digital integrated circuits a design perspective design methodologies jan m. rabaey anantha...

52
Digital Integrated Circuits A Design Perspective Design Methodologies Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

Upload: maximillian-bruce-smith

Post on 28-Dec-2015

240 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: Digital Integrated Circuits A Design Perspective Design Methodologies Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

Digital Integrated CircuitsA Design Perspective

DesignMethodologies

Jan M. RabaeyAnantha ChandrakasanBorivoje Nikolic

Page 2: Digital Integrated Circuits A Design Perspective Design Methodologies Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

A System-on-a-Chip: Example

Courtesy: Philips

Page 3: Digital Integrated Circuits A Design Perspective Design Methodologies Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

Impact of Implementation ChoicesEn

ergy

Effi

cien

cy (i

n M

OPS

/mW

)

Flexibility(or application scope)

0.1-1

1-10

10-100

100-1000

None Fullyflexible

Somewhatflexible

Har

dwire

d cu

stom

Confi

gura

ble/

Para

met

eriza

ble D

omai

n-sp

ecifi

c pr

oces

sor

(e.g

. DSP

)

Embe

dded

mic

ropr

oces

sor

Page 4: Digital Integrated Circuits A Design Perspective Design Methodologies Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

Design Methodology

• Design process traverses iteratively between three abstractions: behavior, structure, and geometry• More and more automation for each of these steps

Page 5: Digital Integrated Circuits A Design Perspective Design Methodologies Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

Implementation Choices

Custom

Standard CellsCompiled Cells Ma cro Cells

Cell-based

Pre-diffused(Gate Arrays)

Pre-wired(FPGA's)

Array-based

Semicustom

Digital Circuit Implementation Approaches

Page 6: Digital Integrated Circuits A Design Perspective Design Methodologies Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

The Custom Approach

Intel 4004

Courtesy Intel

Page 7: Digital Integrated Circuits A Design Perspective Design Methodologies Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

Transition to Automation and Regular Structures

Intel 4004 (‘71)Intel 8080 Intel 8085

Intel 8286 Intel 8486Courtesy Intel

Page 8: Digital Integrated Circuits A Design Perspective Design Methodologies Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

Standard Cell — Example

[Brodersen92]

Page 9: Digital Integrated Circuits A Design Perspective Design Methodologies Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

Standard Cell – The New Generation

Cell-structurehidden underinterconnect layers

Page 10: Digital Integrated Circuits A Design Perspective Design Methodologies Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

Standard Cell - Example

3-input NAND cell(from ST Microelectronics):C = Load capacitanceT = input rise/fall time

Page 11: Digital Integrated Circuits A Design Perspective Design Methodologies Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

Automatic Cell Generation

Courtesy Acadabra

Initial transistorgeometries

Placedtransistors

Routedcell

Compactedcell

Finishedcell

Page 12: Digital Integrated Circuits A Design Perspective Design Methodologies Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

A Historical Perspective: the PLA

x0 x1 x2

ANDplane

x0 x1

x2

Product terms

ORplane

f0 f1

Page 13: Digital Integrated Circuits A Design Perspective Design Methodologies Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

Two-Level Logic

Inverting format (NOR-NOR) more effective

Every logic function can beexpressed in sum-of-productsformat (AND-OR)

minterm

Page 14: Digital Integrated Circuits A Design Perspective Design Methodologies Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

PLA Layout – Exploiting Regularity

f0 f1x0 x0 x1 x1 x2 x2Pull-up devices Pull-up devices

V DD GNDfAnd-Plane Or-Plane

Page 15: Digital Integrated Circuits A Design Perspective Design Methodologies Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

Breathing Some New Life in PLAsRiver PLAs• A cascade of multiple-output PLAs.• Adjacent PLAs are connected via river routing.

PRE-CHARGE

PRE-

CHARGE

PRE-CHARGE

PRE-CHARGE

BUFFER

BUFFER

BUFFER

BUFFER

PRE-CHARGE

PRE-CHARGE

BUFFER

BUFFER

PRE-CHARGE

PRE-

CHARGE

BUFFERBUFFER

• No placement and routing needed. • Output buffers and the input buffers of

the next stage are shared.

Courtesy B. Brayton

Page 16: Digital Integrated Circuits A Design Perspective Design Methodologies Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

Experimental Results

Layout of C2670

Network of PLAs, 4 layers OTC

River PLA,2 layers no additional routing

Standard cell, 2 layers channel routing

Standard cell,3 layers OTC

0.2

0.6

1

1.4

0 2 4 6 area

delay

SC NPLA RPLA

Area: RPLAs (2 layers) 1.23 SCs (3 layers) - 1.00, NPLAs (4 layers) 1.31 DelayRPLAs 1.04SCs 1.00 NPLAs 1.09 Synthesis time: for RPLA , synthesis time equals design time; SCs and NPLAs still need P&R.

Also: RPLAs are regular and predictable

Page 17: Digital Integrated Circuits A Design Perspective Design Methodologies Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

MacroModules

25632 (or 8192 bit) SRAMGenerated by hard-macro module generator

Page 18: Digital Integrated Circuits A Design Perspective Design Methodologies Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

“Soft” MacroModules

Synopsys DesignCompiler

Page 19: Digital Integrated Circuits A Design Perspective Design Methodologies Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

“Intellectual Property”

A Protocol Processor for Wireless

Page 20: Digital Integrated Circuits A Design Perspective Design Methodologies Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

Semicustom Design Flow

HDL

Logic Synthesis

Floorplanning

Placement

Routing

Tape-out

Circuit Extraction

Pre-Layout Simulation

Post-Layout Simulation

Structural

Physical

BehavioralDesign Capture

Des

ign

Itera

tion

Page 21: Digital Integrated Circuits A Design Perspective Design Methodologies Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

The “Design Closure” Problem

Courtesy Synopsys

Iterative Removal of Timing Violations (white lines)

Page 22: Digital Integrated Circuits A Design Perspective Design Methodologies Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

Integrating Synthesis with Physical Design

Physical Synthesis

RTL (Timing) Constraints

Place-and-RouteOptimization

Artwork

Netlist with Place-and-Route Info

MacromodulesFixed netlists

Page 23: Digital Integrated Circuits A Design Perspective Design Methodologies Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

Pre-diffused(Gate Arrays)

Pre-wired(FPGA's)

Array-based

Late-Binding Implementation

Page 24: Digital Integrated Circuits A Design Perspective Design Methodologies Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

Gate Array — Sea-of-gates

rows of

cells

routing channel

uncommitted

VDD

GND

polysilicon

metal

possiblecontact

In1 In2 In3 In4

Out

UncommitedCell

CommittedCell(4-input NOR)

Page 25: Digital Integrated Circuits A Design Perspective Design Methodologies Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

Sea-of-gate Primitive Cells

NMOS

PMOS

Oxide-isolation

PMOS

NMOS

NMOS

Using oxide-isolation Using gate-isolation

Page 26: Digital Integrated Circuits A Design Perspective Design Methodologies Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

Sea-of-gates

Random Logic

MemorySubsystem

LSI Logic LEA300K(0.6 mm CMOS)

Courtesy LSI Logic

Page 27: Digital Integrated Circuits A Design Perspective Design Methodologies Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

The return of gate arrays?

metal-5 metal-6

Via-programmable cross-point

programmable via

Via programmable gate array(VPGA)

[Pileggi02]

Exploits regularity of interconnect

Page 28: Digital Integrated Circuits A Design Perspective Design Methodologies Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

Prewired ArraysClassification of prewired arrays (or field-programmable devices):• Based on Programming Technique

– Fuse-based (program-once)– Non-volatile EPROM based– RAM based

• Programmable Logic Style– Array-Based– Look-up Table

• Programmable Interconnect Style– Channel-routing– Mesh networks

Page 29: Digital Integrated Circuits A Design Perspective Design Methodologies Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

Fuse-Based FPGA

antifuse polysilicon ONO dielectric

n+ antifuse diffusion

2 l

From Smith97

Open by default, closed by applying current pulse

Page 30: Digital Integrated Circuits A Design Perspective Design Methodologies Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

Array-Based Programmable Logic

PLA PROM PAL

I 5 I 4

O 0

I 3 I 2 I 1 I 0

O 1O 2O 3

Programmable AND array

ProgrammableOR array I 5 I 4

O 0

I 3 I 2 I 1 I 0

O 1O 2O 3

Programmable AND array

Fixed OR array

Indicates programmable connection

Indicates fixed connection

O0

I 3 I 2 I 1 I 0

O1O2O3

Fixed AND array

ProgrammableOR array

Page 31: Digital Integrated Circuits A Design Perspective Design Methodologies Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

Programming a PROM

f0

1 X 2 X 1 X 0

f1NANA

: programmed node

Page 32: Digital Integrated Circuits A Design Perspective Design Methodologies Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

2-input mux as programmable logic block

FA 0

B

S

1

Configuration

A B S F=

0 0 0 00 X 1 X0 Y 1 Y0 Y X XYX 0 YY 0 XY 1 X X 1 Y1 0 X1 0 Y1 1 1 1

XYXY

XY

Page 33: Digital Integrated Circuits A Design Perspective Design Methodologies Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

LUT-Based Logic Cell

Courtesy Xilinx

D 4

C 1 ....C4

xxxxxx

D 3

D 2

D 1

F4

F3

F2

F1

Logicfunction

ofxxx

Logicfunction

ofxxx

Logicfunction

ofxxx

xx

xx

4

xxxxxx

xxxxxxxx

xxx

xxxx xxxx xxxx

HP

Bitscontrol

Bitscontrol

Multiplexer Controlledby Configuration Program

x

xx

x

xx

xxx xx

xxxx

x

xxxxxx

xx

x

xx

xxx

xx

Xilinx 4000 Series

Figure must be updated

Page 34: Digital Integrated Circuits A Design Perspective Design Methodologies Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

Array-Based Programmable Wiring

Input/output pinProgrammed interconnection

InterconnectPoint

Horizontaltracks

Vertical tracks

Cell

Page 35: Digital Integrated Circuits A Design Perspective Design Methodologies Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

Mesh-based Interconnect Network

Switch Box

Connect Box

InterconnectPoint

Courtesy Dehon and Wawrzyniek

Page 36: Digital Integrated Circuits A Design Perspective Design Methodologies Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

Transistor Implementation of Mesh

Courtesy Dehon and Wawrzyniek

Page 37: Digital Integrated Circuits A Design Perspective Design Methodologies Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

Hierarchical Mesh Network

Use overlayed meshto support longer connections

Reduced fanout and reduced resistance

Courtesy Dehon and Wawrzyniek

Page 38: Digital Integrated Circuits A Design Perspective Design Methodologies Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

EPLD Block Diagram

MacrocellPrimary inputs

Courtesy Altera

Page 39: Digital Integrated Circuits A Design Perspective Design Methodologies Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

Altera MAX

From Smith97

Page 40: Digital Integrated Circuits A Design Perspective Design Methodologies Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

Altera MAX Interconnect Architecture

LAB2

PIA

LAB1

LAB6

t PIA

t PIA

row channelcolumn channel

LAB

Courtesy Altera

Array-based(MAX 3000-7000)

Mesh-based(MAX 9000)

Page 41: Digital Integrated Circuits A Design Perspective Design Methodologies Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

Field-Programmable Gate ArraysFuse-based

I/O Buffers

P rogram/Test/Diag nostics

I/O Buffers

I/O B

uffe

rs

I/O B

uffe

rs

Vertical ro utes

Rows o f logic m odule s

Routing channels

Standard-cell likefloorplan

Page 42: Digital Integrated Circuits A Design Perspective Design Methodologies Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

Xilinx 4000 Interconnect Architecture

2

12

8

4

3

2

3

CLB

8 4 8 4

Quad

Single

Double

Long

DirectConnect

DirectConnect

Quad Long GlobalClock

Long Double Single GlobalClock

CarryChain

Long12 4 4

Courtesy Xilinx

Page 43: Digital Integrated Circuits A Design Perspective Design Methodologies Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

RAM-based FPGA

Xilinx XC4000ex

Courtesy Xilinx

Page 44: Digital Integrated Circuits A Design Perspective Design Methodologies Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

A Low-Energy FPGA (UC Berkeley)

Array Size: 8x8 (2 x 4 LUT) Power Supply: 1.5V & 0.8V Configuration: Mapped as RAM Toggle Frequency: 125MHz Area: 3mm x 3mm

Page 45: Digital Integrated Circuits A Design Perspective Design Methodologies Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

Larger Granularity FPGAs

1-mm 2-metalCMOS tech

1.2 x 1.2 mm2

600k transistors

208-pin PGA

fclock = 50 MHz

Pav = 3.6 W @ 5V

Basic Module: Datapath

PADDI-2 (UC Berkeley)

Page 46: Digital Integrated Circuits A Design Perspective Design Methodologies Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

Design at a crossroadSystem-on-a-Chip

RAM

500 k Gates FPGA+ 1 Gbit DRAMPreprocessing

Multi-

SpectralImager

mCsystem+2 GbitDRAMRecog-

nition

Ana

log

64 SIMD ProcessorArray + SRAM

Image Conditioning100 GOPS

Embedded applications where cost, performance, and energy are the real issues!

DSP and control intensive Mixed-mode Combines programmable and

application-specific modules Software plays crucial role

Page 47: Digital Integrated Circuits A Design Perspective Design Methodologies Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

Addressing the Design Complexity IssueArchitecture Reuse

Reuse comes in generationsGeneration Reuse element Status

1st Standard cells Well established

2nd IP blocks Being introduced

3rd Architecture Emerging

4th IC Early research

Source: Theo Claasen (Philips) – DAC 00

Page 48: Digital Integrated Circuits A Design Perspective Design Methodologies Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

Architecture ReUse

• Silicon System Platform– Flexible architecture for hardware and software– Specific (programmable) components– Network architecture– Software modules– Rules and guidelines for design of HW and SW

• Has been successful in PC’s– Dominance of a few players who specify and control architecture

• Application-domain specific (difference in constraints)– Speed (compute power)– Dissipation– Costs– Real / non-real time data

Page 49: Digital Integrated Circuits A Design Perspective Design Methodologies Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

Platform-Based Design

• A platform is a restriction on the space of possible implementation choices, providing a well-defined abstraction of the underlying technology for the application developer

• New platforms will be defined at the architecture-micro-architecture boundary

• They will be component-based, and will provide a range of choices from structured-custom to fully programmable implementations

• Key to such approaches is the representation of communication in the platform model

“Only the consumer gets freedom of choice;designers need freedom from choice”

(Orfali, et al, 1996, p.522)

Source:R.Newton

Page 50: Digital Integrated Circuits A Design Perspective Design Methodologies Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

Berkeley Pleiades Processor

• 0.25um 6-level metal CMOS • 5.2mm x 6.7mm• 1.2 Million transistors• 40 MHz at 1V• 2 extra supplies: 0.4V, 1.5V• 1.5~2 mW power dissipation

Interface

Reconfigurable

Data-path

FPGA

ARM8 Core

Page 51: Digital Integrated Circuits A Design Perspective Design Methodologies Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

Heterogeneous Programmable Platforms

Xilinx Vertex-II Pro

Courtesy Xilinx

High-speed I/O

Embedded PowerPcEmbedded memories

Hardwired multipliers

FPGA Fabric

Page 52: Digital Integrated Circuits A Design Perspective Design Methodologies Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

Summary

• Digital CMOS Design is kicking and healthy• Some major challenges down the road caused by

Deep Sub-micron– Super GHz design– Power consumption!!!!– Reliability – making it workSome new circuit solutions are bound to emerge

• Who can afford design in the years to come? Some major design methodology change in the making!