbial typing and identification 20170914; ECCO Annual Meeting 2017; Brno, CZ E. R. B. Moore et al. CCUG, Department of Clinical Microbiology, Sahlgrenska University Hospital Department of Infectious Disease, Sahlgrenska Academy, University of Gothenburg, Sweden

Upload: others

Post on 14-Nov-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Diagnostics of Infectious Bacteria is Dependent upon a

Diagnostics of Infectious Bacteria is Dependent upon a Reliable and Comprehensive Identification and Taxonomy Framework

protein DNA

genomeproteome

3000 5000 7000 9000 11000 13000

Mass ( m/ z)

2117. 3

0

10

20

30

40

50

60

70

80

90

100

% Intensity

V o y a g e r S p e c # 1 = > A d v B C ( 3 2 , 0 . 5 , 1 . 0 ) = > N F 0 . 7 [ B P = 4 4 2 3 . 9 , 2 1 1 7 ]

44

24

.2

94

76

.2

48

61

.0

88

23

.5

58

97

.8

62

71

.2

80

54

.3

66

29

.0

74

24

.9

12

27

1.4

47

38

.6

69

84

.6

83

83

.8

67

86

.7

65

33

.3

90

75

.2

31

32

.3

61

37

.3

72

09

.8

89

03

.3

86

10

.6

10

11

0.8

47

65

.4

10

97

5.2

40

26

.9

45

35

.6

33

11

.8

10

49

3.9

34

91

.4

96

11

.5

microbial typing

and identification

20170914; ECCO Annual Meeting 2017; Brno, CZ

E. R. B. Moore et al.

CCUG, Department of Clinical Microbiology, Sahlgrenska University HospitalDepartment of Infectious Disease, Sahlgrenska Academy, University of Gothenburg, Sweden

Page 2: Diagnostics of Infectious Bacteria is Dependent upon a

Established 1968 (Curator: E. Falsen, 1968 – 2004; E. Moore, 2004 - ?)

Elisabeth Inganäs, BMA (1991), Maria Ohlén, BMA (1992), Susanne Jensie-Markopolous, BMA (2002), Sofia Cardew, BMA (2007)Kent Molin, Chemist (2001), Liselott Svensson-Stadler, Enhetschef (2012)

Created as a unit within the Bacteriological Laboratory of the Dept Clinical Bacteriology, Sahlgrenska University-Hospital (SU)SU is a teaching and research hospital

Associated with Univ Gothenburg through Sahlgrenska Academy

Repository for reference strains (> 40,000) of microorganisms and typing lab for the identification of bacteria from clinical samplesfrom SU and other hospitals and clinics in Scandinavia

1. Typing and identification: phenotyping and genotyping2. Archiving, storing, distributing bacterial strains (some few yeast, fungi)3. Research: systematics / diagnostics / antibiotic resistance

Culture Collection, University of Gothenburg (CCUG)www.ccug.se

Page 3: Diagnostics of Infectious Bacteria is Dependent upon a

”problematic” strains sent from Routine Lab to CCUG Typing Lab for analyses

Characterization typingIdentification species or sub-species

determinations

SU BaktLab receives approximately 5,000 samples / weekfrom the Hosptial for microbiological processing

? How do we characterise and identify individual stainsin the diversity of prokaryotes, in the diversity of ecosystems ?

Page 4: Diagnostics of Infectious Bacteria is Dependent upon a

What are the “problematic” organisms?

bacterial strains that are not differentiated from similar and

closely related bacteria.

bacterial strains that are “new”, i.e., they do not fit a

database profile;

in the CCUG, as many as 150 new ’cases’ per year!

Coming from clinical samples!!

need effective, reliable characterisation and identification!!!!!

Page 5: Diagnostics of Infectious Bacteria is Dependent upon a

Genotypic/Phylogenetic emphasis in bacterial systematics

• The Bergey’s Manuals for Systematic Bacteriology and The Prokaryotesbased on 16S rRNA gene sequence-based phylogenies.

• 16S rRNA gene sequence determination and analysis the only singletest required for the description of all new bacterial species.

• Genomic DNA-DNA similarities have been the genotypic criterion for defining bacterial species

"Gold Standard ” ?

1 Wayne et al. 1987, Report of the ad-hoc committee on reconcilliationof approaches to bacterial systematics, Int J Syst Bacteriol 37: 463-464

1 “... the complete deoxyribonucleic acid (DNA) sequence would be the reference standard to determine phylogeny and ... phylogeny shoulddetermine taxonomy.”

Page 6: Diagnostics of Infectious Bacteria is Dependent upon a

phylogenetic coherence

16S 23S rRNA

Functional genes (MLSA)

Genomic analyses

70-50%70%

genotypic coherence

Reasociation DNA-DNA

G+C, PFGE, AFLP, MLSA

Genomic comparisons

(ANI; AAI)

100%

60%

70%

80%

50%phenotypic coherence

metabolism

chemotaxonomy

proteomics

(MALDI-TOF; LC-MS/MS)

Species descriptions: the examination should be as exhaustive as possible

from R Rosselló-Móra, IMEDEA, ES

Page 7: Diagnostics of Infectious Bacteria is Dependent upon a

At recent ICSP Meeting in Valencia, July 2017, this ’proposal’ was discussed

Page 8: Diagnostics of Infectious Bacteria is Dependent upon a

serotyping (monoclonal and polyclonal antisera)

Raman spectroscopy

protein SDS-PAGE (whole-cell or cell envelope)

pyrolysis mass spectrometry

Fourier-Transformation Infra-Red (FTIR) spectroscopy

MALDI-TOF mass spectrometry

cellular fatty acid fingerprinting (FAME)

chemotaxonomy (polyamine, polar lipid, quinone, etc., analysis)

phenotyping (growth, morphology, Api, BIOLOG, etc.)

restriction analysis of amplified fragments (PCR-RFLP)

low-frequency restriction fragment analysis (PFGE)

PCR-amplfication analysis (REP-, BOX-, ERIC-PCR, RAPD)

selective amplification of restriction fragments (AFLP)

Multi-Locus Variable-number tandem-repeat Analysis (MLVA)

Ribotyping

Mulit-Locus Sequence Typing (MLST)

Multi-Locus Sequence Analysis (MLSA)

Amplified Ribosomal DNA Restriction Analysis (ARDRA)

rRNA gene sequence analysis

DNA-DNA Hybridisation (DDH)

Genomic DNA mol % G+C

whole genome sequence analysis

Methodology

Bacterial Characterisation and Identification

Page 9: Diagnostics of Infectious Bacteria is Dependent upon a

CCUG: since 2013, focussed on developing proteomic-genomic methods for:

strain identification

strain sub-typing

strain characterisation

diagnostics of infectious disease in clinical samples without cultivation

Page 10: Diagnostics of Infectious Bacteria is Dependent upon a

Characterisation of infectious or clinically-relevant bacteria

Virulence – a measure of the degree of pathogenicity

virulence factors – effectively enable:- colonization in the host (attachment) - evasion of host defense mechanisms- potential to cause disease

bacterial toxins, cell surface proteins, hydrolytic enzymes, …

Antibiotic resistance – inherent and acquired resistanceWHO – ”… one of the biggest threats to global health, food security, and development today. …we are heading for a ‘post-antibiotic era’, in which common infections and minor injuries can once again kill.”

resistance factors - enable:- survival in competitive environments

- pathogenic bacteria to adapt to antimicrobial therapies

gene activation/repression, binding proteins, porins,

efflux pumps, …

Virulence Factor Database: www.mgc.ac.cn/VFs/main.htm

Page 11: Diagnostics of Infectious Bacteria is Dependent upon a

Target/Acceleration

Time-of-Flight Molecular MassDesorption/Ionisation

DetectorDrift Region

m/z

a.i.

Mass

Spectra

Laser

MALDI-TOF MS

Modified from M Erhard, Anagnostec, GmbH

Page 12: Diagnostics of Infectious Bacteria is Dependent upon a

Streptococcus pneumoniae: identfying mass signals

mass signals matching to ribosomal proteins are marked in red

~50% of peaks represent ribosomal proteins

protein masses obtained from the Swiss-Prot/TrEMBL sequence database

m/z

% I

nte

ns

ity

95

17

6865

L32

79

85 L

29

66

38

839

4

58

72

52

63

L34

62

65

L30

65

05

44

19

L36

90

71

S18

80

61

77

03

L35

59

51

67

50

L28

10

08

9 L

27

10

61

8 S

19

10

40

3 S

15

4757

12

31

0 L

7/L

12

935

7 L

31

728

6

1101

9 S

6

3000 5000 7000 9000 11000 13000

88

06

1145

1 S

10

56

51

L33

10

78

3 L

23

modified from M Welker, Anagnostec, GmbH

”-omics” relevant for identification of proteins

Page 13: Diagnostics of Infectious Bacteria is Dependent upon a
Page 14: Diagnostics of Infectious Bacteria is Dependent upon a

Can tandem Mass Spectrometry and proteomics – ’Proteotyping’, be applied for the direct analyses of clinical samples för rapid and reliable diagnostics of infectious bacteria?

What would be the advantages over traditional diagnostic methodsor NGS-based methods?

1) Respiratory infections: detection and identification, virulence and antibiotic resistance

S. pneumoniae, S. aureus, P. aeruginosa, K. pneumoniae, S. pyogenes, H. influenzae, M. catarrhalis, M. pneumoniae

2) Urinary-tract infections: detection and identification, virulence and antibiotic resistance

E. coli, K. pneumoniae, Enterobacteriaceae

3) Septicemia and Sepsis: detection and identification, virulence andantibiotic resistance

E. coli, S. aureus, S. pyogenes

Page 15: Diagnostics of Infectious Bacteria is Dependent upon a

Optimisation of MS-proteomics

Different protein targets in different cell compartments.

* optimised fractionation of Gram-positive and Gram-negative cells.

Bacterial Cell Structure

Page 16: Diagnostics of Infectious Bacteria is Dependent upon a

Clinical sample (nasal swabs)

Bacterial culture

Sample preparation protocols

Digestion of proteins into peptides

LC-MS/MS analysis of peptides

Biomarkers of species, strain, antibiotic resistance and virulence

direct sample processing

pre-culturing

NGS analyses of

genome sequences

LC-MS/MS ’bottom-up’ Proteomics-basedbacterial identification and diagnostics

Q-Exactive Hybrid Quadrupole-Orbitrap MS (ThermoFisher)

from R Karlsson, EU TAILORED-Treatment project

Page 17: Diagnostics of Infectious Bacteria is Dependent upon a

Bacterial culture

Clinical sample

Intact cells - Surface shaving

Surface proteins = hotspots for genetic variation!

Virulence factors – Host-pathogen interactions

Wash cells

Soluble

Bead beating

and centrifugation

Fractions

Membrane and soluble fractions

Highly abundant conserved proteins = species markers!

Antibiotic resistance markers and virulence factors

Membrane

LC-MS/MS-based Proteomics

from R Karlsson, EU TAILORED-Treatment project

Page 18: Diagnostics of Infectious Bacteria is Dependent upon a

Peptide generation by LPI FlowCell analysis

Step 1. Microbial cells or cell fractions are immobilized in the Hexalane Flow-Cell.

Step 2. Trypsin (digestive enzyme) is added and allowed to digest exposed proteins

Step 3. Peptides are eluted from the Flow-Cell and analyzed, using LC-MS/MS

Trypsin digestion: carboxyl-side of lysine or arginine, except if followed by proline

from R Karlsson, EU TAILORED-Treatment project

Page 19: Diagnostics of Infectious Bacteria is Dependent upon a

Peptide fragmentsLIEVDSQGNR

TVFFEDGNQPISK

LLEDVGSNGAR

ILEVNEEER

LLDIDQEER

AGVGEAAGRGAGVGGR

Proteome profile

Sensitive matching•Genome-wide alignment in all six reading-frames•Average size of matched fragment: 16 AA (down to 6 AA)•Database

• well-annotated genomes• >5000 resistance factors (E Kristiansson, Chalmers Univ. Technology)• Virulence Factor Database: www.mgc.ac.cn/VFs/main.htm

Shotgun ‘bottom-up’ proteomics – data processing

Genomes Resistance factors

Virulence factors

Sample statistics on strain level

Peptide biomarkers

from R Karlsson, EU TAILORED-Treatment project

Page 20: Diagnostics of Infectious Bacteria is Dependent upon a

20

Analysis of the H. pylori strain 26695 sample. The distribution of peptide-to-strain counts for different

H. pylori strains available in databases is shown.

Proteotyping: Helicobacter pylori – ranking species matching

Karlsson et al., 2012. J Proteome Res.

Page 21: Diagnostics of Infectious Bacteria is Dependent upon a

Proteotyping: Staphylococcus aureus – ranking species matching

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Sta

ph

ylo

cocc

us_

aure

us_

NC

TC

_832

5_u

id57

795

Sta

ph

ylo

cocc

us_

aure

us_

M1_

uid

1972

63

Staphylococcus_au

reus_USA300_FPR3757_u

id…

Sta

ph

ylo

cocc

us_

aure

us_

CO

L_u

id57

797

Sta

ph

ylo

cocc

us_

aure

us_

Bm

b93

93_u

id21

0640

Sta

ph

ylo

cocc

us_

aure

us_

JH1_

uid

5845

7

Sta

ph

ylo

cocc

us_

aure

us_

MW

2_u

id57

903

Sta

ph

ylo

cocc

us_

aure

us_

JH9_

uid

5845

5

Sta

ph

ylo

cocc

us_

aure

us_

04_0

2981

_uid

1619

69

Sta

ph

ylo

cocc

us_

aure

us_

ED

98_u

id41

455

Sta

ph

ylo

cocc

us_

aure

us_

JKD

6008

_uid

1598

55

Sta

ph

ylo

cocc

us_

aure

us_

CN

1_u

id21

7769

Sta

ph

ylo

cocc

us_

aure

us_

TW

20_u

id15

9241

Sta

ph

ylo

cocc

us_

aure

us_

uid

1937

61

Sta

ph

ylo

cocc

us_

aure

us_

6850

_uid

2177

72

Sta

ph

ylo

cocc

us_

aure

us_

N31

5_u

id57

837

Sta

ph

ylo

cocc

us_

aure

us_

ST

228_

1049

7_u

id19

3755

Sta

ph

ylo

cocc

us_

aure

us_

08B

A02

176_

uid

1752

57

Sta

ph

ylo

cocc

us_

aure

us_

7119

3_u

id16

2141

Sta

ph

ylo

cocc

us_

aure

us_

M01

3_u

id88

065

Sta

ph

ylo

cocc

us_

aure

us_

SA

40_u

id22

1289

Sta

ph

ylo

cocc

us_

aure

us_

MR

SA

252_

uid

5783

9

Sta

ph

ylo

cocc

us_

aure

us_

TC

H60

_uid

1598

59

Sta

ph

ylo

cocc

us_

aure

us_

RF

122_

uid

5766

1

Sta

ph

ylo

cocc

us_

aure

us_

MS

HR

1132

_uid

8939

3

Sta

ph

ylo

cocc

us_

pas

teu

ri_S

P1_

uid

2262

67

Sta

ph

ylo

cocc

us_

epid

erm

idis

_RP

62A

_uid

5766

3

Staphylococcus_lugdunensis_N920143_u

id162…

Staphylococcus_saprophyticus_ATCC_15305_…

Staphylococcus_pseudinterm

edius_ED99_u

id1…

Mac

roco

ccu

s_ca

seo

lyti

cus_

JCS

C54

02_u

id59

003

Bac

illu

s_m

egat

eriu

m_Q

M_B

1551

_uid

1586

2

Bac

illu

s_li

chen

ifo

rmis

_AT

CC

_145

80_u

id58

097

Bacillus_licheniform

is_D

SM_13___ATCC_1458…

Bacillus_am

yloliquefaciens_plantarum_U

CMB…

Bac

illu

s_li

chen

ifo

rmis

_994

5A_u

id20

7072

Bacillus_am

yloliquefaciens_plantarum_A

S43_…

Page 22: Diagnostics of Infectious Bacteria is Dependent upon a

Proteotyping: Streptococcus spp. – ranking species matching

from R Karlsson, EU TAILORED-Treatment project

Page 23: Diagnostics of Infectious Bacteria is Dependent upon a

modified from M Kilian, 2016

94.58

Streptococcus Mitis-Group: core-genome sequence clustering

Page 24: Diagnostics of Infectious Bacteria is Dependent upon a

Accuracy in correct species identifications in the Mitis-Group

92%

1%

7%

S. pneumoniae Type strain

S. pneumoniae

S. suis

Others54%

13%

8%

8%

1%

1%

15%

S. mitis Type strain

S. mitis

S. pneumoniae

S. pseudopneumoniae

S. oralis

S. oligofermentans

S. gordonii

Others

- Only 1 WGS of S. pseudopneumoniae and S. mitis available in the database- S. mitis Type strain was not available – the B6 strain genome clustered far away from the Typestrain

from R Karlsson, EU TAILORED-Treatment project

Page 25: Diagnostics of Infectious Bacteria is Dependent upon a

How can we know if a genome is correctly classified ?

Page 26: Diagnostics of Infectious Bacteria is Dependent upon a

Genome sequence 1

Genome sequence 2VS

Similarity value

Fragments of the genome sequences are aligned and compared

ANI: Average Nucleotide Identity

F Salvà Serra, CCUG

Page 27: Diagnostics of Infectious Bacteria is Dependent upon a

< 93% 93 - 96% ≥ 96%

Streptococcus pneumoniae 323 0 0 323

Streptococcus mitis 40 18 22 0

Streptococcus australis 0 0 0 0

Streptococcus cristatus 2 0 1 1

Streptococcus infantis 4 3 1 0

Streptococcus oligofermentans 7 7 0 0

Streptococcus oralis 11 7 4 0

Streptococcus parasanguinis 9 1 6 2

Streptococcus peroris 0 0 0 0

Streptococcus pseudopneumoniae 6 0 0 6

Streptococcus sanguinis 23 2 16 5

Streptococcus sinensis 0 0 0 0

Streptococcus tigurinus 3 0 3 0

Total 428 38 53 337

100% 8.88% 12.38% 78.74%

Total number of

genome sequences

ANIb

Organism < 93% 93 - 96% ≥ 96%

Streptococcus pneumoniae

Streptococcus mitis 40 18 22 0

Streptococcus australis 0 0 0 0

Streptococcus cristatus 2 0 1 1

Streptococcus infantis 4 3 1 0

Streptococcus oligofermentans 7 7 0 0

Streptococcus oralis 11 7 4 0

Streptococcus parasanguinis 9 1 6 2

Streptococcus peroris 0 0 0 0

Streptococcus pseudopneumoniae 6 0 0 6

Streptococcus sanguinis 23 2 16 5

Streptococcus sinensis 0 0 0 0

Streptococcus tigurinus 3 0 3 0

Total 105 38 53 14

100% 36.19% 50.48% 13.33%

Organism

Total number of

genome sequences

ANIb

F Salvà Serra, CCUG

Page 28: Diagnostics of Infectious Bacteria is Dependent upon a

Peptides

Genomes

DB

Non-unique

Unique =

biomarkers

All complete

genomes from

RefSeq DB

Additional

genomes from

GenBank DB

Genomes of

CCUG strains

We need more genomes!!

Tenaillon et al. 2010

Proteomic-Genomic analysesDevelopment

F. Salvà Serra, CCUG

Page 29: Diagnostics of Infectious Bacteria is Dependent upon a

CCUG Genomics

• Started genome sequencing, January 2015

• To-date: approx 200 draft whole-genome sequences

Illumina(SU Genomics

Core)

Ion-Torrent(SU ClinMicroiol)

PacBio(NGI – Uppsala)

F Salvà Serra, CCUG

Page 30: Diagnostics of Infectious Bacteria is Dependent upon a

Introduction of Oxford Nanopore MinION to CCUG

Page 31: Diagnostics of Infectious Bacteria is Dependent upon a

Organism 2015-02-10 2016-12-31

Streptococcus australis 0 1

Streptococcus cristatus 0 1

Streptococcus gordonii 1 3

Streptococcus infantis 0 1

Streptococcus mitis 1 33

Streptococcus oligofermentans 1 1

Streptococcus oralis 1 13

Streptococcus parasanguinis 2 3

Streptococcus peroris 0 1

Streptococcus pneumoniae 27 28

Streptococcus pseudopneumoniae 1 9

Streptococcus sanguinis 1 6

Streptococcus sinensis 0 1

Streptococcus tigurinus 0 4

35 105

Addition of Streptococcus spp. genomes to the database

from F Salvà-Serra, EU TAILORED-Treatment project

Page 32: Diagnostics of Infectious Bacteria is Dependent upon a

Accuracy in finding the correct species in the S. Mitis-Group

54%

13%

8%

8%

1%

1%15%

S. mitis

S. pneumoniae

BEFOREWGS databaseupdate

94%

1%1%1%

3%Streptococcus mitis

Streptococcuspneumoniae

Streptococcus suis

Streptococcus oralis

Others

AFTERWGS databaseupdate

Streptococcus mitis Type strain

from R Karlsson, EU TAILORED-Treatment project

Page 33: Diagnostics of Infectious Bacteria is Dependent upon a

Proteotyping of Sahlgrenska Hospital clinical samples (nasopharyngeal)Positive samples

77%

(34

unique

peptid…

7% (3

unique

peptides

)

16%Moraxella

catarrhalis

Staphylococc

us aureus

Sample positive forMoraxella catarrhalis

93%

(26

unique

pepti…

7% (2

unique

peptide

s)Staphyloc

occus

aureus

Sample positive forStaphylococcus aureus

Results of MS-Proteomics peptide identification and matching

Example 1 Example 2

Page 34: Diagnostics of Infectious Bacteria is Dependent upon a

Samples from Utrecht

Proteomic results

Bacteria (152)

Firmicutes (148)

Bacilli (144)

Lactobacillales (49)

Lactobacillus reuteri 100-23 (1)

Streptococcus (48)

Streptococcus pneumoniae (42)

Streptococcus pseudopneumoniae (2)

Streptococcus sanguinis (4)

Staphylococcus (95)

Staphylococcus aureus (91)

Staphylococcus hominis subsp. hominis C80 (1)

Staphylococcus simiae CCM 7213 (2)

Staphylococcus sp. M0480 (1)

Clostridiales (3)

Lachnospiraceae (2)

Lachnospiraceae bacterium 8_1_57FAA (1)

Ruminococcus torques ATCC 27756 (1)

Syntrophomonas wolfei subsp. wolfei (strain DSM 2245B / Goettingen)

(1)

Mitsuokella sp. oral taxon 131 str. W9106 (1)

Mycobacterium vanbaalenii (strain DSM 7251 / PYR-1) (1)

Mycoplasma sp. CAG:472 (1)

Proteobacteria (2)

Pseudomonas fulva (strain 12-X) (1)

Rhodopseudomonas palustris (strain BisB5) (1)

Eukaryota (309)

UM 6044

High number of bacteria

qPCR positive for S. pneumoniae S. aureus

Taxonomy view from UniprotNumber of protein hits

EU516 Clinical sampleFrom Utrecht Pediatrics

Clinic

Direct MS-proteomics analysis of clinical sampleBiomarker inclusion list for S. pneumoniae

from R Karlsson, EU TAILORED-Treatment project

Page 35: Diagnostics of Infectious Bacteria is Dependent upon a

Discriminatory proteins

S. pneumoniae S. oralis S. mitis S. pseudopneumoniae

S. pyogenes

Number of proteins

649 564 678 622 407

Number of peptides

3556 2495 3722 2141 1197

Number of discriminative peptides

417 282 237 313 308

S. pneumoniae discriminatory proteins found by proteotyping workflow

• general stress protein 24

• surface protein PspA

• rpsP 30S ribosomal protein S16

• strH beta-N-acetylhexosaminidase

• cbpA choline binding protein A

• acpP acyl carrier protein

• ugd UDP-glucose 6-dehydrogenase

• prsA foldase PrsA

• lytB endo-beta-N-acetylglucosaminidase

• SURFACE-ASSOCIATED VIRULENCE FACTORS

All strains analysed in triplicateGood reproducibilityIdentified peptides and proteinsIdentified discriminatory peptides

Proteotyping of S. mitis complex

Page 36: Diagnostics of Infectious Bacteria is Dependent upon a

S. pneumoniae virulence factors

S. pne S. pse S. mit

PspA Pneumococcal surface protein A +++ N NLytA Autolysin A ++ N NBac Bacteriocin ++ ++ NStrH B-N-acetylglucosaminidase +++ ? ?BgaA B-galactosidase ++ ? ?CpbA Choline binding protein A +++ N NEno Enolase ++ + +Hyl Hyaluronate lyase N N NIgA IgA1 protease ++ N NNan Neuraminidase ++ N NChoP Phosphorylcholine ? ? ?PavA Pneumococcal adhesion/virulence A ++ N NPlaA Pneumococcal iron acquisition A ? N NPiuA Pneumococcal iron uptake A ? N NPsaA Pneumococcal surface antigen A ++ N NPly Pneumolysin N ? ?

Page 37: Diagnostics of Infectious Bacteria is Dependent upon a

Biomarker inclusion list S. pneumoniae

Selection of potential biomarker peptides

Diluted cell cultures

Analysis with inclusion lists to set retention time window

Targeted MSMS of diluted cell cultures

Analysis of negative clinical samples spiked with cell culture

Analysis of positive clinical samples

Workflow

from R Karlsson, EU TAILORED-Treatment project

Page 38: Diagnostics of Infectious Bacteria is Dependent upon a

Biomarker inclusion list for S. pneumoniae

7 strains – including Type strain

All strains run in triplicate = 21 MS runs

Strain 1 CCUG 28588

Strain 2 CCUG 33774

Strain 3 CCUG 1350

Strain 4 CCUG 11780

Strain 5 CCUG 35272

Strain 6 CCUG 7206

Strain 7 CCUG 33180

from R Karlsson, EU TAILORED-Treatment project

Page 39: Diagnostics of Infectious Bacteria is Dependent upon a

Biomarker inclusion list for S. pneumoniae

Dilutions of cells (#/ml)1 milj

100000 10000 1000 100

Sequence 100 1000 100000 1 milj 100 1000 100000 1 milj

VSDVAESTGEFTSEQFEK High High High High High HighDAELLFAGIVGDTGR Low HighYTLLAGETPAVAAAIR High High High HighIDTFGTGTVAESQLEK High High High High HighNGNYETAEGSEETSSEVK High High High High HighAHIYFINSEEPSQLNDLQAFR High High High HighANYGVSADK High High HighAVSAILGELNGNEGK High High High HighLMDVAQPELAIVFGR High High

Inclusion list Normal non-targeted

from R Karlsson, EU TAILORED-Treatment project

Page 40: Diagnostics of Infectious Bacteria is Dependent upon a

Analysis of positive clinical samples – respiratory tract samplesSputum from CVID patients

Clinical samples

EU sample BACT LAB IDENTIFICATION TCUP - open Targeted

1257 Negative S. mitisS. pneumoniaeM. catarrhalis

1258 Negative - - CORRECT

1259 Negative - M. catarrhalis??1260 Negative - - CORRECT

1261 Negative S. mitisS. pneumoniaeM. catarrhalis

1262 Negative - - CORRECT

1263H. influenzae- isolate analyzed as 1266 - -

1264

H. influenzae- isolate analyzed as 1268 S. pneumoniae- isolate analyzed as 1267

H. influenzae S. pneumoniae

H. influenzaeS. pneumoniae

CORRECT

1264

H. influenzae- isolate analyzed as 1268 S. pneumoniae- isolate analyzed as 1267

H. influenzae S. pneumoniae

H. influenzaeS. pneumoniae

CORRECT

1265 Negative - M. catarrhalis

Isolates from clinical samples

1266 H. influenzae - H. influenzae CORRECT1267 S. pneumoniae S. pneumoniae S. pneumoniae CORRECT1268 H. influenzae H. influenzae H. influenzae CORRECT

from R Karlsson, EU TAILORED-Treatment project

Page 41: Diagnostics of Infectious Bacteria is Dependent upon a

• WGS of urinary tract infectious bacteria• Type strains• Model strains• Multiresistant strains (CCUG, Sahlgrenska, Rotger)

• Inclusions lists• Pan-genome analyses

Proteotyping - Detection of anti-microbial resistance (AMR)

Page 42: Diagnostics of Infectious Bacteria is Dependent upon a

ESBL-E. coli without antibiotics ESBL-E. coli with antibiotics

Sample preparation through bead beating

Digestion of proteins using trypsin

Analysis using LC-MS/MS

Database search against known resistance genes

Detection of anti-microbial resistance (AMR)

from R Karlsson, EU TAILORED-Treatment project

Page 43: Diagnostics of Infectious Bacteria is Dependent upon a

• The number of peptides detected thatmatch to CTX-M β-lactamase aresignificantly higher with exposure toantibiotic than without.

• These data were compared with thosefrom analyses of a non-ESBL-E. coliReference strain.

• All analyses were done in triplicate.

Relative abundance of peptides matched to ESBL- E. Coli CCUG 62462 CTX-M β-lactamase

4

With antibiotics

Without antibiotics

Reference strain

Detection of anti-microbial resistance (AMR)

Experiments: Resistance factors detectedIn WGS

from R Karlsson, EU TAILORED-Treatment project

Page 44: Diagnostics of Infectious Bacteria is Dependent upon a

Conclusions

- Proteotyping provides high-resolution characterisation of bacteria;

- Proteotyping is able to detect virulence factors;

- Proteotyping is able to detect AMR factors;

- Proteotyping is applicable to clinical samples, without cultivation;

- Proteotyping requires comprehensive and accurate wgs database;

- Proteotyping requires a stable taxonomy;

- Bacteria do not cooperate with microbial systematists;

- There is more interesting work to be done

Page 45: Diagnostics of Infectious Bacteria is Dependent upon a

Acknowledgements

Elisabeth Inganäs, BMA CCUG LabMaria Ohlén, BMA CCUG LabSusanne Jensie Markopoulos, BMA CCUG LabSofia Cardew, BMA CCUG LabKent Molin, Chemist CCUG Lab

Roger Karlsson CCUG - ProteomicsFrancisco Salvà-Serra CCUG - GenomicsHedvig Jakobsson CCUG - GenomicsDaniel Jáen-Luchoro CCUG - GenomicsLucia Gonzales-Siles CCUG - MicrobiologyNahid Karami SU - Microbiology / AMRShora Yazdanshenas SU – Microbiology (RA)Bea Piñeiro-Iglesias SU - Microbiology (RA)Eri (k Kristiansson Chalmers Univ – BioinformaticsFredrik Boulund Chalmers Univ – BioinformaticsElisabeth Carlsohn GU Proteomics Core Facility

ALF-Medel / Regionala FoU

EU – TAILORED-Treatment Project (www.tailored-treatment.eu)