disain fondasi

Upload: budi-utomo

Post on 06-Jul-2018

228 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/17/2019 disain fondasi

    1/247

    SPRO V.4.98 Foundation Design UtilityNathan Madutujuh, 1988-2013

    e: ACI-318-99, PBI-91, PBI-2003ensee: Budi Utomo, ST, Jl. Jepara-Bangsri Km.11, Sekuro RT 21/RW 05, JEPARA

    ASSUMPTIONS:

    1. Reactions Forces

    - Reactions are taken Automatically from Load Cases and combined into design group- User Load Factors will not be used for combinations- Live Load Reduction Factors use user defined live load reductions:- Live Load Reduction Factor for Storey Number LLRF1 = 0.7- Live Load Reduction Factor for Temporer Load LLRF2 = 0.5- Load combinations for maximum tension/uplift use 0.9*DL

    - Load combinations selected = ALL- Use Vertical Earthquake, Av = 0.12

    - Forces Included: N,Vx,Vz,Mux,Muz (Axial and Biaxial Bending)- Axial forces used : Nmin, Nmax to accomodate compression and tension- Foundation capacity is increased by 130.0 % for temporary loading

    2. Spread Footing

    - Three Conditions of Soil Stress Pattern (no tension allowed)- Uplift Force is resisted by slab weight and soil weight- Rebar Minimum uses value given by user (rho >= 0.15%)- Slab Thickness is checked for punching shear- Slab Rebar is calculated for compression and tension condition

    3. Pile Foundation

    - Pile configuration is from standard/optimum configuration- Pile to pile/edge distance ratio are determined by user- Pile min/max force is determined using rigid slab assumption- Rebar Minimum uses value given by user (rho >= 0.15%)- Tension pile rebar is determined using max tension force

    - Capacity Design Method used- OmegaFacX = 3.00- OmegaFacZ = 3.00- RR1FAC = 0: Pile capacity is not increased, P = 1.0 x P- RR1FAC = 1: Pile capacity P = P x LFTEMP1 for temporary load (Default = 1.5)

    (moderate earthquake case)- RR1FAC > 0: Pile capacity P = P x LFTEMP2 for temporary load (Default = 2.5)

    (strong earthquake case, capacity design)

    - Pile capacity is NOT reduced by pile self-weight- Pile axial capacity is reduced by pile group efficiencyeff = (2*(m+n-2)*s+4*D)/(p*m*n)

    - Pile lateral capacity reduction factor for 1x1 pile : 1.0- Pile lateral capacity reduction factor for 2x2 pile : 0.75- Pile lateral capacity reduction factor for > 3x3 pile : 0.5

    4. Pilecap Design

    - Pilecap size is from standard/optimum configuration- Pilecap Thickness is checked for punching shear from column and group block- Punching shear from column is neglected if d > 1.1*(2*dp-bcol)- Mininum Thickness from punching shear of column is 1.1*(2*dp-bcol)- Pilecap Thickness is checked for punching shear from pile- Pilecap rebar is designed for nett bending (beam action)- Pilecap rebar is designed differently for top and bottom rebar- Minimum Pilecap rebar ratio is 0.18% to 0.25% depends on Fy or user defined- Top and Bottom Concrete Cover can be different values- Segment of pile embedded to pilecap is included in calculation- Bending Moment Mx = cmbx * P1, My = cmby * P1

    - Where P1 = Single Pile Compression Capacity- Where cmbx, cmby are properties of pilecap configuration

    5. Tie Beam/Sloof Design

    - Longitudinal rebar is designed for tension and bending- Tension is calculated from 10% of maximum column compression- Bending is calculated from self-weight and uplift force (LxW area)

    6. Cost Calculation

    - Pile cost is unit cost per pile (for total length of pile)- Cost includes pilecap, excludes tie beam/sloof and basement slab- Only detail calculation for foundations with minimum cost are displayed- Unit price of concrete = 800000 / m3- Unit price of rebar = 9500 / kg

    FOUNDATION DESIGN CALCULATION:

    **************************************************************************1. SUPPORT NO. 1, Node= 1, Location: x= 2700.00000, y= 600.00000

    phi,m = 0.80 phi,v = 0.60fc1 = 291.0 kg/cm2 fy = 3900.0 kg/cm2fyv = 2400.0 kg/cm2 fys = 2400.0 kg/cm2s,ratio = 3.00 s1,ratio = 1.50col,bx = 50.00 cm col,bz = 60.00 cmsloof db=1.90 cm, dbv=1.00 cm, dbs=1.20 cm

  • 8/17/2019 disain fondasi

    2/247

    pilecap db=1.90 cm, dbv=1.00 cm, dbs=1.20 cmfoot db=1.90 cm, pile embeded=7.5 cm

    Unfactored forces: all(f1*f2), static, temporary (f1*f2), temporary (f1*f2=1)Maximum Axial, Pu = 100460.8, 52532.4, 100460.8, 71039.2 kgMinimum Axial, Pu = -7431.6, 36700.9, -7431.6, 21990.0 kg.cmMoment, X-Dir, Mux = 0.0, 0.0, 0.0, 0.0 kg.cmMoment, Y-Dir, Muy = 0.0, 0.0, 0.0, 0.0 kg.cmHoriz Force, Vux = 9256.0, 173.9, 9256.0, 3207.4 kgHoriz Force, Vuy = 12034.4, 968.6, 12034.4, 4690.9 kg

    Factored forces: all(f1*f2), static, temporary (f1*f2), temporary (f1*f2=1)Single Axial, Pu = 0.0, 0.0 kgMaximum Axial, Pu = 110909.3, 65327.0, 110909.3, 81487.7 kgMinimum Axial, Pu = -7431.6, 36700.9, -7431.6, 21990.0 kg.cmMoment, X-Dir, Mux = 0.0, 0.0, 0.0, 0.0 kg.cmMoment, Y-Dir, Muy = 0.0, 0.0, 0.0, 0.0 kg.cm

    Horiz Force, Vux = 9288.7, 219.6, 9288.7, 3240.1 kgHoriz Force, Vuy = 12216.3, 1223.8, 12216.3, 4872.8 kg

    PILE FOUNDATION DESIGN:

    1. Pilecap Thickness:

    a. Given Pilecap Thickness, Tp = 30.00 cm

    b. From Punching of Single Pile:Factored Punching Force, 1 pile, Pu = 45000.00 kgAllowable Punching Stress, vc = 18.09 kg/cm2, fc1 = 291.00 kg/cm2Perimeter Length of Punching Area, Kp1 = 240.00 cmTpmin from Punch Shear of One Pile = 40.00 cm

    c. From Punching of Single Column:Punching of Single Column Status = Not Exist (d > 1.1*(2dp-bc))Factored Punching Force, Column, Pu = 81487.68 kgAllowable Punching Stress, vc = 18.09 kg/cm2Perimeter Length of Punching Area, Kp2 = 289.08 cm

    d. Minimum Thickness required by user, Tpmin = 50.00 cm

    e. Selected Pilecap Thickness, Tp = 50.00 cmAllowable Punching Stress, vc = 18.09 kg/cm2Shear Stress, Punching of Pile, vc = 9.18 kg/cm2 -> OKShear Stress, Punching of Column, vc = 18.78 kg/cm2 Not Exist (d > 1.1*(2dp-bc))

    2. Pile Number Calculation:

    a. First Trial (pilecap weight = 0, + for compression)

    Unfactored Max Force, Static Load Pu1 = 52.53 ton, Pcap1 = 30.00 ton, np1=2Unfactored Max Force, Temp. Load, F=f1*f2, Pu1 = 100.46 ton, Pcap1 = 60.00 ton, np1=2Unfactored Max Force, Temp. Load, F=1.0, Pu1 = 71.04 ton, Pcap1 = 39.00 ton, np1=2Pilecap Weight Wpcap = 0.00 tonWeight of One Pile, Wp = 1.81 tonGross Capacity of One Pile, P1 = 30.00 tonNett Capacity of One Pile, P1 = 28.19 tonNumber of Piles needed for Compression Force, Np1 = 2 pilesTotal Compression Capacity (No Earthquake), Pn = 60.00 ton -> NOT OKTotal Compression Capacity (f1*f2=1.0), Pn = 78.00 ton -> OKTotal Compression Capacity (Use f1*f2), Pn = 120.00 ton -> OK

    Unfactored Min Force, (Tension=negative), Pumin = 21.99 tonPilecap Weight Wpcap = 0.00 tonUnfactored Tension reduced by Pilecap Wgt, Tu = 0.00 ton (compression)No Tension Force Occured -> OK

    Unfactored Max Force, Static Load Vu1 = 0.97 ton, Pcap1 = 0.00 ton, np1=1Unfactored Max Force, Temp. Load, F=f1*f2, Vu1 = 12.03 ton, Pcap1 = 0.00 ton, np1=2Unfactored Max Force, Temp. Load, F=1.0, Vu1 = 4.69 ton, Pcap1 = 0.00 ton, np1=1Unfactored Lateral Force, Vu = 0.00 tonLateral Capacity of One Pile, P3 = 5.00 tonNumber of Piles needed for Lateral Force, Np3 = 2 pilesTotal Lateral Capacity (No Earthquake), Vn = 5.00 ton -> OKTotal Lateral Capacity (f1*f2 = 1.0), Vn = 6.50 ton -> OKTotal Lateral Capacity (f1*f2 > 0), Vn = 20.00 ton -> OK

    Number of Piles needed, Np = 2 piles

    b. Second Trial (with Pilecap Weight)

    Unfactored Max Force, Static Load Pu1 = 52.53 ton, Pcap1 = 30.00 ton, np1=2Unfactored Max Force, Temp. Load, F=f1*f2, Pu1 = 100.46 ton, Pcap1 = 60.00 ton, np1=2Unfactored Max Force, Temp. Load, F=1.0, Pu1 = 71.04 ton, Pcap1 = 39.00 ton, np1=2

    Pilecap Weight Wpcap = 0.97 tonUnfactored Force + Pilecap Weight, Pu1 = 52.53 tonWeight of One Pile, Wp = 1.81 tonGross Capacity of One Pile, P1 = 30.00 tonNett Capacity of One Pile, P1 = 30.00 tonNumber of Piles needed for Compression Force,Np1 = 2 pilesTotal Compression Capacity (No Earthquake), Pn = 60.00 ton -> NOT OKTotal Compression Capacity (f1*f2=1.0), Pn = 78.00 ton -> OKTotal Compression Capacity (Use f1*f2), Pn = 120.00 ton -> OK

    Unfactored Min Force, (Tension=negative), Pumin = 21.99 ton

  • 8/17/2019 disain fondasi

    3/247

    Pilecap Weight Wpcap = 0.97 tonUnfactored Tension reduced by Pilecap Wgt, Tu = 0.00 ton (compression)No Tension Force Occured -> OKNumber of Pile needed, Np = 2 pilesCompres: P1 = (Nmax+Wpcap-Po)/np = 36491.58 kg, dPMx = 0.00 kg, dPMy = 0.00 kgTension: P1 = (Nmin+Wpcap-To)/np = 11967.02 kg, dPMx = 0.00 kg, dPMy = 0.00 kgPcomp= 39000.00 Ptens= 8309.56, P1max = 36491.58, P1min = 11967.02

    c. Third Trial (with Group Efficiency and Bending Moment)

    Number of Pile needed, Np = 2 pilesGroup Efficiency Method = Simple FormulaGroup Efficiency, e = 1.000Unfactored Max Force, (+ -> compression), Pumax = 100.46 tonUnfactored Min Force, (Tension=negative), Pumin = -7.43 tonPilecap Weight Wpcap = 1.94 ton

    Unfactored Max Force + Pilecap Weight, Pu1 = 52.53 tonUnfactored Min Force + Pilecap Weight, Pu2 = 23.93 tonWeight of One Pile, Wp = 1.81 tonGross Compression Capacity of One Pile, P1 = 30.00 tonNett Compression Capacity of One Pile, P1 = 30.00 tonTension Capacity of One Pile, P2 = 5.00 tonTension Capacity of One Pile + Pile weight, P22 = 0.00 tonMaximum Compression on Pile, P1max = 36.49 ton -> OKMinimum Compression on Pile, P1min = 11.97 ton -> OKConcrete Slab Design Status, X-Direction = OK

    Optimum Foundation Selected, Index = 1

    Pile, Rect, a= 30 cm

    Pile Size Parameter:

    a = 30.00000 cmb = 30.00000 cmsp = 90.00000 cmsp1 = 45.00000 cmspx = 90.00000 cmspy = 90.00000 cmAp = 900.00000 cm2dp = 30.00000 cmApw = 942.47800 cm2Kp = 120.00000 cmKp1 = 240.00000 cm

    PILE FOUNDATION DESIGN:

    1. Pilecap Thickness:

    a. Given Pilecap Thickness, Tp = 30.00 cm

    b. From Punching of Single Pile:Factored Punching Force, 1 pile, Pu = 45000.00 kgAllowable Punching Stress, vc = 18.09 kg/cm2, fc1 = 291.00 kg/cm2Perimeter Length of Punching Area, Kp1 = 240.00 cmTpmin from Punch Shear of One Pile = 40.00 cm

    c. From Punching of Single Column:Punching of Single Column Status = Not Exist (d > 1.1*(2dp-bc))Factored Punching Force, Column, Pu = 81487.68 kgAllowable Punching Stress, vc = 18.09 kg/cm2Perimeter Length of Punching Area, Kp2 = 289.08 cm

    d. Minimum Thickness required by user, Tpmin = 50.00 cm

    e. Selected Pilecap Thickness, Tp = 50.00 cm

    Allowable Punching Stress, vc = 18.09 kg/cm2Shear Stress, Punching of Pile, vc = 9.14 kg/cm2 -> OKShear Stress, Punching of Column, vc = 18.70 kg/cm2 Not Exist (d > 1.1*(2dp-bc))

    2. Pile Number Calculation:

    a. First Trial (pilecap weight = 0, + for compression)

    Unfactored Max Force, Static Load Pu1 = 52.53 ton, Pcap1 = 30.00 ton, np1=2Unfactored Max Force, Temp. Load, F=f1*f2, Pu1 = 100.46 ton, Pcap1 = 60.00 ton, np1=2Unfactored Max Force, Temp. Load, F=1.0, Pu1 = 71.04 ton, Pcap1 = 39.00 ton, np1=2Pilecap Weight Wpcap = 0.00 tonWeight of One Pile, Wp = 1.81 tonGross Capacity of One Pile, P1 = 30.00 tonNett Capacity of One Pile, P1 = 28.19 tonNumber of Piles needed for Compression Force, Np1 = 2 pilesTotal Compression Capacity (No Earthquake), Pn = 60.00 ton -> NOT OKTotal Compression Capacity (f1*f2=1.0), Pn = 78.00 ton -> OK

    Total Compression Capacity (Use f1*f2), Pn = 120.00 ton -> OK

    Unfactored Min Force, (Tension=negative), Pumin = 21.99 tonPilecap Weight Wpcap = 0.00 tonUnfactored Tension reduced by Pilecap Wgt, Tu = 0.00 ton (compression)No Tension Force Occured -> OK

    Unfactored Max Force, Static Load Vu1 = 0.97 ton, Pcap1 = 0.00 ton, np1=1Unfactored Max Force, Temp. Load, F=f1*f2, Vu1 = 12.03 ton, Pcap1 = 0.00 ton, np1=2Unfactored Max Force, Temp. Load, F=1.0, Vu1 = 4.69 ton, Pcap1 = 0.00 ton, np1=1Unfactored Lateral Force, Vu = 0.00 ton

  • 8/17/2019 disain fondasi

    4/247

    Lateral Capacity of One Pile, P3 = 5.00 tonNumber of Piles needed for Lateral Force, Np3 = 2 pilesTotal Lateral Capacity (No Earthquake), Vn = 5.00 ton -> OKTotal Lateral Capacity (f1*f2 = 1.0), Vn = 6.50 ton -> OKTotal Lateral Capacity (f1*f2 > 0), Vn = 20.00 ton -> OK

    Number of Piles needed, Np = 2 piles

    b. Second Trial (with Pilecap Weight)

    Unfactored Max Force, Static Load Pu1 = 52.53 ton, Pcap1 = 30.00 ton, np1=2Unfactored Max Force, Temp. Load, F=f1*f2, Pu1 = 100.46 ton, Pcap1 = 60.00 ton, np1=2Unfactored Max Force, Temp. Load, F=1.0, Pu1 = 71.04 ton, Pcap1 = 39.00 ton, np1=2Pilecap Weight Wpcap = 1.94 tonUnfactored Force + Pilecap Weight, Pu1 = 52.53 tonWeight of One Pile, Wp = 1.81 tonGross Capacity of One Pile, P1 = 30.00 ton

    Nett Capacity of One Pile, P1 = 30.00 tonNumber of Piles needed for Compression Force,Np1 = 2 pilesTotal Compression Capacity (No Earthquake), Pn = 60.00 ton -> NOT OKTotal Compression Capacity (f1*f2=1.0), Pn = 78.00 ton -> OKTotal Compression Capacity (Use f1*f2), Pn = 120.00 ton -> OK

    Unfactored Min Force, (Tension=negative), Pumin = 21.99 tonPilecap Weight Wpcap = 1.94 tonUnfactored Tension reduced by Pilecap Wgt, Tu = 0.00 ton (compression)No Tension Force Occured -> OKNumber of Pile needed, Np = 2 piles

    Pile Configuration:

    np, total = 2, npx= 2, npy= 1Pilecap, bx= 180.0 cm, by= 90.0 cmColumn Block size, cx= 50.0 cm, cy= 60.0 cmFurthest pile, xp,max = 45.00, yp,max= 0.00Sigma dx^2 = 4050.00, Sigma dy^2 = 0.00Bending Moment Coefficient, cmbx = 20.00000, cmby = 0.00000Bending Moment (Factored) : Mx = 840000.00000 kg.cm, My = 0.00000 kg.cmCompres: P1 = (Nmax+Wpcap-Po)/np = 36491.58 kg, dPMx = 0.00 kg, dPMy = 0.00 kgTension: P1 = (Nmin+Wpcap-To)/np = 11967.02 kg, dPMx = 0.00 kg, dPMy = 0.00 kgPcomp= 39000.00 Ptens= 8309.56, P1max = 36491.58, P1min = 11967.02

    c. Third Trial (with Group Efficiency and Bending Moment)

    Pile Configuration:

    np, total = 2, npx= 2, npy= 1Pilecap, bx= 180.0 cm, by= 90.0 cmColumn Block size, cx= 50.0 cm, cy= 60.0 cmFurthest pile, xp,max = 45.00, yp,max= 0.00Sigma dx^2 = 4050.00, Sigma dy^2 = 0.00

    Bending Moment Coefficient, cmbx = 20.00000, cmby = 0.00000Bending Moment (Factored) : Mx = 840000.00000 kg.cm, My = 0.00000 kg.cm

    Number of Pile needed, Np = 2 pilesGroup Efficiency Method = Simple FormulaGroup Efficiency, e = 1.000Unfactored Max Force, (+ -> compression), Pumax = 100.46 tonUnfactored Min Force, (Tension=negative), Pumin = -7.43 tonPilecap Weight Wpcap = 1.94 tonUnfactored Max Force + Pilecap Weight, Pu1 = 52.53 tonUnfactored Min Force + Pilecap Weight, Pu2 = 23.93 tonWeight of One Pile, Wp = 1.81 tonGross Compression Capacity of One Pile, P1 = 30.00 tonNett Compression Capacity of One Pile, P1 = 30.00 tonTension Capacity of One Pile, P2 = 5.00 tonTension Capacity of One Pile + Pile weight, P22 = 0.00 tonMaximum Compression on Pile, P1max = 36.49 ton -> OK

    Minimum Compression on Pile, P1min = 11.97 ton -> OKConcrete Slab Design Status, X-Direction = OK

    3. Pilecap Rebar Design:

    Rebar pct min = 0.15 %Minimum Rebar Spacing = 10.00 cmBx,By,Tp = 180.00 x 90.00 x 50.00Bending Section in X-direction, b = 90.00 cm, h = 50.00 cmBending Section in Y-direction, b = 180.00 cm, h = 50.00 cmBending Moment in X-direction, Mpx = 840000.00 kg.cmBending Moment in Y-direction, Mpy = 0.00 kg.cmRebar Spacing, X-Dir, Bottom = d16- 24.3 cm ( 0.24%)Rebar Spacing, X-Dir, Top = d16- 40.0 cm ( 0.15%)Rebar Spacing, Y-Dir, Bottom = d16- 30.0 cm ( 0.20%)Rebar Spacing, Y-Dir, Top = d16- 40.0 cm ( 0.15%)

    TIE BEAM DESIGN:

    Tie Beam / Sloof Width, B = 30.00 cmTie Beam / Sloof Width, H = 60.00 cmFactored Maximum Column Axial Load, Pu = 81487.68 ton10% of Factored Axial Load, Tu = 8148.77 tonRequired Rebar for Tension, Ast = 2.61 cm2

    Nett Uplift Height, Hw = 2.00 mTie Beam / Sloof Length, L = 8.00 mTie Beam / Sloof Tributary Width, W = 8.00 mDistributed Load on Tie Beam, qL = 16000.00 kg/m

  • 8/17/2019 disain fondasi

    5/247

    Distributed Weight on Tie Beam, qsw = 432.00 kg/mBending Moment, Mql = 9963520.00 kg.cmShear Force, Vql = 62272.00 kgReq. Rebar for Bending Moment, Bottom = 39.69 cm2Req. Rebar for Bending Moment, Top = 79.39 cm2

    Longitudinal Rebar, at Support = 14 d19 / 28 d19Longitudinal Rebar, at Midspan = 28 d19 / 14 d19Shear Reinforcement Spacing at Support = d10 - 0.00

    **************************************************************************2. SUPPORT NO. 2, Node= 2, Location: x= 3100.00000, y= 600.00000

    phi,m = 0.80 phi,v = 0.60fc1 = 291.0 kg/cm2 fy = 3900.0 kg/cm2fyv = 2400.0 kg/cm2 fys = 2400.0 kg/cm2s,ratio = 3.00 s1,ratio = 1.50

    col,bx = 50.00 cm col,bz = 60.00 cmsloof db=1.90 cm, dbv=1.00 cm, dbs=1.20 cmpilecap db=1.90 cm, dbv=1.00 cm, dbs=1.20 cmfoot db=1.90 cm, pile embeded=7.5 cm

    Unfactored forces: all(f1*f2), static, temporary (f1*f2), temporary (f1*f2=1)Maximum Axial, Pu = 103416.6, 65631.5, 103416.6, 80950.6 kgMinimum Axial, Pu = 10872.4, 44571.4, 10872.4, 33338.4 kg.cmMoment, X-Dir, Mux = 0.0, 0.0, 0.0, 0.0 kg.cmMoment, Y-Dir, Muy = 0.0, 0.0, 0.0, 0.0 kg.cmHoriz Force, Vux = 10819.0, 38.0, 10819.0, 3632.6 kgHoriz Force, Vuy = 11538.0, 1055.5, 11538.0, 4576.1 kg

    Factored forces: all(f1*f2), static, temporary (f1*f2), temporary (f1*f2=1)Single Axial, Pu = 0.0, 0.0 kgMaximum Axial, Pu = 116105.8, 82269.9, 116105.8, 93639.8 kgMinimum Axial, Pu = 10872.4, 44571.4, 10872.4, 33338.4 kg.cmMoment, X-Dir, Mux = 0.0, 0.0, 0.0, 0.0 kg.cmMoment, Y-Dir, Muy = 0.0, 0.0, 0.0, 0.0 kg.cmHoriz Force, Vux = 10825.8, 48.6, 10825.8, 3639.3 kgHoriz Force, Vuy = 11727.5, 1349.2, 11727.5, 4765.6 kg

    PILE FOUNDATION DESIGN:

    1. Pilecap Thickness:

    a. Given Pilecap Thickness, Tp = 30.00 cm

    b. From Punching of Single Pile:Factored Punching Force, 1 pile, Pu = 45000.00 kgAllowable Punching Stress, vc = 18.09 kg/cm2, fc1 = 291.00 kg/cm2

    Perimeter Length of Punching Area, Kp1 = 240.00 cmTpmin from Punch Shear of One Pile = 40.00 cm

    c. From Punching of Single Column:Punching of Single Column Status = Not Exist (d > 1.1*(2dp-bc))Factored Punching Force, Column, Pu = 93639.84 kgAllowable Punching Stress, vc = 18.09 kg/cm2Perimeter Length of Punching Area, Kp2 = 289.08 cm

    d. Minimum Thickness required by user, Tpmin = 50.00 cm

    e. Selected Pilecap Thickness, Tp = 50.00 cmAllowable Punching Stress, vc = 18.09 kg/cm2Shear Stress, Punching of Pile, vc = 9.18 kg/cm2 -> OKShear Stress, Punching of Column, vc = 19.66 kg/cm2 Not Exist (d > 1.1*(2dp-bc))

    2. Pile Number Calculation:

    a. First Trial (pilecap weight = 0, + for compression)

    Unfactored Max Force, Static Load Pu1 = 65.63 ton, Pcap1 = 30.00 ton, np1=3Unfactored Max Force, Temp. Load, F=f1*f2, Pu1 = 103.42 ton, Pcap1 = 60.00 ton, np1=2Unfactored Max Force, Temp. Load, F=1.0, Pu1 = 80.95 ton, Pcap1 = 39.00 ton, np1=3Pilecap Weight Wpcap = 0.00 tonWeight of One Pile, Wp = 1.81 tonGross Capacity of One Pile, P1 = 30.00 tonNett Capacity of One Pile, P1 = 28.19 tonNumber of Piles needed for Compression Force, Np1 = 3 pilesTotal Compression Capacity (No Earthquake), Pn = 90.00 ton -> OKTotal Compression Capacity (f1*f2=1.0), Pn = 117.00 ton -> OKTotal Compression Capacity (Use f1*f2), Pn = 120.00 ton -> OK

    Unfactored Min Force, (Tension=negative), Pumin = 33.34 tonPilecap Weight Wpcap = 0.00 tonUnfactored Tension reduced by Pilecap Wgt, Tu = 0.00 ton (compression)

    No Tension Force Occured -> OK

    Unfactored Max Force, Static Load Vu1 = 1.06 ton, Pcap1 = 0.00 ton, np1=1Unfactored Max Force, Temp. Load, F=f1*f2, Vu1 = 11.54 ton, Pcap1 = 0.00 ton, np1=2Unfactored Max Force, Temp. Load, F=1.0, Vu1 = 4.58 ton, Pcap1 = 0.00 ton, np1=1Unfactored Lateral Force, Vu = 0.00 tonLateral Capacity of One Pile, P3 = 5.00 tonNumber of Piles needed for Lateral Force, Np3 = 2 pilesTotal Lateral Capacity (No Earthquake), Vn = 5.00 ton -> OKTotal Lateral Capacity (f1*f2 = 1.0), Vn = 6.50 ton -> OKTotal Lateral Capacity (f1*f2 > 0), Vn = 20.00 ton -> OK

  • 8/17/2019 disain fondasi

    6/247

    Number of Piles needed, Np = 3 piles

    b. Second Trial (with Pilecap Weight)

    Unfactored Max Force, Static Load Pu1 = 65.63 ton, Pcap1 = 30.00 ton, np1=3Unfactored Max Force, Temp. Load, F=f1*f2, Pu1 = 103.42 ton, Pcap1 = 60.00 ton, np1=2Unfactored Max Force, Temp. Load, F=1.0, Pu1 = 80.95 ton, Pcap1 = 39.00 ton, np1=3Pilecap Weight Wpcap = 0.97 tonUnfactored Force + Pilecap Weight, Pu1 = 65.63 tonWeight of One Pile, Wp = 1.81 tonGross Capacity of One Pile, P1 = 30.00 tonNett Capacity of One Pile, P1 = 30.00 tonNumber of Piles needed for Compression Force,Np1 = 3 pilesTotal Compression Capacity (No Earthquake), Pn = 90.00 ton -> OKTotal Compression Capacity (f1*f2=1.0), Pn = 117.00 ton -> OKTotal Compression Capacity (Use f1*f2), Pn = 120.00 ton -> OK

    Unfactored Min Force, (Tension=negative), Pumin = 33.34 tonPilecap Weight Wpcap = 0.97 tonUnfactored Tension reduced by Pilecap Wgt, Tu = 0.00 ton (compression)No Tension Force Occured -> OKNumber of Pile needed, Np = 3 pilesCompres: P1 = (Nmax+Wpcap-Po)/np = 28279.54 kg, dPMx = 0.00 kg, dPMy = 0.00 kgTension: P1 = (Nmin+Wpcap-To)/np = 12408.81 kg, dPMx = 0.00 kg, dPMy = 0.00 kgPcomp= 39000.00 Ptens= 8309.56, P1max = 28279.54, P1min = 12408.81

    c. Third Trial (with Group Efficiency and Bending Moment)

    Number of Pile needed, Np = 3 pilesGroup Efficiency Method = Simple FormulaGroup Efficiency, e = 1.000Unfactored Max Force, (+ -> compression), Pumax = 103.42 tonUnfactored Min Force, (Tension=negative), Pumin = 10.87 tonPilecap Weight Wpcap = 3.89 tonUnfactored Max Force + Pilecap Weight, Pu1 = 65.63 tonUnfactored Min Force + Pilecap Weight, Pu2 = 37.23 tonWeight of One Pile, Wp = 1.81 tonGross Compression Capacity of One Pile, P1 = 30.00 tonNett Compression Capacity of One Pile, P1 = 30.00 tonTension Capacity of One Pile, P2 = 5.00 tonTension Capacity of One Pile + Pile weight, P22 = 0.00 tonMaximum Compression on Pile, P1max = 28.28 ton -> OKMinimum Compression on Pile, P1min = 12.41 ton -> OKConcrete Slab Design Status, X-Direction = OKConcrete Slab Design Status, Y-Direction = OK

    Optimum Foundation Selected, Index = 1

    Pile, Rect, a= 30 cm

    Pile Size Parameter:

    a = 30.00000 cmb = 30.00000 cmsp = 90.00000 cmsp1 = 45.00000 cmspx = 90.00000 cmspy = 90.00000 cmAp = 900.00000 cm2dp = 30.00000 cmApw = 942.47800 cm2Kp = 120.00000 cmKp1 = 240.00000 cm

    PILE FOUNDATION DESIGN:

    1. Pilecap Thickness:

    a. Given Pilecap Thickness, Tp = 30.00 cm

    b. From Punching of Single Pile:Factored Punching Force, 1 pile, Pu = 45000.00 kgAllowable Punching Stress, vc = 18.09 kg/cm2, fc1 = 291.00 kg/cm2Perimeter Length of Punching Area, Kp1 = 240.00 cmTpmin from Punch Shear of One Pile = 40.00 cm

    c. From Punching of Single Column:Punching of Single Column Status = Not Exist (d > 1.1*(2dp-bc))Factored Punching Force, Column, Pu = 93639.84 kgAllowable Punching Stress, vc = 18.09 kg/cm2Perimeter Length of Punching Area, Kp2 = 289.08 cm

    d. Minimum Thickness required by user, Tpmin = 50.00 cm

    e. Selected Pilecap Thickness, Tp = 50.00 cmAllowable Punching Stress, vc = 18.09 kg/cm2Shear Stress, Punching of Pile, vc = 9.14 kg/cm2 -> OKShear Stress, Punching of Column, vc = 19.57 kg/cm2 Not Exist (d > 1.1*(2dp-bc))

    2. Pile Number Calculation:

    a. First Trial (pilecap weight = 0, + for compression)

    Unfactored Max Force, Static Load Pu1 = 65.63 ton, Pcap1 = 30.00 ton, np1=3

  • 8/17/2019 disain fondasi

    7/247

    Unfactored Max Force, Temp. Load, F=f1*f2, Pu1 = 103.42 ton, Pcap1 = 60.00 ton, np1=2Unfactored Max Force, Temp. Load, F=1.0, Pu1 = 80.95 ton, Pcap1 = 39.00 ton, np1=3Pilecap Weight Wpcap = 0.00 tonWeight of One Pile, Wp = 1.81 tonGross Capacity of One Pile, P1 = 30.00 tonNett Capacity of One Pile, P1 = 28.19 tonNumber of Piles needed for Compression Force, Np1 = 3 pilesTotal Compression Capacity (No Earthquake), Pn = 90.00 ton -> OKTotal Compression Capacity (f1*f2=1.0), Pn = 117.00 ton -> OKTotal Compression Capacity (Use f1*f2), Pn = 120.00 ton -> OK

    Unfactored Min Force, (Tension=negative), Pumin = 33.34 tonPilecap Weight Wpcap = 0.00 tonUnfactored Tension reduced by Pilecap Wgt, Tu = 0.00 ton (compression)No Tension Force Occured -> OK

    Unfactored Max Force, Static Load Vu1 = 1.06 ton, Pcap1 = 0.00 ton, np1=1

    Unfactored Max Force, Temp. Load, F=f1*f2, Vu1 = 11.54 ton, Pcap1 = 0.00 ton, np1=2Unfactored Max Force, Temp. Load, F=1.0, Vu1 = 4.58 ton, Pcap1 = 0.00 ton, np1=1Unfactored Lateral Force, Vu = 0.00 tonLateral Capacity of One Pile, P3 = 5.00 tonNumber of Piles needed for Lateral Force, Np3 = 2 pilesTotal Lateral Capacity (No Earthquake), Vn = 5.00 ton -> OKTotal Lateral Capacity (f1*f2 = 1.0), Vn = 6.50 ton -> OKTotal Lateral Capacity (f1*f2 > 0), Vn = 20.00 ton -> OK

    Number of Piles needed, Np = 3 piles

    b. Second Trial (with Pilecap Weight)

    Unfactored Max Force, Static Load Pu1 = 65.63 ton, Pcap1 = 30.00 ton, np1=3Unfactored Max Force, Temp. Load, F=f1*f2, Pu1 = 103.42 ton, Pcap1 = 60.00 ton, np1=2Unfactored Max Force, Temp. Load, F=1.0, Pu1 = 80.95 ton, Pcap1 = 39.00 ton, np1=3Pilecap Weight Wpcap = 3.89 tonUnfactored Force + Pilecap Weight, Pu1 = 65.63 tonWeight of One Pile, Wp = 1.81 tonGross Capacity of One Pile, P1 = 30.00 tonNett Capacity of One Pile, P1 = 30.00 tonNumber of Piles needed for Compression Force,Np1 = 3 pilesTotal Compression Capacity (No Earthquake), Pn = 90.00 ton -> OKTotal Compression Capacity (f1*f2=1.0), Pn = 117.00 ton -> OKTotal Compression Capacity (Use f1*f2), Pn = 120.00 ton -> OK

    Unfactored Min Force, (Tension=negative), Pumin = 33.34 tonPilecap Weight Wpcap = 3.89 tonUnfactored Tension reduced by Pilecap Wgt, Tu = 0.00 ton (compression)No Tension Force Occured -> OKNumber of Pile needed, Np = 3 piles

    Pile Configuration:

    np, total = 3, npx= 2, npy= 2

    Pilecap, bx= 180.0 cm, by= 180.0 cmColumn Block size, cx= 50.0 cm, cy= 60.0 cmFurthest pile, xp,max = 45.00, yp,max= 45.00Sigma dx^2 = 8100.00, Sigma dy^2 = 8100.00Bending Moment Coefficient, cmbx = 40.00000, cmby = 30.00000Bending Moment (Factored) : Mx = 1680000.00000 kg.cm, My = 1260000.00000 kg.cmCompres: P1 = (Nmax+Wpcap-Po)/np = 28279.54 kg, dPMx = 0.00 kg, dPMy = 0.00 kgTension: P1 = (Nmin+Wpcap-To)/np = 12408.81 kg, dPMx = 0.00 kg, dPMy = 0.00 kgPcomp= 39000.00 Ptens= 8309.56, P1max = 28279.54, P1min = 12408.81

    c. Third Trial (with Group Efficiency and Bending Moment)

    Pile Configuration:

    np, total = 3, npx= 2, npy= 2Pilecap, bx= 180.0 cm, by= 180.0 cm

    Column Block size, cx= 50.0 cm, cy= 60.0 cmFurthest pile, xp,max = 45.00, yp,max= 45.00Sigma dx^2 = 8100.00, Sigma dy^2 = 8100.00Bending Moment Coefficient, cmbx = 40.00000, cmby = 30.00000Bending Moment (Factored) : Mx = 1680000.00000 kg.cm, My = 1260000.00000 kg.cm

    Number of Pile needed, Np = 3 pilesGroup Efficiency Method = Simple FormulaGroup Efficiency, e = 1.000Unfactored Max Force, (+ -> compression), Pumax = 103.42 tonUnfactored Min Force, (Tension=negative), Pumin = 10.87 tonPilecap Weight Wpcap = 3.89 tonUnfactored Max Force + Pilecap Weight, Pu1 = 65.63 tonUnfactored Min Force + Pilecap Weight, Pu2 = 37.23 tonWeight of One Pile, Wp = 1.81 tonGross Compression Capacity of One Pile, P1 = 30.00 tonNett Compression Capacity of One Pile, P1 = 30.00 tonTension Capacity of One Pile, P2 = 5.00 ton

    Tension Capacity of One Pile + Pile weight, P22 = 0.00 tonMaximum Compression on Pile, P1max = 28.28 ton -> OKMinimum Compression on Pile, P1min = 12.41 ton -> OKConcrete Slab Design Status, X-Direction = OKConcrete Slab Design Status, Y-Direction = OK

    3. Pilecap Rebar Design:

    Rebar pct min = 0.15 %Minimum Rebar Spacing = 10.00 cmBx,By,Tp = 180.00 x 180.00 x 50.00

  • 8/17/2019 disain fondasi

    8/247

    Bending Section in X-direction, b = 180.00 cm, h = 50.00 cmBending Section in Y-direction, b = 180.00 cm, h = 50.00 cmBending Moment in X-direction, Mpx = 1680000.00 kg.cmBending Moment in Y-direction, Mpy = 1260000.00 kg.cmRebar Spacing, X-Dir, Bottom = d16- 24.3 cm ( 0.24%)Rebar Spacing, X-Dir, Top = d16- 40.0 cm ( 0.15%)Rebar Spacing, Y-Dir, Bottom = d16- 30.0 cm ( 0.20%)Rebar Spacing, Y-Dir, Top = d16- 40.0 cm ( 0.15%)

    TIE BEAM DESIGN:

    Tie Beam / Sloof Width, B = 30.00 cmTie Beam / Sloof Width, H = 60.00 cmFactored Maximum Column Axial Load, Pu = 93639.84 ton10% of Factored Axial Load, Tu = 9363.98 tonRequired Rebar for Tension, Ast = 3.00 cm2

    Nett Uplift Height, Hw = 2.00 mTie Beam / Sloof Length, L = 8.00 mTie Beam / Sloof Tributary Width, W = 8.00 mDistributed Load on Tie Beam, qL = 16000.00 kg/mDistributed Weight on Tie Beam, qsw = 432.00 kg/mBending Moment, Mql = 9963520.00 kg.cmShear Force, Vql = 62272.00 kgReq. Rebar for Bending Moment, Bottom = 39.69 cm2Req. Rebar for Bending Moment, Top = 79.39 cm2

    Longitudinal Rebar, at Support = 15 d19 / 29 d19Longitudinal Rebar, at Midspan = 29 d19 / 15 d19Shear Reinforcement Spacing at Support = d10 - 0.00

    **************************************************************************3. SUPPORT NO. 3, Node= 3, Location: x= 3500.00000, y= 600.00000

    phi,m = 0.80 phi,v = 0.60fc1 = 291.0 kg/cm2 fy = 3900.0 kg/cm2fyv = 2400.0 kg/cm2 fys = 2400.0 kg/cm2s,ratio = 3.00 s1,ratio = 1.50col,bx = 50.00 cm col,bz = 60.00 cmsloof db=1.90 cm, dbv=1.00 cm, dbs=1.20 cmpilecap db=1.90 cm, dbv=1.00 cm, dbs=1.20 cmfoot db=1.90 cm, pile embeded=7.5 cm

    Unfactored forces: all(f1*f2), static, temporary (f1*f2), temporary (f1*f2=1)Maximum Axial, Pu = 121048.6, 93315.9, 121048.6, 106381.5 kgMinimum Axial, Pu = 41220.3, 63220.9, 41220.3, 55887.3 kg.cmMoment, X-Dir, Mux = 0.0, 0.0, 0.0, 0.0 kg.cmMoment, Y-Dir, Muy = 0.0, 0.0, 0.0, 0.0 kg.cmHoriz Force, Vux = 12309.8, 497.4, 12309.8, 4447.4 kgHoriz Force, Vuy = 14550.1, 953.1, 14550.1, 5515.6 kg

    Factored forces: all(f1*f2), static, temporary (f1*f2), temporary (f1*f2=1)

    Single Axial, Pu = 0.0, 0.0 kgMaximum Axial, Pu = 139047.1, 117049.9, 139047.1, 124380.1 kgMinimum Axial, Pu = 41220.3, 63220.9, 41220.3, 55887.3 kg.cmMoment, X-Dir, Mux = 0.0, 0.0, 0.0, 0.0 kg.cmMoment, Y-Dir, Muy = 0.0, 0.0, 0.0, 0.0 kg.cmHoriz Force, Vux = 12399.2, 635.7, 12399.2, 4536.9 kgHoriz Force, Vuy = 14726.6, 1208.7, 14726.6, 5692.1 kg

    PILE FOUNDATION DESIGN:

    1. Pilecap Thickness:

    a. Given Pilecap Thickness, Tp = 30.00 cm

    b. From Punching of Single Pile:Factored Punching Force, 1 pile, Pu = 45000.00 kgAllowable Punching Stress, vc = 18.09 kg/cm2, fc1 = 291.00 kg/cm2Perimeter Length of Punching Area, Kp1 = 240.00 cmTpmin from Punch Shear of One Pile = 40.00 cm

    c. From Punching of Single Column:Punching of Single Column Status = Not Exist (d > 1.1*(2dp-bc))Factored Punching Force, Column, Pu = 124380.10 kgAllowable Punching Stress, vc = 18.09 kg/cm2Perimeter Length of Punching Area, Kp2 = 289.08 cm

    d. Minimum Thickness required by user, Tpmin = 50.00 cm

    e. Selected Pilecap Thickness, Tp = 50.00 cmAllowable Punching Stress, vc = 18.09 kg/cm2Shear Stress, Punching of Pile, vc = 9.18 kg/cm2 -> OK

    Shear Stress, Punching of Column, vc = 23.54 kg/cm2 Not Exist (d > 1.1*(2dp-bc))

    2. Pile Number Calculation:

    a. First Trial (pilecap weight = 0, + for compression)

    Unfactored Max Force, Static Load Pu1 = 93.32 ton, Pcap1 = 30.00 ton, np1=4Unfactored Max Force, Temp. Load, F=f1*f2, Pu1 = 121.05 ton, Pcap1 = 60.00 ton, np1=3Unfactored Max Force, Temp. Load, F=1.0, Pu1 = 106.38 ton, Pcap1 = 39.00 ton, np1=3Pilecap Weight Wpcap = 0.00 tonWeight of One Pile, Wp = 1.81 ton

  • 8/17/2019 disain fondasi

    9/247

    Gross Capacity of One Pile, P1 = 30.00 tonNett Capacity of One Pile, P1 = 28.19 tonNumber of Piles needed for Compression Force, Np1 = 4 pilesTotal Compression Capacity (No Earthquake), Pn = 120.00 ton -> OKTotal Compression Capacity (f1*f2=1.0), Pn = 117.00 ton -> OKTotal Compression Capacity (Use f1*f2), Pn = 180.00 ton -> OK

    Unfactored Min Force, (Tension=negative), Pumin = 55.89 tonPilecap Weight Wpcap = 0.00 tonUnfactored Tension reduced by Pilecap Wgt, Tu = 0.00 ton (compression)No Tension Force Occured -> OK

    Unfactored Max Force, Static Load Vu1 = 0.95 ton, Pcap1 = 0.00 ton, np1=1Unfactored Max Force, Temp. Load, F=f1*f2, Vu1 = 14.55 ton, Pcap1 = 0.00 ton, np1=2Unfactored Max Force, Temp. Load, F=1.0, Vu1 = 5.52 ton, Pcap1 = 0.00 ton, np1=1Unfactored Lateral Force, Vu = 0.00 tonLateral Capacity of One Pile, P3 = 5.00 ton

    Number of Piles needed for Lateral Force, Np3 = 2 pilesTotal Lateral Capacity (No Earthquake), Vn = 5.00 ton -> OKTotal Lateral Capacity (f1*f2 = 1.0), Vn = 6.50 ton -> OKTotal Lateral Capacity (f1*f2 > 0), Vn = 20.00 ton -> OK

    Number of Piles needed, Np = 4 piles

    b. Second Trial (with Pilecap Weight)

    Unfactored Max Force, Static Load Pu1 = 93.32 ton, Pcap1 = 30.00 ton, np1=4Unfactored Max Force, Temp. Load, F=f1*f2, Pu1 = 121.05 ton, Pcap1 = 60.00 ton, np1=3Unfactored Max Force, Temp. Load, F=1.0, Pu1 = 106.38 ton, Pcap1 = 39.00 ton, np1=3Pilecap Weight Wpcap = 0.97 tonUnfactored Force + Pilecap Weight, Pu1 = 93.32 tonWeight of One Pile, Wp = 1.81 tonGross Capacity of One Pile, P1 = 30.00 tonNett Capacity of One Pile, P1 = 30.00 tonNumber of Piles needed for Compression Force,Np1 = 4 pilesTotal Compression Capacity (No Earthquake), Pn = 120.00 ton -> OKTotal Compression Capacity (f1*f2=1.0), Pn = 117.00 ton -> OKTotal Compression Capacity (Use f1*f2), Pn = 180.00 ton -> OK

    Unfactored Min Force, (Tension=negative), Pumin = 55.89 tonPilecap Weight Wpcap = 0.97 tonUnfactored Tension reduced by Pilecap Wgt, Tu = 0.00 ton (compression)No Tension Force Occured -> OKNumber of Pile needed, Np = 4 pilesCompres: P1 = (Nmax+Wpcap-Po)/np = 27567.38 kg, dPMx = 0.00 kg, dPMy = 0.00 kgTension: P1 = (Nmin+Wpcap-To)/np = 14943.84 kg, dPMx = 0.00 kg, dPMy = 0.00 kgPcomp= 39000.00 Ptens= 8309.56, P1max = 27567.38, P1min = 14943.84

    c. Third Trial (with Group Efficiency and Bending Moment)

    Number of Pile needed, Np = 4 piles

    Group Efficiency Method = Simple FormulaGroup Efficiency, e = 1.000Unfactored Max Force, (+ -> compression), Pumax = 121.05 tonUnfactored Min Force, (Tension=negative), Pumin = 41.22 tonPilecap Weight Wpcap = 3.89 tonUnfactored Max Force + Pilecap Weight, Pu1 = 93.32 tonUnfactored Min Force + Pilecap Weight, Pu2 = 59.78 tonWeight of One Pile, Wp = 1.81 tonGross Compression Capacity of One Pile, P1 = 30.00 tonNett Compression Capacity of One Pile, P1 = 30.00 tonTension Capacity of One Pile, P2 = 5.00 tonTension Capacity of One Pile + Pile weight, P22 = 0.00 tonMaximum Compression on Pile, P1max = 27.57 ton -> OKMinimum Compression on Pile, P1min = 14.94 ton -> OKConcrete Slab Design Status, X-Direction = OKConcrete Slab Design Status, Y-Direction = OK

    Optimum Foundation Selected, Index = 1

    Pile, Rect, a= 30 cm

    Pile Size Parameter:

    a = 30.00000 cmb = 30.00000 cmsp = 90.00000 cmsp1 = 45.00000 cmspx = 90.00000 cmspy = 90.00000 cmAp = 900.00000 cm2dp = 30.00000 cmApw = 942.47800 cm2Kp = 120.00000 cmKp1 = 240.00000 cm

    PILE FOUNDATION DESIGN:

    1. Pilecap Thickness:

    a. Given Pilecap Thickness, Tp = 30.00 cm

    b. From Punching of Single Pile:Factored Punching Force, 1 pile, Pu = 45000.00 kgAllowable Punching Stress, vc = 18.09 kg/cm2, fc1 = 291.00 kg/cm2

  • 8/17/2019 disain fondasi

    10/247

    Perimeter Length of Punching Area, Kp1 = 240.00 cmTpmin from Punch Shear of One Pile = 40.00 cm

    c. From Punching of Single Column:Punching of Single Column Status = Not Exist (d > 1.1*(2dp-bc))Factored Punching Force, Column, Pu = 124380.10 kgAllowable Punching Stress, vc = 18.09 kg/cm2Perimeter Length of Punching Area, Kp2 = 289.08 cm

    d. Minimum Thickness required by user, Tpmin = 50.00 cm

    e. Selected Pilecap Thickness, Tp = 50.00 cmAllowable Punching Stress, vc = 18.09 kg/cm2Shear Stress, Punching of Pile, vc = 9.14 kg/cm2 -> OKShear Stress, Punching of Column, vc = 23.44 kg/cm2 Not Exist (d > 1.1*(2dp-bc))

    2. Pile Number Calculation:

    a. First Trial (pilecap weight = 0, + for compression)

    Unfactored Max Force, Static Load Pu1 = 93.32 ton, Pcap1 = 30.00 ton, np1=4Unfactored Max Force, Temp. Load, F=f1*f2, Pu1 = 121.05 ton, Pcap1 = 60.00 ton, np1=3Unfactored Max Force, Temp. Load, F=1.0, Pu1 = 106.38 ton, Pcap1 = 39.00 ton, np1=3Pilecap Weight Wpcap = 0.00 tonWeight of One Pile, Wp = 1.81 tonGross Capacity of One Pile, P1 = 30.00 tonNett Capacity of One Pile, P1 = 28.19 tonNumber of Piles needed for Compression Force, Np1 = 4 pilesTotal Compression Capacity (No Earthquake), Pn = 120.00 ton -> OKTotal Compression Capacity (f1*f2=1.0), Pn = 117.00 ton -> OKTotal Compression Capacity (Use f1*f2), Pn = 180.00 ton -> OK

    Unfactored Min Force, (Tension=negative), Pumin = 55.89 tonPilecap Weight Wpcap = 0.00 tonUnfactored Tension reduced by Pilecap Wgt, Tu = 0.00 ton (compression)No Tension Force Occured -> OK

    Unfactored Max Force, Static Load Vu1 = 0.95 ton, Pcap1 = 0.00 ton, np1=1Unfactored Max Force, Temp. Load, F=f1*f2, Vu1 = 14.55 ton, Pcap1 = 0.00 ton, np1=2Unfactored Max Force, Temp. Load, F=1.0, Vu1 = 5.52 ton, Pcap1 = 0.00 ton, np1=1Unfactored Lateral Force, Vu = 0.00 tonLateral Capacity of One Pile, P3 = 5.00 tonNumber of Piles needed for Lateral Force, Np3 = 2 pilesTotal Lateral Capacity (No Earthquake), Vn = 5.00 ton -> OKTotal Lateral Capacity (f1*f2 = 1.0), Vn = 6.50 ton -> OKTotal Lateral Capacity (f1*f2 > 0), Vn = 20.00 ton -> OK

    Number of Piles needed, Np = 4 piles

    b. Second Trial (with Pilecap Weight)

    Unfactored Max Force, Static Load Pu1 = 93.32 ton, Pcap1 = 30.00 ton, np1=4

    Unfactored Max Force, Temp. Load, F=f1*f2, Pu1 = 121.05 ton, Pcap1 = 60.00 ton, np1=3Unfactored Max Force, Temp. Load, F=1.0, Pu1 = 106.38 ton, Pcap1 = 39.00 ton, np1=3Pilecap Weight Wpcap = 3.89 tonUnfactored Force + Pilecap Weight, Pu1 = 93.32 tonWeight of One Pile, Wp = 1.81 tonGross Capacity of One Pile, P1 = 30.00 tonNett Capacity of One Pile, P1 = 30.00 tonNumber of Piles needed for Compression Force,Np1 = 4 pilesTotal Compression Capacity (No Earthquake), Pn = 120.00 ton -> OKTotal Compression Capacity (f1*f2=1.0), Pn = 117.00 ton -> OKTotal Compression Capacity (Use f1*f2), Pn = 180.00 ton -> OK

    Unfactored Min Force, (Tension=negative), Pumin = 55.89 tonPilecap Weight Wpcap = 3.89 tonUnfactored Tension reduced by Pilecap Wgt, Tu = 0.00 ton (compression)No Tension Force Occured -> OKNumber of Pile needed, Np = 4 piles

    Pile Configuration:

    np, total = 4, npx= 2, npy= 2Pilecap, bx= 180.0 cm, by= 180.0 cmColumn Block size, cx= 50.0 cm, cy= 60.0 cmFurthest pile, xp,max = 45.00, yp,max= 45.00Sigma dx^2 = 8100.00, Sigma dy^2 = 8100.00Bending Moment Coefficient, cmbx = 40.00000, cmby = 30.00000Bending Moment (Factored) : Mx = 1680000.00000 kg.cm, My = 1260000.00000 kg.cmCompres: P1 = (Nmax+Wpcap-Po)/np = 27567.38 kg, dPMx = 0.00 kg, dPMy = 0.00 kgTension: P1 = (Nmin+Wpcap-To)/np = 14943.84 kg, dPMx = 0.00 kg, dPMy = 0.00 kgPcomp= 39000.00 Ptens= 8309.56, P1max = 27567.38, P1min = 14943.84

    c. Third Trial (with Group Efficiency and Bending Moment)

    Pile Configuration:

    np, total = 4, npx= 2, npy= 2Pilecap, bx= 180.0 cm, by= 180.0 cmColumn Block size, cx= 50.0 cm, cy= 60.0 cmFurthest pile, xp,max = 45.00, yp,max= 45.00Sigma dx^2 = 8100.00, Sigma dy^2 = 8100.00Bending Moment Coefficient, cmbx = 40.00000, cmby = 30.00000Bending Moment (Factored) : Mx = 1680000.00000 kg.cm, My = 1260000.00000 kg.cm

    Number of Pile needed, Np = 4 pilesGroup Efficiency Method = Simple Formula

  • 8/17/2019 disain fondasi

    11/247

    Group Efficiency, e = 1.000Unfactored Max Force, (+ -> compression), Pumax = 121.05 tonUnfactored Min Force, (Tension=negative), Pumin = 41.22 tonPilecap Weight Wpcap = 3.89 tonUnfactored Max Force + Pilecap Weight, Pu1 = 93.32 tonUnfactored Min Force + Pilecap Weight, Pu2 = 59.78 tonWeight of One Pile, Wp = 1.81 tonGross Compression Capacity of One Pile, P1 = 30.00 tonNett Compression Capacity of One Pile, P1 = 30.00 tonTension Capacity of One Pile, P2 = 5.00 tonTension Capacity of One Pile + Pile weight, P22 = 0.00 tonMaximum Compression on Pile, P1max = 27.57 ton -> OKMinimum Compression on Pile, P1min = 14.94 ton -> OKConcrete Slab Design Status, X-Direction = OKConcrete Slab Design Status, Y-Direction = OK

    3. Pilecap Rebar Design:

    Rebar pct min = 0.15 %Minimum Rebar Spacing = 10.00 cmBx,By,Tp = 180.00 x 180.00 x 50.00Bending Section in X-direction, b = 180.00 cm, h = 50.00 cmBending Section in Y-direction, b = 180.00 cm, h = 50.00 cmBending Moment in X-direction, Mpx = 1680000.00 kg.cmBending Moment in Y-direction, Mpy = 1260000.00 kg.cmRebar Spacing, X-Dir, Bottom = d16- 24.3 cm ( 0.24%)Rebar Spacing, X-Dir, Top = d16- 40.0 cm ( 0.15%)Rebar Spacing, Y-Dir, Bottom = d16- 30.0 cm ( 0.20%)Rebar Spacing, Y-Dir, Top = d16- 40.0 cm ( 0.15%)

    TIE BEAM DESIGN:

    Tie Beam / Sloof Width, B = 30.00 cmTie Beam / Sloof Width, H = 60.00 cmFactored Maximum Column Axial Load, Pu = 124380.10 ton10% of Factored Axial Load, Tu = 12438.01 tonRequired Rebar for Tension, Ast = 3.99 cm2

    Nett Uplift Height, Hw = 2.00 mTie Beam / Sloof Length, L = 8.00 mTie Beam / Sloof Tributary Width, W = 8.00 mDistributed Load on Tie Beam, qL = 16000.00 kg/mDistributed Weight on Tie Beam, qsw = 432.00 kg/mBending Moment, Mql = 9963520.00 kg.cmShear Force, Vql = 62272.00 kgReq. Rebar for Bending Moment, Bottom = 39.69 cm2Req. Rebar for Bending Moment, Top = 79.39 cm2

    Longitudinal Rebar, at Support = 15 d19 / 29 d19Longitudinal Rebar, at Midspan = 29 d19 / 15 d19Shear Reinforcement Spacing at Support = d10 - 0.00

    **************************************************************************4. SUPPORT NO. 4, Node= 4, Location: x= 4100.00000, y= 600.00000

    phi,m = 0.80 phi,v = 0.60fc1 = 291.0 kg/cm2 fy = 3900.0 kg/cm2fyv = 2400.0 kg/cm2 fys = 2400.0 kg/cm2s,ratio = 3.00 s1,ratio = 1.50col,bx = 50.00 cm col,bz = 60.00 cmsloof db=1.90 cm, dbv=1.00 cm, dbs=1.20 cmpilecap db=1.90 cm, dbv=1.00 cm, dbs=1.20 cmfoot db=1.90 cm, pile embeded=7.5 cm

    Unfactored forces: all(f1*f2), static, temporary (f1*f2), temporary (f1*f2=1)Maximum Axial, Pu = 119166.5, 91632.3, 119166.5, 104501.6 kgMinimum Axial, Pu = 39903.5, 61900.9, 39903.5, 54568.5 kg.cmMoment, X-Dir, Mux = 0.0, 0.0, 0.0, 0.0 kg.cmMoment, Y-Dir, Muy = 0.0, 0.0, 0.0, 0.0 kg.cm

    Horiz Force, Vux = 12331.9, 499.7, 12331.9, 4456.5 kgHoriz Force, Vuy = 14492.5, 952.8, 14492.5, 5496.2 kg

    Factored forces: all(f1*f2), static, temporary (f1*f2), temporary (f1*f2=1)Single Axial, Pu = 0.0, 0.0 kgMaximum Axial, Pu = 136789.3, 115029.6, 136789.3, 122124.4 kgMinimum Axial, Pu = 39903.5, 61900.9, 39903.5, 54568.5 kg.cmMoment, X-Dir, Mux = 0.0, 0.0, 0.0, 0.0 kg.cmMoment, Y-Dir, Muy = 0.0, 0.0, 0.0, 0.0 kg.cmHoriz Force, Vux = 12421.8, 638.5, 12421.8, 4546.4 kgHoriz Force, Vuy = 14668.9, 1208.3, 14668.9, 5672.6 kg

    PILE FOUNDATION DESIGN:

    1. Pilecap Thickness:

    a. Given Pilecap Thickness, Tp = 30.00 cm

    b. From Punching of Single Pile:Factored Punching Force, 1 pile, Pu = 45000.00 kgAllowable Punching Stress, vc = 18.09 kg/cm2, fc1 = 291.00 kg/cm2Perimeter Length of Punching Area, Kp1 = 240.00 cmTpmin from Punch Shear of One Pile = 40.00 cm

    c. From Punching of Single Column:

  • 8/17/2019 disain fondasi

    12/247

    Punching of Single Column Status = Not Exist (d > 1.1*(2dp-bc))Factored Punching Force, Column, Pu = 122124.39 kgAllowable Punching Stress, vc = 18.09 kg/cm2Perimeter Length of Punching Area, Kp2 = 289.08 cm

    d. Minimum Thickness required by user, Tpmin = 50.00 cm

    e. Selected Pilecap Thickness, Tp = 50.00 cmAllowable Punching Stress, vc = 18.09 kg/cm2Shear Stress, Punching of Pile, vc = 9.18 kg/cm2 -> OKShear Stress, Punching of Column, vc = 23.16 kg/cm2 Not Exist (d > 1.1*(2dp-bc))

    2. Pile Number Calculation:

    a. First Trial (pilecap weight = 0, + for compression)

    Unfactored Max Force, Static Load Pu1 = 91.63 ton, Pcap1 = 30.00 ton, np1=4

    Unfactored Max Force, Temp. Load, F=f1*f2, Pu1 = 119.17 ton, Pcap1 = 60.00 ton, np1=2Unfactored Max Force, Temp. Load, F=1.0, Pu1 = 104.50 ton, Pcap1 = 39.00 ton, np1=3Pilecap Weight Wpcap = 0.00 tonWeight of One Pile, Wp = 1.81 tonGross Capacity of One Pile, P1 = 30.00 tonNett Capacity of One Pile, P1 = 28.19 tonNumber of Piles needed for Compression Force, Np1 = 4 pilesTotal Compression Capacity (No Earthquake), Pn = 120.00 ton -> OKTotal Compression Capacity (f1*f2=1.0), Pn = 117.00 ton -> OKTotal Compression Capacity (Use f1*f2), Pn = 120.00 ton -> OK

    Unfactored Min Force, (Tension=negative), Pumin = 54.57 tonPilecap Weight Wpcap = 0.00 tonUnfactored Tension reduced by Pilecap Wgt, Tu = 0.00 ton (compression)No Tension Force Occured -> OK

    Unfactored Max Force, Static Load Vu1 = 0.95 ton, Pcap1 = 0.00 ton, np1=1Unfactored Max Force, Temp. Load, F=f1*f2, Vu1 = 14.49 ton, Pcap1 = 0.00 ton, np1=2Unfactored Max Force, Temp. Load, F=1.0, Vu1 = 5.50 ton, Pcap1 = 0.00 ton, np1=1Unfactored Lateral Force, Vu = 0.00 tonLateral Capacity of One Pile, P3 = 5.00 tonNumber of Piles needed for Lateral Force, Np3 = 2 pilesTotal Lateral Capacity (No Earthquake), Vn = 5.00 ton -> OKTotal Lateral Capacity (f1*f2 = 1.0), Vn = 6.50 ton -> OKTotal Lateral Capacity (f1*f2 > 0), Vn = 20.00 ton -> OK

    Number of Piles needed, Np = 4 piles

    b. Second Trial (with Pilecap Weight)

    Unfactored Max Force, Static Load Pu1 = 91.63 ton, Pcap1 = 30.00 ton, np1=4Unfactored Max Force, Temp. Load, F=f1*f2, Pu1 = 119.17 ton, Pcap1 = 60.00 ton, np1=2Unfactored Max Force, Temp. Load, F=1.0, Pu1 = 104.50 ton, Pcap1 = 39.00 ton, np1=3Pilecap Weight Wpcap = 0.97 tonUnfactored Force + Pilecap Weight, Pu1 = 91.63 ton

    Weight of One Pile, Wp = 1.81 tonGross Capacity of One Pile, P1 = 30.00 tonNett Capacity of One Pile, P1 = 30.00 tonNumber of Piles needed for Compression Force,Np1 = 4 pilesTotal Compression Capacity (No Earthquake), Pn = 120.00 ton -> OKTotal Compression Capacity (f1*f2=1.0), Pn = 117.00 ton -> OKTotal Compression Capacity (Use f1*f2), Pn = 120.00 ton -> OK

    Unfactored Min Force, (Tension=negative), Pumin = 54.57 tonPilecap Weight Wpcap = 0.97 tonUnfactored Tension reduced by Pilecap Wgt, Tu = 0.00 ton (compression)No Tension Force Occured -> OKNumber of Pile needed, Np = 4 pilesCompres: P1 = (Nmax+Wpcap-Po)/np = 27097.39 kg, dPMx = 0.00 kg, dPMy = 0.00 kgTension: P1 = (Nmin+Wpcap-To)/np = 14614.12 kg, dPMx = 0.00 kg, dPMy = 0.00 kgPcomp= 39000.00 Ptens= 8309.56, P1max = 27097.39, P1min = 14614.12

    c. Third Trial (with Group Efficiency and Bending Moment)

    Number of Pile needed, Np = 4 pilesGroup Efficiency Method = Simple FormulaGroup Efficiency, e = 1.000Unfactored Max Force, (+ -> compression), Pumax = 119.17 tonUnfactored Min Force, (Tension=negative), Pumin = 39.90 tonPilecap Weight Wpcap = 3.89 tonUnfactored Max Force + Pilecap Weight, Pu1 = 91.63 tonUnfactored Min Force + Pilecap Weight, Pu2 = 58.46 tonWeight of One Pile, Wp = 1.81 tonGross Compression Capacity of One Pile, P1 = 30.00 tonNett Compression Capacity of One Pile, P1 = 30.00 tonTension Capacity of One Pile, P2 = 5.00 tonTension Capacity of One Pile + Pile weight, P22 = 0.00 tonMaximum Compression on Pile, P1max = 27.10 ton -> OKMinimum Compression on Pile, P1min = 14.61 ton -> OK

    Concrete Slab Design Status, X-Direction = OKConcrete Slab Design Status, Y-Direction = OK

    Optimum Foundation Selected, Index = 1

    Pile, Rect, a= 30 cm

    Pile Size Parameter:

    a = 30.00000 cmb = 30.00000 cm

  • 8/17/2019 disain fondasi

    13/247

    sp = 90.00000 cmsp1 = 45.00000 cmspx = 90.00000 cmspy = 90.00000 cmAp = 900.00000 cm2dp = 30.00000 cmApw = 942.47800 cm2Kp = 120.00000 cmKp1 = 240.00000 cm

    PILE FOUNDATION DESIGN:

    1. Pilecap Thickness:

    a. Given Pilecap Thickness, Tp = 30.00 cm

    b. From Punching of Single Pile:Factored Punching Force, 1 pile, Pu = 45000.00 kgAllowable Punching Stress, vc = 18.09 kg/cm2, fc1 = 291.00 kg/cm2Perimeter Length of Punching Area, Kp1 = 240.00 cmTpmin from Punch Shear of One Pile = 40.00 cm

    c. From Punching of Single Column:Punching of Single Column Status = Not Exist (d > 1.1*(2dp-bc))Factored Punching Force, Column, Pu = 122124.39 kgAllowable Punching Stress, vc = 18.09 kg/cm2Perimeter Length of Punching Area, Kp2 = 289.08 cm

    d. Minimum Thickness required by user, Tpmin = 50.00 cm

    e. Selected Pilecap Thickness, Tp = 50.00 cmAllowable Punching Stress, vc = 18.09 kg/cm2Shear Stress, Punching of Pile, vc = 9.14 kg/cm2 -> OKShear Stress, Punching of Column, vc = 23.06 kg/cm2 Not Exist (d > 1.1*(2dp-bc))

    2. Pile Number Calculation:

    a. First Trial (pilecap weight = 0, + for compression)

    Unfactored Max Force, Static Load Pu1 = 91.63 ton, Pcap1 = 30.00 ton, np1=4Unfactored Max Force, Temp. Load, F=f1*f2, Pu1 = 119.17 ton, Pcap1 = 60.00 ton, np1=2Unfactored Max Force, Temp. Load, F=1.0, Pu1 = 104.50 ton, Pcap1 = 39.00 ton, np1=3Pilecap Weight Wpcap = 0.00 tonWeight of One Pile, Wp = 1.81 tonGross Capacity of One Pile, P1 = 30.00 tonNett Capacity of One Pile, P1 = 28.19 tonNumber of Piles needed for Compression Force, Np1 = 4 pilesTotal Compression Capacity (No Earthquake), Pn = 120.00 ton -> OKTotal Compression Capacity (f1*f2=1.0), Pn = 117.00 ton -> OKTotal Compression Capacity (Use f1*f2), Pn = 120.00 ton -> OK

    Unfactored Min Force, (Tension=negative), Pumin = 54.57 tonPilecap Weight Wpcap = 0.00 tonUnfactored Tension reduced by Pilecap Wgt, Tu = 0.00 ton (compression)No Tension Force Occured -> OK

    Unfactored Max Force, Static Load Vu1 = 0.95 ton, Pcap1 = 0.00 ton, np1=1Unfactored Max Force, Temp. Load, F=f1*f2, Vu1 = 14.49 ton, Pcap1 = 0.00 ton, np1=2Unfactored Max Force, Temp. Load, F=1.0, Vu1 = 5.50 ton, Pcap1 = 0.00 ton, np1=1Unfactored Lateral Force, Vu = 0.00 tonLateral Capacity of One Pile, P3 = 5.00 tonNumber of Piles needed for Lateral Force, Np3 = 2 pilesTotal Lateral Capacity (No Earthquake), Vn = 5.00 ton -> OKTotal Lateral Capacity (f1*f2 = 1.0), Vn = 6.50 ton -> OKTotal Lateral Capacity (f1*f2 > 0), Vn = 20.00 ton -> OK

    Number of Piles needed, Np = 4 piles

    b. Second Trial (with Pilecap Weight)

    Unfactored Max Force, Static Load Pu1 = 91.63 ton, Pcap1 = 30.00 ton, np1=4Unfactored Max Force, Temp. Load, F=f1*f2, Pu1 = 119.17 ton, Pcap1 = 60.00 ton, np1=3Unfactored Max Force, Temp. Load, F=1.0, Pu1 = 104.50 ton, Pcap1 = 39.00 ton, np1=3Pilecap Weight Wpcap = 3.89 tonUnfactored Force + Pilecap Weight, Pu1 = 91.63 tonWeight of One Pile, Wp = 1.81 tonGross Capacity of One Pile, P1 = 30.00 tonNett Capacity of One Pile, P1 = 30.00 tonNumber of Piles needed for Compression Force,Np1 = 4 pilesTotal Compression Capacity (No Earthquake), Pn = 120.00 ton -> OKTotal Compression Capacity (f1*f2=1.0), Pn = 117.00 ton -> OKTotal Compression Capacity (Use f1*f2), Pn = 180.00 ton -> OK

    Unfactored Min Force, (Tension=negative), Pumin = 54.57 tonPilecap Weight Wpcap = 3.89 ton

    Unfactored Tension reduced by Pilecap Wgt, Tu = 0.00 ton (compression)No Tension Force Occured -> OKNumber of Pile needed, Np = 4 piles

    Pile Configuration:

    np, total = 4, npx= 2, npy= 2Pilecap, bx= 180.0 cm, by= 180.0 cmColumn Block size, cx= 50.0 cm, cy= 60.0 cmFurthest pile, xp,max = 45.00, yp,max= 45.00Sigma dx^2 = 8100.00, Sigma dy^2 = 8100.00

  • 8/17/2019 disain fondasi

    14/247

    Bending Moment Coefficient, cmbx = 40.00000, cmby = 30.00000Bending Moment (Factored) : Mx = 1680000.00000 kg.cm, My = 1260000.00000 kg.cmCompres: P1 = (Nmax+Wpcap-Po)/np = 27097.39 kg, dPMx = 0.00 kg, dPMy = 0.00 kgTension: P1 = (Nmin+Wpcap-To)/np = 14614.12 kg, dPMx = 0.00 kg, dPMy = 0.00 kgPcomp= 39000.00 Ptens= 8309.56, P1max = 27097.39, P1min = 14614.12

    c. Third Trial (with Group Efficiency and Bending Moment)

    Pile Configuration:

    np, total = 4, npx= 2, npy= 2Pilecap, bx= 180.0 cm, by= 180.0 cmColumn Block size, cx= 50.0 cm, cy= 60.0 cmFurthest pile, xp,max = 45.00, yp,max= 45.00Sigma dx^2 = 8100.00, Sigma dy^2 = 8100.00Bending Moment Coefficient, cmbx = 40.00000, cmby = 30.00000

    Bending Moment (Factored) : Mx = 1680000.00000 kg.cm, My = 1260000.00000 kg.cm

    Number of Pile needed, Np = 4 pilesGroup Efficiency Method = Simple FormulaGroup Efficiency, e = 1.000Unfactored Max Force, (+ -> compression), Pumax = 119.17 tonUnfactored Min Force, (Tension=negative), Pumin = 39.90 tonPilecap Weight Wpcap = 3.89 tonUnfactored Max Force + Pilecap Weight, Pu1 = 91.63 tonUnfactored Min Force + Pilecap Weight, Pu2 = 58.46 tonWeight of One Pile, Wp = 1.81 tonGross Compression Capacity of One Pile, P1 = 30.00 tonNett Compression Capacity of One Pile, P1 = 30.00 tonTension Capacity of One Pile, P2 = 5.00 tonTension Capacity of One Pile + Pile weight, P22 = 0.00 tonMaximum Compression on Pile, P1max = 27.10 ton -> OKMinimum Compression on Pile, P1min = 14.61 ton -> OKConcrete Slab Design Status, X-Direction = OKConcrete Slab Design Status, Y-Direction = OK

    3. Pilecap Rebar Design:

    Rebar pct min = 0.15 %Minimum Rebar Spacing = 10.00 cmBx,By,Tp = 180.00 x 180.00 x 50.00Bending Section in X-direction, b = 180.00 cm, h = 50.00 cmBending Section in Y-direction, b = 180.00 cm, h = 50.00 cmBending Moment in X-direction, Mpx = 1680000.00 kg.cmBending Moment in Y-direction, Mpy = 1260000.00 kg.cmRebar Spacing, X-Dir, Bottom = d16- 24.3 cm ( 0.24%)Rebar Spacing, X-Dir, Top = d16- 40.0 cm ( 0.15%)Rebar Spacing, Y-Dir, Bottom = d16- 30.0 cm ( 0.20%)Rebar Spacing, Y-Dir, Top = d16- 40.0 cm ( 0.15%)

    TIE BEAM DESIGN:

    Tie Beam / Sloof Width, B = 30.00 cmTie Beam / Sloof Width, H = 60.00 cmFactored Maximum Column Axial Load, Pu = 122124.39 ton10% of Factored Axial Load, Tu = 12212.44 tonRequired Rebar for Tension, Ast = 3.91 cm2

    Nett Uplift Height, Hw = 2.00 mTie Beam / Sloof Length, L = 8.00 mTie Beam / Sloof Tributary Width, W = 8.00 mDistributed Load on Tie Beam, qL = 16000.00 kg/mDistributed Weight on Tie Beam, qsw = 432.00 kg/mBending Moment, Mql = 9963520.00 kg.cmShear Force, Vql = 62272.00 kgReq. Rebar for Bending Moment, Bottom = 39.69 cm2Req. Rebar for Bending Moment, Top = 79.39 cm2

    Longitudinal Rebar, at Support = 15 d19 / 29 d19Longitudinal Rebar, at Midspan = 29 d19 / 15 d19Shear Reinforcement Spacing at Support = d10 - 0.00

    **************************************************************************5. SUPPORT NO. 5, Node= 5, Location: x= 4500.00000, y= 600.00000

    phi,m = 0.80 phi,v = 0.60fc1 = 291.0 kg/cm2 fy = 3900.0 kg/cm2fyv = 2400.0 kg/cm2 fys = 2400.0 kg/cm2s,ratio = 3.00 s1,ratio = 1.50col,bx = 50.00 cm col,bz = 60.00 cmsloof db=1.90 cm, dbv=1.00 cm, dbs=1.20 cmpilecap db=1.90 cm, dbv=1.00 cm, dbs=1.20 cmfoot db=1.90 cm, pile embeded=7.5 cm

    Unfactored forces: all(f1*f2), static, temporary (f1*f2), temporary (f1*f2=1)Maximum Axial, Pu = 103258.0, 65578.5, 103258.0, 80858.8 kg

    Minimum Axial, Pu = 10932.3, 44531.2, 10932.3, 33331.5 kg.cmMoment, X-Dir, Mux = 0.0, 0.0, 0.0, 0.0 kg.cmMoment, Y-Dir, Muy = 0.0, 0.0, 0.0, 0.0 kg.cmHoriz Force, Vux = 10829.9, 41.0, 10829.9, 3638.5 kgHoriz Force, Vuy = 11436.6, 1055.7, 11436.6, 4542.5 kg

    Factored forces: all(f1*f2), static, temporary (f1*f2), temporary (f1*f2=1)Single Axial, Pu = 0.0, 0.0 kgMaximum Axial, Pu = 115935.8, 82205.6, 115935.8, 93536.5 kgMinimum Axial, Pu = 10932.3, 44531.2, 10932.3, 33331.5 kg.cmMoment, X-Dir, Mux = 0.0, 0.0, 0.0, 0.0 kg.cm

  • 8/17/2019 disain fondasi

    15/247

    Moment, Y-Dir, Muy = 0.0, 0.0, 0.0, 0.0 kg.cmHoriz Force, Vux = 10837.4, 52.2, 10837.4, 3646.0 kgHoriz Force, Vuy = 11626.2, 1349.3, 11626.2, 4732.1 kg

    PILE FOUNDATION DESIGN:

    1. Pilecap Thickness:

    a. Given Pilecap Thickness, Tp = 30.00 cm

    b. From Punching of Single Pile:Factored Punching Force, 1 pile, Pu = 45000.00 kgAllowable Punching Stress, vc = 18.09 kg/cm2, fc1 = 291.00 kg/cm2

    Perimeter Length of Punching Area, Kp1 = 240.00 cmTpmin from Punch Shear of One Pile = 40.00 cm

    c. From Punching of Single Column:Punching of Single Column Status = Not Exist (d > 1.1*(2dp-bc))Factored Punching Force, Column, Pu = 93536.52 kgAllowable Punching Stress, vc = 18.09 kg/cm2Perimeter Length of Punching Area, Kp2 = 289.08 cm

    d. Minimum Thickness required by user, Tpmin = 50.00 cm

    e. Selected Pilecap Thickness, Tp = 50.00 cmAllowable Punching Stress, vc = 18.09 kg/cm2Shear Stress, Punching of Pile, vc = 9.18 kg/cm2 -> OKShear Stress, Punching of Column, vc = 19.63 kg/cm2 Not Exist (d > 1.1*(2dp-bc))

    2. Pile Number Calculation:

    a. First Trial (pilecap weight = 0, + for compression)

    Unfactored Max Force, Static Load Pu1 = 65.58 ton, Pcap1 = 30.00 ton, np1=3Unfactored Max Force, Temp. Load, F=f1*f2, Pu1 = 103.26 ton, Pcap1 = 60.00 ton, np1=2Unfactored Max Force, Temp. Load, F=1.0, Pu1 = 80.86 ton, Pcap1 = 39.00 ton, np1=3Pilecap Weight Wpcap = 0.00 tonWeight of One Pile, Wp = 1.81 tonGross Capacity of One Pile, P1 = 30.00 tonNett Capacity of One Pile, P1 = 28.19 tonNumber of Piles needed for Compression Force, Np1 = 3 pilesTotal Compression Capacity (No Earthquake), Pn = 90.00 ton -> OKTotal Compression Capacity (f1*f2=1.0), Pn = 117.00 ton -> OKTotal Compression Capacity (Use f1*f2), Pn = 120.00 ton -> OK

    Unfactored Min Force, (Tension=negative), Pumin = 33.33 tonPilecap Weight Wpcap = 0.00 tonUnfactored Tension reduced by Pilecap Wgt, Tu = 0.00 ton (compression)

    No Tension Force Occured -> OK

    Unfactored Max Force, Static Load Vu1 = 1.06 ton, Pcap1 = 0.00 ton, np1=1Unfactored Max Force, Temp. Load, F=f1*f2, Vu1 = 11.44 ton, Pcap1 = 0.00 ton, np1=2Unfactored Max Force, Temp. Load, F=1.0, Vu1 = 4.54 ton, Pcap1 = 0.00 ton, np1=1Unfactored Lateral Force, Vu = 0.00 tonLateral Capacity of One Pile, P3 = 5.00 tonNumber of Piles needed for Lateral Force, Np3 = 2 pilesTotal Lateral Capacity (No Earthquake), Vn = 5.00 ton -> OKTotal Lateral Capacity (f1*f2 = 1.0), Vn = 6.50 ton -> OKTotal Lateral Capacity (f1*f2 > 0), Vn = 20.00 ton -> OK

    Number of Piles needed, Np = 3 piles

    b. Second Trial (with Pilecap Weight)

    Unfactored Max Force, Static Load Pu1 = 65.58 ton, Pcap1 = 30.00 ton, np1=3

    Unfactored Max Force, Temp. Load, F=f1*f2, Pu1 = 103.26 ton, Pcap1 = 60.00 ton, np1=2Unfactored Max Force, Temp. Load, F=1.0, Pu1 = 80.86 ton, Pcap1 = 39.00 ton, np1=3Pilecap Weight Wpcap = 0.97 tonUnfactored Force + Pilecap Weight, Pu1 = 65.58 tonWeight of One Pile, Wp = 1.81 tonGross Capacity of One Pile, P1 = 30.00 tonNett Capacity of One Pile, P1 = 30.00 tonNumber of Piles needed for Compression Force,Np1 = 3 pilesTotal Compression Capacity (No Earthquake), Pn = 90.00 ton -> OKTotal Compression Capacity (f1*f2=1.0), Pn = 117.00 ton -> OKTotal Compression Capacity (Use f1*f2), Pn = 120.00 ton -> OK

    Unfactored Min Force, (Tension=negative), Pumin = 33.33 tonPilecap Weight Wpcap = 0.97 tonUnfactored Tension reduced by Pilecap Wgt, Tu = 0.00 ton (compression)No Tension Force Occured -> OKNumber of Pile needed, Np = 3 pilesCompres: P1 = (Nmax+Wpcap-Po)/np = 28248.92 kg, dPMx = 0.00 kg, dPMy = 0.00 kg

    Tension: P1 = (Nmin+Wpcap-To)/np = 12406.51 kg, dPMx = 0.00 kg, dPMy = 0.00 kgPcomp= 39000.00 Ptens= 8309.56, P1max = 28248.92, P1min = 12406.51

    c. Third Trial (with Group Efficiency and Bending Moment)

    Number of Pile needed, Np = 3 pilesGroup Efficiency Method = Simple FormulaGroup Efficiency, e = 1.000Unfactored Max Force, (+ -> compression), Pumax = 103.26 tonUnfactored Min Force, (Tension=negative), Pumin = 10.93 ton

  • 8/17/2019 disain fondasi

    16/247

    Pilecap Weight Wpcap = 3.89 tonUnfactored Max Force + Pilecap Weight, Pu1 = 65.58 tonUnfactored Min Force + Pilecap Weight, Pu2 = 37.22 tonWeight of One Pile, Wp = 1.81 tonGross Compression Capacity of One Pile, P1 = 30.00 tonNett Compression Capacity of One Pile, P1 = 30.00 tonTension Capacity of One Pile, P2 = 5.00 tonTension Capacity of One Pile + Pile weight, P22 = 0.00 tonMaximum Compression on Pile, P1max = 28.25 ton -> OKMinimum Compression on Pile, P1min = 12.41 ton -> OKConcrete Slab Design Status, X-Direction = OKConcrete Slab Design Status, Y-Direction = OK

    Optimum Foundation Selected, Index = 1

    Pile, Rect, a= 30 cm

    Pile Size Parameter:

    a = 30.00000 cmb = 30.00000 cmsp = 90.00000 cmsp1 = 45.00000 cmspx = 90.00000 cmspy = 90.00000 cmAp = 900.00000 cm2dp = 30.00000 cmApw = 942.47800 cm2Kp = 120.00000 cmKp1 = 240.00000 cm

    PILE FOUNDATION DESIGN:

    1. Pilecap Thickness:

    a. Given Pilecap Thickness, Tp = 30.00 cm

    b. From Punching of Single Pile:Factored Punching Force, 1 pile, Pu = 45000.00 kgAllowable Punching Stress, vc = 18.09 kg/cm2, fc1 = 291.00 kg/cm2Perimeter Length of Punching Area, Kp1 = 240.00 cmTpmin from Punch Shear of One Pile = 40.00 cm

    c. From Punching of Single Column:Punching of Single Column Status = Not Exist (d > 1.1*(2dp-bc))Factored Punching Force, Column, Pu = 93536.52 kgAllowable Punching Stress, vc = 18.09 kg/cm2Perimeter Length of Punching Area, Kp2 = 289.08 cm

    d. Minimum Thickness required by user, Tpmin = 50.00 cm

    e. Selected Pilecap Thickness, Tp = 50.00 cmAllowable Punching Stress, vc = 18.09 kg/cm2Shear Stress, Punching of Pile, vc = 9.14 kg/cm2 -> OKShear Stress, Punching of Column, vc = 19.54 kg/cm2 Not Exist (d > 1.1*(2dp-bc))

    2. Pile Number Calculation:

    a. First Trial (pilecap weight = 0, + for compression)

    Unfactored Max Force, Static Load Pu1 = 65.58 ton, Pcap1 = 30.00 ton, np1=3Unfactored Max Force, Temp. Load, F=f1*f2, Pu1 = 103.26 ton, Pcap1 = 60.00 ton, np1=2Unfactored Max Force, Temp. Load, F=1.0, Pu1 = 80.86 ton, Pcap1 = 39.00 ton, np1=3Pilecap Weight Wpcap = 0.00 tonWeight of One Pile, Wp = 1.81 tonGross Capacity of One Pile, P1 = 30.00 tonNett Capacity of One Pile, P1 = 28.19 ton

    Number of Piles needed for Compression Force, Np1 = 3 pilesTotal Compression Capacity (No Earthquake), Pn = 90.00 ton -> OKTotal Compression Capacity (f1*f2=1.0), Pn = 117.00 ton -> OKTotal Compression Capacity (Use f1*f2), Pn = 120.00 ton -> OK

    Unfactored Min Force, (Tension=negative), Pumin = 33.33 tonPilecap Weight Wpcap = 0.00 tonUnfactored Tension reduced by Pilecap Wgt, Tu = 0.00 ton (compression)No Tension Force Occured -> OK

    Unfactored Max Force, Static Load Vu1 = 1.06 ton, Pcap1 = 0.00 ton, np1=1Unfactored Max Force, Temp. Load, F=f1*f2, Vu1 = 11.44 ton, Pcap1 = 0.00 ton, np1=2Unfactored Max Force, Temp. Load, F=1.0, Vu1 = 4.54 ton, Pcap1 = 0.00 ton, np1=1Unfactored Lateral Force, Vu = 0.00 tonLateral Capacity of One Pile, P3 = 5.00 tonNumber of Piles needed for Lateral Force, Np3 = 2 pilesTotal Lateral Capacity (No Earthquake), Vn = 5.00 ton -> OKTotal Lateral Capacity (f1*f2 = 1.0), Vn = 6.50 ton -> OK

    Total Lateral Capacity (f1*f2 > 0), Vn = 20.00 ton -> OK

    Number of Piles needed, Np = 3 piles

    b. Second Trial (with Pilecap Weight)

    Unfactored Max Force, Static Load Pu1 = 65.58 ton, Pcap1 = 30.00 ton, np1=3Unfactored Max Force, Temp. Load, F=f1*f2, Pu1 = 103.26 ton, Pcap1 = 60.00 ton, np1=2Unfactored Max Force, Temp. Load, F=1.0, Pu1 = 80.86 ton, Pcap1 = 39.00 ton, np1=3Pilecap Weight Wpcap = 3.89 tonUnfactored Force + Pilecap Weight, Pu1 = 65.58 ton

  • 8/17/2019 disain fondasi

    17/247

    Weight of One Pile, Wp = 1.81 tonGross Capacity of One Pile, P1 = 30.00 tonNett Capacity of One Pile, P1 = 30.00 tonNumber of Piles needed for Compression Force,Np1 = 3 pilesTotal Compression Capacity (No Earthquake), Pn = 90.00 ton -> OKTotal Compression Capacity (f1*f2=1.0), Pn = 117.00 ton -> OKTotal Compression Capacity (Use f1*f2), Pn = 120.00 ton -> OK

    Unfactored Min Force, (Tension=negative), Pumin = 33.33 tonPilecap Weight Wpcap = 3.89 tonUnfactored Tension reduced by Pilecap Wgt, Tu = 0.00 ton (compression)No Tension Force Occured -> OKNumber of Pile needed, Np = 3 piles

    Pile Configuration:

    np, total = 3, npx= 2, npy= 2

    Pilecap, bx= 180.0 cm, by= 180.0 cmColumn Block size, cx= 50.0 cm, cy= 60.0 cmFurthest pile, xp,max = 45.00, yp,max= 45.00Sigma dx^2 = 8100.00, Sigma dy^2 = 8100.00Bending Moment Coefficient, cmbx = 40.00000, cmby = 30.00000Bending Moment (Factored) : Mx = 1680000.00000 kg.cm, My = 1260000.00000 kg.cmCompres: P1 = (Nmax+Wpcap-Po)/np = 28248.92 kg, dPMx = 0.00 kg, dPMy = 0.00 kgTension: P1 = (Nmin+Wpcap-To)/np = 12406.51 kg, dPMx = 0.00 kg, dPMy = 0.00 kgPcomp= 39000.00 Ptens= 8309.56, P1max = 28248.92, P1min = 12406.51

    c. Third Trial (with Group Efficiency and Bending Moment)

    Pile Configuration:

    np, total = 3, npx= 2, npy= 2Pilecap, bx= 180.0 cm, by= 180.0 cmColumn Block size, cx= 50.0 cm, cy= 60.0 cmFurthest pile, xp,max = 45.00, yp,max= 45.00Sigma dx^2 = 8100.00, Sigma dy^2 = 8100.00Bending Moment Coefficient, cmbx = 40.00000, cmby = 30.00000Bending Moment (Factored) : Mx = 1680000.00000 kg.cm, My = 1260000.00000 kg.cm

    Number of Pile needed, Np = 3 pilesGroup Efficiency Method = Simple FormulaGroup Efficiency, e = 1.000Unfactored Max Force, (+ -> compression), Pumax = 103.26 tonUnfactored Min Force, (Tension=negative), Pumin = 10.93 tonPilecap Weight Wpcap = 3.89 tonUnfactored Max Force + Pilecap Weight, Pu1 = 65.58 tonUnfactored Min Force + Pilecap Weight, Pu2 = 37.22 tonWeight of One Pile, Wp = 1.81 tonGross Compression Capacity of One Pile, P1 = 30.00 tonNett Compression Capacity of One Pile, P1 = 30.00 tonTension Capacity of One Pile, P2 = 5.00 ton

    Tension Capacity of One Pile + Pile weight, P22 = 0.00 tonMaximum Compression on Pile, P1max = 28.25 ton -> OKMinimum Compression on Pile, P1min = 12.41 ton -> OKConcrete Slab Design Status, X-Direction = OKConcrete Slab Design Status, Y-Direction = OK

    3. Pilecap Rebar Design:

    Rebar pct min = 0.15 %Minimum Rebar Spacing = 10.00 cmBx,By,Tp = 180.00 x 180.00 x 50.00Bending Section in X-direction, b = 180.00 cm, h = 50.00 cmBending Section in Y-direction, b = 180.00 cm, h = 50.00 cmBending Moment in X-direction, Mpx = 1680000.00 kg.cmBending Moment in Y-direction, Mpy = 1260000.00 kg.cmRebar Spacing, X-Dir, Bottom = d16- 24.3 cm ( 0.24%)Rebar Spacing, X-Dir, Top = d16- 40.0 cm ( 0.15%)

    Rebar Spacing, Y-Dir, Bottom = d16- 30.0 cm ( 0.20%)Rebar Spacing, Y-Dir, Top = d16- 40.0 cm ( 0.15%)

    TIE BEAM DESIGN:

    Tie Beam / Sloof Width, B = 30.00 cmTie Beam / Sloof Width, H = 60.00 cmFactored Maximum Column Axial Load, Pu = 93536.52 ton10% of Factored Axial Load, Tu = 9353.65 tonRequired Rebar for Tension, Ast = 3.00 cm2

    Nett Uplift Height, Hw = 2.00 mTie Beam / Sloof Length, L = 8.00 mTie Beam / Sloof Tributary Width, W = 8.00 mDistributed Load on Tie Beam, qL = 16000.00 kg/mDistributed Weight on Tie Beam, qsw = 432.00 kg/mBending Moment, Mql = 9963520.00 kg.cmShear Force, Vql = 62272.00 kg

    Req. Rebar for Bending Moment, Bottom = 39.69 cm2Req. Rebar for Bending Moment, Top = 79.39 cm2

    Longitudinal Rebar, at Support = 15 d19 / 29 d19Longitudinal Rebar, at Midspan = 29 d19 / 15 d19Shear Reinforcement Spacing at Support = d10 - 0.00

    **************************************************************************6. SUPPORT NO. 6, Node= 6, Location: x= 4900.00000, y= 600.00000

    phi,m = 0.80 phi,v = 0.60

  • 8/17/2019 disain fondasi

    18/247

    fc1 = 291.0 kg/cm2 fy = 3900.0 kg/cm2fyv = 2400.0 kg/cm2 fys = 2400.0 kg/cm2s,ratio = 3.00 s1,ratio = 1.50col,bx = 50.00 cm col,bz = 60.00 cmsloof db=1.90 cm, dbv=1.00 cm, dbs=1.20 cmpilecap db=1.90 cm, dbv=1.00 cm, dbs=1.20 cmfoot db=1.90 cm, pile embeded=7.5 cm

    Unfactored forces: all(f1*f2), static, temporary (f1*f2), temporary (f1*f2=1)Maximum Axial, Pu = 100571.9, 52805.0, 100571.9, 71277.5 kgMinimum Axial, Pu = -7031.4, 36910.2, -7031.4, 22263.0 kg.cmMoment, X-Dir, Mux = 0.0, 0.0, 0.0, 0.0 kg.cmMoment, Y-Dir, Muy = 0.0, 0.0, 0.0, 0.0 kg.cmHoriz Force, Vux = 9235.4, 173.6, 9235.4, 3200.3 kgHoriz Force, Vuy = 11889.1, 1022.8, 11889.1, 4682.4 kg

    Factored forces: all(f1*f2), static, temporary (f1*f2), temporary (f1*f2=1)

    Single Axial, Pu = 0.0, 0.0 kgMaximum Axial, Pu = 111080.1, 65656.3, 111080.1, 81785.6 kgMinimum Axial, Pu = -7031.4, 36910.2, -7031.4, 22263.0 kg.cmMoment, X-Dir, Mux = 0.0, 0.0, 0.0, 0.0 kg.cmMoment, Y-Dir, Muy = 0.0, 0.0, 0.0, 0.0 kg.cmHoriz Force, Vux = 9268.0, 219.3, 9268.0, 3232.9 kgHoriz Force, Vuy = 12082.8, 1289.5, 12082.8, 4876.1 kg

    PILE FOUNDATION DESIGN:

    1. Pilecap Thickness:

    a. Given Pilecap Thickness, Tp = 30.00 cm

    b. From Punching of Single Pile:Factored Punching Force, 1 pile, Pu = 45000.00 kgAllowable Punching Stress, vc = 18.09 kg/cm2, fc1 = 291.00 kg/cm2Perimeter Length of Punching Area, Kp1 = 240.00 cmTpmin from Punch Shear of One Pile = 40.00 cm

    c. From Punching of Single Column:Punching of Single Column Status = Not Exist (d > 1.1*(2dp-bc))Factored Punching Force, Column, Pu = 81785.65 kgAllowable Punching Stress, vc = 18.09 kg/cm2Perimeter Length of Punching Area, Kp2 = 289.08 cm

    d. Minimum Thickness required by user, Tpmin = 50.00 cm

    e. Selected Pilecap Thickness, Tp = 50.00 cmAllowable Punching Stress, vc = 18.09 kg/cm2Shear Stress, Punching of Pile, vc = 9.18 kg/cm2 -> OK

    Shear Stress, Punching of Column, vc = 18.81 kg/cm2 Not Exist (d > 1.1*(2dp-bc))

    2. Pile Number Calculation:

    a. First Trial (pilecap weight = 0, + for compression)

    Unfactored Max Force, Static Load Pu1 = 52.81 ton, Pcap1 = 30.00 ton, np1=2Unfactored Max Force, Temp. Load, F=f1*f2, Pu1 = 100.57 ton, Pcap1 = 60.00 ton, np1=2Unfactored Max Force, Temp. Load, F=1.0, Pu1 = 71.28 ton, Pcap1 = 39.00 ton, np1=2Pilecap Weight Wpcap = 0.00 tonWeight of One Pile, Wp = 1.81 tonGross Capacity of One Pile, P1 = 30.00 tonNett Capacity of One Pile, P1 = 28.19 tonNumber of Piles needed for Compression Force, Np1 = 2 pilesTotal Compression Capacity (No Earthquake), Pn = 60.00 ton -> NOT OKTotal Compression Capacity (f1*f2=1.0), Pn = 78.00 ton -> OKTotal Compression Capacity (Use f1*f2), Pn = 120.00 ton -> OK

    Unfactored Min Force, (Tension=negative), Pumin = 22.26 tonPilecap Weight Wpcap = 0.00 tonUnfactored Tension reduced by Pilecap Wgt, Tu = 0.00 ton (compression)No Tension Force Occured -> OK

    Unfactored Max Force, Static Load Vu1 = 1.02 ton, Pcap1 = 0.00 ton, np1=1Unfactored Max Force, Temp. Load, F=f1*f2, Vu1 = 11.89 ton, Pcap1 = 0.00 ton, np1=2Unfactored Max Force, Temp. Load, F=1.0, Vu1 = 4.68 ton, Pcap1 = 0.00 ton, np1=1Unfactored Lateral Force, Vu = 0.00 tonLateral Capacity of One Pile, P3 = 5.00 tonNumber of Piles needed for Lateral Force, Np3 = 2 pilesTotal Lateral Capacity (No Earthquake), Vn = 5.00 ton -> OKTotal Lateral Capacity (f1*f2 = 1.0), Vn = 6.50 ton -> OKTotal Lateral Capacity (f1*f2 > 0), Vn = 20.00 ton -> OK

    Number of Piles needed, Np = 2 piles

    b. Second Trial (with Pilecap Weight)

    Unfactored Max Force, Static Load Pu1 = 52.81 ton, Pcap1 = 30.00 ton, np1=2Unfactored Max Force, Temp. Load, F=f1*f2, Pu1 = 100.57 ton, Pcap1 = 60.00 ton, np1=2Unfactored Max Force, Temp. Load, F=1.0, Pu1 = 71.28 ton, Pcap1 = 39.00 ton, np1=2Pilecap Weight Wpcap = 0.97 tonUnfactored Force + Pilecap Weight, Pu1 = 52.81 tonWeight of One Pile, Wp = 1.81 tonGross Capacity of One Pile, P1 = 30.00 tonNett Capacity of One Pile, P1 = 30.00 tonNumber of Piles needed for Compression Force,Np1 = 2 piles

  • 8/17/2019 disain fondasi

    19/247

    Total Compression Capacity (No Earthquake), Pn = 60.00 ton -> NOT OKTotal Compression Capacity (f1*f2=1.0), Pn = 78.00 ton -> OKTotal Compression Capacity (Use f1*f2), Pn = 120.00 ton -> OK

    Unfactored Min Force, (Tension=negative), Pumin = 22.26 tonPilecap Weight Wpcap = 0.97 tonUnfactored Tension reduced by Pilecap Wgt, Tu = 0.00 ton (compression)No Tension Force Occured -> OKNumber of Pile needed, Np = 2 pilesCompres: P1 = (Nmax+Wpcap-Po)/np = 36610.77 kg, dPMx = 0.00 kg, dPMy = 0.00 kgTension: P1 = (Nmin+Wpcap-To)/np = 12103.50 kg, dPMx = 0.00 kg, dPMy = 0.00 kgPcomp= 39000.00 Ptens= 8309.56, P1max = 36610.77, P1min = 12103.50

    c. Third Trial (with Group Efficiency and Bending Moment)

    Number of Pile needed, Np = 2 piles

    Group Efficiency Method = Simple FormulaGroup Efficiency, e = 1.000Unfactored Max Force, (+ -> compression), Pumax = 100.57 tonUnfactored Min Force, (Tension=negative), Pumin = -7.03 tonPilecap Weight Wpcap = 1.94 tonUnfactored Max Force + Pilecap Weight, Pu1 = 52.81 tonUnfactored Min Force + Pilecap Weight, Pu2 = 24.21 tonWeight of One Pile, Wp = 1.81 tonGross Compression Capacity of One Pile, P1 = 30.00 tonNett Compression Capacity of One Pile, P1 = 30.00 tonTension Capacity of One Pile, P2 = 5.00 tonTension Capacity of One Pile + Pile weight, P22 = 0.00 tonMaximum Compression on Pile, P1max = 36.61 ton -> OKMinimum Compression on Pile, P1min = 12.10 ton -> OKConcrete Slab Design Status, X-Direction = OK

    Optimum Foundation Selected, Index = 1

    Pile, Rect, a= 30 cm

    Pile Size Parameter:

    a = 30.00000 cmb = 30.00000 cmsp = 90.00000 cmsp1 = 45.00000 cmspx = 90.00000 cmspy = 90.00000 cmAp = 900.00000 cm2dp = 30.00000 cmApw = 942.47800 cm2Kp = 120.00000 cmKp1 = 240.00000 cm

    PILE FOUNDATION DESIGN:

    1. Pilecap Thickness:

    a. Given Pilecap Thickness, Tp = 30.00 cm

    b. From Punching of Single Pile:Factored Punching Force, 1 pile, Pu = 45000.00 kgAllowable Punching Stress, vc = 18.09 kg/cm2, fc1 = 291.00 kg/cm2Perimeter Length of Punching Area, Kp1 = 240.00 cmTpmin from Punch Shear of One Pile = 40.00 cm

    c. From Punching of Single Column:Punching of Single Column Status = Not Exist (d > 1.1*(2dp-bc))Factored Punching Force, Column, Pu = 81785.65 kgAllowable Punching Stress, vc = 18.09 kg/cm2

    Perimeter Length of Punching Area, Kp2 = 289.08 cm

    d. Minimum Thickness required by user, Tpmin = 50.00 cm

    e. Selected Pilecap Thickness, Tp = 50.00 cmAllowable Punching Stress, vc = 18.09 kg/cm2Shear Stress, Punching of Pile, vc = 9.14 kg/cm2 -> OKShear Stress, Punching of Column, vc = 18.73 kg/cm2 Not Exist (d > 1.1*(2dp-bc))

    2. Pile Number Calculation:

    a. First Trial (pilecap weight = 0, + for compression)

    Unfactored Max Force, Static Load Pu1 = 52.81 ton, Pcap1 = 30.00 ton, np1=2Unfactored Max Force, Temp. Load, F=f1*f2, Pu1 = 100.57 ton, Pcap1 = 60.00 ton, np1=2Unfactored Max Force, Temp. Load, F=1.0, Pu1 = 71.28 ton, Pcap1 = 39.00 ton, np1=2Pilecap Weight Wpcap = 0.00 tonWeight of One Pile, Wp = 1.81 ton

    Gross Capacity of One Pile, P1 = 30.00 tonNett Capacity of One Pile, P1 = 28.19 tonNumber of Piles needed for Compression Force, Np1 = 2 pilesTotal Compression Capacity (No Earthquake), Pn = 60.00 ton -> NOT OKTotal Compression Capacity (f1*f2=1.0), Pn = 78.00 ton -> OKTotal Compression Capacity (Use f1*f2), Pn = 120.00 ton -> OK

    Unfactored Min Force, (Tension=negative), Pumin = 22.26 tonPilecap Weight Wpcap = 0.00 tonUnfactored Tension reduced by Pilecap Wgt, Tu = 0.00 ton (compression)No Tension Force Occured -> OK

  • 8/17/2019 disain fondasi

    20/247

    Unfactored Max Force, Static Load Vu1 = 1.02 ton, Pcap1 = 0.00 ton, np1=1Unfactored Max Force, Temp. Load, F=f1*f2, Vu1 = 11.89 ton, Pcap1 = 0.00 ton, np1=2Unfactored Max Force, Temp. Load, F=1.0, Vu1 = 4.68 ton, Pcap1 = 0.00 ton, np1=1Unfactored Lateral Force, Vu = 0.00 tonLateral Capacity of One Pile, P3 = 5.00 tonNumber of Piles needed for Lateral Force, Np3 = 2 pilesTotal Lateral Capacity (No Earthquake), Vn = 5.00 ton -> OKTotal Lateral Capacity (f1*f2 = 1.0), Vn = 6.50 ton -> OKTotal Lateral Capacity (f1*f2 > 0), Vn = 20.00 ton -> OK

    Number of Piles needed, Np = 2 piles

    b. Second Trial (with Pilecap Weight)

    Unfactored Max Force, Static Load Pu1 = 52.81 ton, Pcap1 = 30.00 ton, np1=2Unfactored Max Force, Temp. Load, F=f1*f2, Pu1 = 100.57 ton, Pcap1 = 60.00 ton, np1=2

    Unfactored Max Force, Temp. Load, F=1.0, Pu1 = 71.28 ton, Pcap1 = 39.00 ton, np1=2Pilecap Weight Wpcap = 1.94 tonUnfactored Force + Pilecap Weight, Pu1 = 52.81 tonWeight of One Pile, Wp = 1.81 tonGross Capacity of One Pile, P1 = 30.00 tonNett Capacity of One Pile, P1 = 30.00 tonNumber of Piles needed for Compression Force,Np1 = 2 pilesTotal Compression Capacity (No Earthquake), Pn = 60.00 ton -> NOT OKTotal Compression Capacity (f1*f2=1.0), Pn = 78.00 ton -> OKTotal Compression Capacity (Use f1*f2), Pn = 120.00 ton -> OK

    Unfactored Min Force, (Tension=negative), Pumin = 22.26 tonPilecap Weight Wpcap = 1.94 tonUnfactored Tension reduced by Pilecap Wgt, Tu = 0.00 ton (compression)No Tension Force Occured -> OKNumber of Pile needed, Np = 2 piles

    Pile Configuration:

    np, total = 2, npx= 2, npy= 1Pilecap, bx= 180.0 cm, by= 90.0 cmColumn Block size, cx= 50.0 cm, cy= 60.0 cmFurthest pile, xp,max = 45.00, yp,max= 0.00Sigma dx^2 = 4050.00, Sigma dy^2 = 0.00Bending Moment Coefficient, cmbx = 20.00000, cmby = 0.00000Bending Moment (Factored) : Mx = 840000.00000 kg.cm, My = 0.00000 kg.cmCompres: P1 = (Nmax+Wpcap-Po)/np = 36610.77 kg, dPMx = 0.00 kg, dPMy = 0.00 kgTension: P1 = (Nmin+Wpcap-To)/np = 12103.50 kg, dPMx = 0.00 kg, dPMy = 0.00 kgPcomp= 39000.00 Ptens= 8309.56, P1max = 36610.77, P1min = 12103.50

    c. Third Trial (with Group Efficiency and Bending Moment)

    Pile Configuration:

    np, total = 2, npx= 2, npy= 1Pilecap, bx= 180.0 cm, by= 90.0 cmColumn Block size, cx= 50.0 cm, cy= 60.0 cmFurthest pile, xp,max = 45.00, yp,max= 0.00Sigma dx^2 = 4050.00, Sigma dy^2 = 0.00Bending Moment Coefficient, cmbx = 20.00000, cmby = 0.00000Bending Moment (Factored) : Mx = 840000.00000 kg.cm, My = 0.00000 kg.cm

    Number of Pile needed, Np = 2 pilesGroup Efficiency Method = Simple FormulaGroup Efficiency, e = 1.000Unfactored Max Force, (+ -> compression), Pumax = 100.57 tonUnfactored Min Force, (Tension=negative), Pumin = -7.03 tonPilecap Weight Wpcap = 1.94 tonUnfactored Max Force + Pilecap Weight, Pu1 = 52.81 tonUnfactored Min Force + Pilecap Weight, Pu2 = 24.21 tonWeight of One Pile, Wp = 1.81 ton

    Gross Compression Capacity of One Pile, P1 = 30.00 tonNett Compression Capacity of One Pile, P1 = 30.00 tonTension Capacity of One Pile, P2 = 5.00 tonTension Capacity of One Pile + Pile weight, P22 = 0.00 tonMaximum Compression on Pile, P1max = 36.61 ton -> OKMinimum Compression on Pile, P1min = 12.10 ton -> OKConcrete Slab Design Status, X-Direction = OK

    3. Pilecap Rebar Design:

    Rebar pct min = 0.15 %Minimum Rebar Spacing = 10.00 cmBx,By,Tp = 180.00 x 90.00 x 50.00Bending Section in X-direction, b = 90.00 cm, h = 50.00 cmBending Section in Y-direction, b = 180.00 cm, h = 50.00 cmBending Moment in X-direction, Mpx = 840000.00 kg.cmBending Moment in Y-direction, Mpy = 0.00 kg.cmRebar Spacing, X-Dir, Bottom = d16- 24.3 cm ( 0.24%)

    Rebar Spacing, X-Dir, Top = d16- 40.0 cm ( 0.15%)Rebar Spacing, Y-Dir, Bottom = d16- 30.0 cm ( 0.20%)Rebar Spacing, Y-Dir, Top = d16- 40.0 cm ( 0.15%)

    TIE BEAM DESIGN:

    Tie Beam / Sloof Width, B = 30.00 cmTie Beam / Sloof Width, H = 60.00 cmFactored Maximum Column Axial Load, Pu = 81785.65 ton10% of Factored Axial Load, Tu = 8178.56 tonRequired Rebar for Tension, Ast = 2.62 cm2

  • 8/17/2019 disain fondasi

    21/247

    Nett Uplift Height, Hw = 2.00 mTie Beam / Sloof Length, L = 8.00 mTie Beam / Sloof Tributary Width, W = 8.00 mDistributed Load on Tie Beam, qL = 16000.00 kg/mDistributed Weight on Tie Beam, qsw = 432.00 kg/mBending Moment, Mql = 9963520.00 kg.cmShear Force, Vql = 62272.00 kgReq. Rebar for Bending Moment, Bottom = 39.69 cm2Req. Rebar for Bending Moment, Top = 79.39 cm2

    Longitudinal Rebar, at Support = 14 d19 / 28 d19Longitudinal Rebar, at Midspan = 28 d19 / 14 d19Shear Reinforcement Spacing at Support = d10 - 0.00

    **************************************************************************7. SUPPORT NO. 7, Node= 15, Location: x= 2400.00000, y= 1400.00000

    phi,m = 0.80 phi,v = 0.60fc1 = 291.0 kg/cm2 fy = 3900.0 kg/cm2fyv = 2400.0 kg/cm2 fys = 2400.0 kg/cm2s,ratio = 3.00 s1,ratio = 1.50col,bx = 60.00 cm col,bz = 60.00 cmsloof db=1.90 cm, dbv=1.00 cm, dbs=1.20 cmpilecap db=1.90 cm, dbv=1.00 cm, dbs=1.20 cmfoot db=1.90 cm, pile embeded=7.5 cm

    Unfactored forces: all(f1*f2), static, temporary (f1*f2), temporary (f1*f2=1)Maximum Axial, Pu = 182612.1, 49289.2, 182612.1, 96366.6 kgMinimum Axial, Pu = -94166.3, 35202.1, -94166.3, -7920.7 kg.cmMoment, X-Dir, Mux = 0.0, 0.0, 0.0, 0.0 kg.cmMoment, Y-Dir, Muy = 0.0, 0.0, 0.0, 0.0 kg.cmHoriz Force, Vux = 23506.7, 67.4, 23506.7, 7882.3 kgHoriz Force, Vuy = 24039.7, 417.1, 24039.7, 8311.2 kg

    Factored forces: all(f1*f2), static, temporary (f1*f2), temporary (f1*f2=1)Single Axial, Pu = 0.0, 0.0 kgMaximum Axial, Pu = 192633.9, 60902.5, 192633.9, 106388.4 kgMinimum Axial, Pu = -94166.3, 35202.1, -94166.3, -7920.7 kg.cmMoment, X-Dir, Mux = 0.0, 0.0, 0.0, 0.0 kg.cmMoment, Y-Dir, Muy = 0.0, 0.0, 0.0, 0.0 kg.cmHoriz Force, Vux = 23518.9, 86.0, 23518.9, 7894.5 kgHoriz Force, Vuy = 24122.4, 519.0, 24122.4, 8393.9 kg

    PILE FOUNDATION DESIGN:

    1. Pilecap Thickness:

    a. Given Pilecap Thickness, Tp = 30.00 cm

    b. From Punching of Single Pile:Factored Punching Force, 1 pile, Pu = 45000.00 kgAllowable Punching Stress, vc = 18.09 kg/cm2, fc1 = 291.00 kg/cm2Perimeter Length of Punching Area, Kp1 = 240.00 cmTpmin from Punch Shear of One Pile = 40.00 cm

    c. From Punching of Single Column:Punching of Single Column Status = Not Exist (d > 1.1*(2dp-bc))Factored Punching Force, Column, Pu = 106388.39 kgAllowable Punching Stress, vc = 18.09 kg/cm2Perimeter Length of Punching Area, Kp2 = 309.08 cm

    d. Minimum Thickness required by user, Tpmin = 50.00 cm

    e. Selected Pilecap Thickness, Tp = 50.00 cm

    Allowable Punching Stress, vc = 18.09 kg/cm2Shear Stress, Punching of Pile, vc = 9.18 kg/cm2 -> OKShear Stress, Punching of Column, vc = 30.51 kg/cm2 Not Exist (d > 1.1*(2dp-bc))

    2. Pile Number Calculation:

    a. First Trial (pilecap weight = 0, + for compression)

    Unfactored Max Force, Static Load Pu1 = 49.29 ton, Pcap1 = 30.00 ton, np1=2Unfactored Max Force, Temp. Load, F=f1*f2, Pu1 = 182.61 ton, Pcap1 = 60.00 ton, np1=4Unfactored Max Force, Temp. Load, F=1.0, Pu1 = 96.37 ton, Pcap1 = 39.00 ton, np1=3Pilecap Weight Wpcap = 0.00 tonWeight of One Pile, Wp = 1.81 tonGross Capacity of One Pile, P1 = 30.00 tonNett Capacity of One Pile, P1 = 28.19 tonNumber of Piles needed for Compression Force, Np1 = 4 pilesTotal Compression Capacity (No Earthquake), Pn = 60.00 ton -> OKTotal Compression Capacity (f1*f2=1.0), Pn = 117.00 ton -> OK

    Total Compression Capacity (Use f1*f2), Pn = 240.00 ton -> OK

    Unfactored Min Force, (Tension=negative), Pumin = -7.92 tonPilecap Weight Wpcap = 0.00 tonUnfactored Tension reduced by Pilecap Wgt, Tu = 0.00 ton (compression)No Tension Force Occured -> OK

    Unfactored Max Force, Static Load Vu1 = 0.42 ton, Pcap1 = 0.00 ton, np1=1Unfactored Max Force, Temp. Load, F=f1*f2, Vu1 = 24.04 ton, Pcap1 = 0.00 ton, np1=3Unfactored Max Force, Temp. Load, F=1.0, Vu1 = 8.31 ton, Pcap1 = 0.00 ton, np1=2Unfactored Lateral Force, Vu = 0.00 ton

  • 8/17/2019 disain fondasi

    22/247

    Lateral Capacity of One Pile, P3 = 5.00 tonNumber of Piles needed for Lateral Force, Np3 = 3 pilesTotal Lateral Capacity (No Earthquake), Vn = 5.00 ton -> OKTotal Lateral Capacity (f1*f2 = 1.0), Vn = 13.00 ton -> OKTotal Lateral Capacity (f1*f2 > 0), Vn = 30.00 ton -> OK

    Number of Piles needed, Np = 4 piles

    b. Second Trial (with Pilecap Weight)

    Unfactored Max Force, Static Load Pu1 = 49.29 ton, Pcap1 = 30.00 ton, np1=2Unfactored Max Force, Temp. Load, F=f1*f2, Pu1 = 182.61 ton, Pcap1 = 60.00 ton, np1=4Unfactored Max Force, Temp. Load, F=1.0, Pu1 = 96.37 ton, Pcap1 = 39.00 ton, np1=3Pilecap Weight Wpcap = 0.97 tonUnfactored Force + Pilecap Weight, Pu1 = 49.29 tonWeight of One Pile, Wp = 1.81 tonGross Capacity of One Pile, P1 = 30.00 ton

    Nett Capacity of One Pile, P1 = 30.00 tonNumber of Piles needed for Compression Force,Np1 = 4 pilesTotal Compression Capacity (No Earthquake), Pn = 60.00 ton -> OKTotal Compression Capacity (f1*f2=1.0), Pn = 117.00 ton -> OKTotal Compression Capacity (Use f1*f2), Pn = 240.00 ton -> OK

    Unfactored Min Force, (Tension=negative), Pumin = -7.92 tonPilecap Weight Wpcap = 0.97 tonUnfactored Tension reduced by Pilecap Wgt, Tu = 0.00 ton (compression)No Tension Force Occured -> OKNumber of Pile needed, Np = 4 pilesCompres: P1 = (Nmax+Wpcap-Po)/np = 25063.64 kg, dPMx = 0.00 kg, dPMy = 0.00 kgTension: P1 = (Nmin+Wpcap-To)/np = -1008.17 kg, dPMx = 0.00 kg, dPMy = 0.00 kgPcomp= 39000.00 Ptens= 8309.56, P1max = 25063.64, P1min = -1008.17

    c. Third Trial (with Group Efficiency and Bending Moment)

    Number of Pile needed, Np = 4 pilesGroup Efficiency Method = Simple FormulaGroup Efficiency, e = 1.000Unfactored Max Force, (+ -> compression), Pumax = 182.61 tonUnfactored Min Force, (Tension=negative), Pumin = -94.17 tonPilecap Weight Wpcap = 3.89 tonUnfactored Max Force + Pilecap Weight, Pu1 = 49.29 tonUnfactored Min Force + Pilecap Weight, Pu2 = -4.03 tonWeight of One Pile, Wp = 1.81 tonGross Compression Capacity of One Pile, P1 = 30.00 tonNett Compression Capacity of One Pile, P1 = 30.00 tonTension Capacity of One Pile, P2 = 5.00 tonTension Capacity of One Pile + Pile weight, P22 = 0.00 tonMaximum Compression on Pile, P1max = 25.06 ton -> OKMinimum Tension on Pile, P1min = -1.01 ton -> NOT OKConcrete Slab Design Status, X-Direction = OKConcrete Slab Design Status, Y-Direction = OK

    Optimum Foundation Selected, Index = 1

    Pile, Rect, a= 30 cm

    Pile Size Parameter:

    a = 30.00000 cmb = 30.00000 cmsp = 90.00000 cmsp1 = 45.00000 cmspx = 90.00000 cmspy = 90.00000 cmAp = 900.00000 cm2dp = 30.00000 cmApw = 942.47800 cm2Kp = 120.00000 cm

    Kp1 = 240.00000 cm

    PILE FOUNDATION DESIGN:

    1. Pilecap Thickness:

    a. Given Pilecap Thickness, Tp = 30.00 cm

    b. From Punching of Single Pile:Factored Punching Force, 1 pile, Pu = 45000.00 kgAllowable Punching Stress, vc = 18.09 kg/cm2, fc1 = 291.00 kg/cm2Perimeter Length of Punching Area, Kp1 = 240.00 cmTpmin from Punch Shear of One Pile = 40.00 cm

    c. From Punching of Single Column:Punching of Single Column Status = Not Exist (d > 1.1*(2dp-bc))

    Factored Punching Force, Column, Pu = 106388.39 kgAllowable Punching Stress, vc = 18.09 kg/cm2Perimeter Length of Punching Area, Kp2 = 309.08 cm

    d. Minimum Thickness required by user, Tpmin = 50.00 cm

    e. Selected Pilecap Thickness, Tp = 50.00 cmAllowable Punching Stress, vc = 18.09 kg/cm2Shear Stress, Punching of Pile, vc = 9.14 kg/cm2 -> OKShear Stress, Punching of Column, vc = 30.37 kg/cm2 Not Exist (d > 1.1*(2dp-bc))

  • 8/17/2019 disain fondasi

    23/247

    2. Pile Number Calculation:

    a. First Trial (pilecap weight = 0, + for compression)

    Unfactored Max Force, Static Load Pu1 = 49.29 ton, Pcap1 = 30.00 ton, np1=2Unfactored Max Force, Temp. Load, F=f1*f2, Pu1 = 182.61 ton, Pcap1 = 60.00 ton, np1=4Unfactored Max Force, Temp. Load, F=1.0, Pu1 = 96.37 ton, Pcap1 = 39.00 ton, np1=3Pilecap Weight Wpcap = 0.00 tonWeight of One Pile, Wp = 1.81 tonGross Capacity of One Pile, P1 = 30.00 tonNett Capacity of One Pile, P1 = 28.19 tonNumber of Piles needed for Compression Force, Np1 = 4 pilesTotal Compression Capacity (No Earthquake), Pn = 60.00 ton -> OKTotal Compression Capacity (f1*f2=1.0), Pn = 117.00 ton -> OKTotal Compression Capacity (Use f1*f2), Pn = 240.00 ton -> OK

    Unfactored Min Force, (Tension=negative), Pumin = -7.92 ton

    Pilecap Weight Wpcap = 0.00 tonUnfactored Tension reduced by Pilecap Wgt, Tu = 0.00 ton (compression)No Tension Force Occured -> OK

    Unfactored Max Force, Static Load Vu1 = 0.42 ton, Pcap1 = 0.00 ton, np1=1Unfactored Max Force, Temp. Load, F=f1*f2, Vu1 = 24.04 ton, Pcap1 = 0.00 ton, np1=3Unfactored Max Force, Temp. Load, F=1.0, Vu1 = 8.31 ton, Pcap1 = 0.00 ton, np1=2Unfactored Lateral Force, Vu = 0.00 tonLateral Capacity of One Pile, P3 = 5.00 tonNumber of Piles needed for Lateral Force, Np3 = 3 pilesTotal Lateral Capacity (No Earthquake), Vn = 5.00 ton -> OKTotal Lateral Capacity (f1*f2 = 1.0), Vn = 13.00 ton -> OKTotal Lateral Capacity (f1*f2 > 0), Vn = 30.00 ton -> OK

    Number of Piles needed, Np = 4 piles

    b. Second Trial (with Pilecap Weight)

    Unfactored Max Force, Static Load Pu1 = 49.29 ton, Pcap1 = 30.00 ton, np1=2Unfactored Max Force, Temp. Load,