doctor of philosophy university of exbburgh - edinburgh research

135
DEPOSITIONAL ENVIRONMENTS IN THE PETERSHILL FORMATION BATHGATE, WEST LOTHIAN JEREMY JAMESON VOLUME I1 Doctor of Philosophy University of EXbburgh

Upload: others

Post on 20-Feb-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

D E P O S I T I O N A L E N V I R O N M E N T S

I N T H E

P E T E R S H I L L F O R M A T I O N

B A T H G A T E , W E S T L O T H I A N

J E R E M Y J A M E S O N

V O L U M E I1

Doctor of Philosophy

University of EXbburgh

, - D E P O S I T I O N A L E N V I R O N M E N T S

I N T H E

P E T E R S H I L L F O R M A T I O N

B A T H G A T E , W E S T L O T H I A N

J E R E M Y J A M E S O N

V O L U M E I1

Doctor of Philosophy

University of Edinburgh

4 2 4 REFERENCES

AITKEN, J. D. , 1967. C le s s i f i c a t i on and environmental s ignif icance of

crypt a l g a l limestones and dolomites, with i l l u s t r a t i o n s from t h e

Cmbrian and Ordovician of S. W. Alberta. ,J S P 37:- pp 1173-1178.

ALAN, J. R. and MATHEWS, R. K., 1977. Carbon and oxygen isotopes as

diagenet ic and s t r a t i g r aph i c too l s . Geology 5: pp 16-20.

AXDERSON , E. J. , 1972. Sedimentary s t ruc tu r e assenblages i n t rans-

gress ive and regress ive calcareni tes . Proc. 24th I n t l . Geol.

Congr., Sect 6: pp 369-378.

A,IIDERSON, E. J., and PAZD"oRSKY, G. J., 1974. Ske l e t a l sand subst ra tes .

In : Zeigler , A. M. e t a l . , Pr inciples of benthic community analysis .

Sediments I V , U of M i a m i : pp 4.1-4.10.

DlDERSON, F. W . , 1963. The Geological Survey borehole a t Rash ieh i l l

S t i r l i n g s h i r e (1951). Bull. Geol. Surv. G t . B r i t . 20: pp 43-107.

ARCHER, D. , 1969. X-ray analysis of deep sea sediments. unpub. Ph.D.

t h e s i s , U. of Manchester, Manchester, 108 pp.

. BALL, 14. M. , 1967. Carbonate sand bodies of Flor ida and t he Bahmas . . J s P 37: pp 556-591.

BALWEIRZ , J. and DZULEJSKI , S . , 1976. Experiments on rock deformations

produced by underground k a r s t processes. Rocznik Polskiego

Towarzystwa Geol., Ann. Soc. Geol. Pol., 46 (4 ) : pp 419-434.

BARVIS, J. H , and MAKURATH, J. H. , 1978. Recognition of ancient t i d a l

i n l e t sequences: an example from t h e Upper S i l u r i a n Keyser Lime-

s tone i n Virginia. Sedimentology 25: p;, 61-82.

BASSmR, R. S., 1953. Bryozoa. In : Moore, R. C , (ed) . Trea t i se on

Inver tebrate Paleontology. Par t G G.S.A. , Boulder, Colo. , 253 pp.

BATHURST, R. G. C. , 1959. The cavernous s t ruc tu r e of some Mississippian

c a l c i l u t i t e s and pseudobreccias. J S P 29: pp 365-376.

BATHURST, R. G. C. , 1971. Carbonate sediments and t h e i r diagenesis:

E l sev ie r Publ. Co., Ansterdam: 620 pp.

BATHURST, R. G. C. , 1977. Meteoric diagenesis of carbonate sediments,

In: Bathurst , R. G. C. and Hubbard, J. A. E. B, (organizers)

Course Notes on Processes i n Carbonate Sediments, King's College,

London University.

BATHURST, R e G. C . , 1979. Diagenesis i n carbonate sediments: a review.

Geol. Rund. 68: pp 848-855.

BIFFAR, T. A * , 1972. The genus U l l b n e s a ( ~ r u s t a c e a , Decapoda,

Thalassinidea) i n South Flor ida , with keys to Western Atlan t ic

species. Bul l Mar Sc i 21: pp 637-715.

BOSWELL, P. G. He, 1961. Muddy sediments, Heffer, Cambridge, 140 pp.

BRAID, P. J., 1970. Sco t t i sh Carboniferous Chonetoids. Bull. Geol.

Surv. G t . B r i t . 31: pp 89-137.

BISSEL, R.' W. and CHILINGAR, G., 1967. Carbonate Rocks: Origin and

C la s s i f i c a t i on , Developents i n Sedimentology gA. Elsevier ,

Amsterdam, 413 pp.

BRAITHWAITE, C. J e R e and TALBOT, M.R.., 1972. Crustacean burrows i n t he

Seychelles, Indian Ocean. Pa l Pa l Pa l 11: pp 265-285.

BRICKER, 0. P. (ed) , 1971. Carbonate Cements. Johns Hopkins Press,

~ a l t i m o r e , Maryland. 376 pp.

BROADHURST, F. Me and SIMPSON, M e I., 1973. Bathmetry on a Carbonif-

erous r e e f , ~ e t h a i a 6: pp 367-381.

BROmY, R. G. , 1970. Borings as t r a c e ' f o s s i l s and Entobia cretacea

Portlock, as an example. In: Crimes, T. P. and Harper, J, E.

(eds ) . Trace Fossi ls . Geol. Jour. Spec. Issue 3: pp 49-91.

BROMLEY, R. G. and FREY, R. W., 1974. Redescription of t he t r a c e

f o s s i l Gyrolithes and evaluation of Thallasinoides , Ophimorpha

and Spongeliomorpha. Bull. Geol. Soc. Denmark 23: pp 311-335. .8

BROIYILEY, R e G. and SURLYK, F., 1973. Borings produced by brachiopod

pedicles. ~ e t h a i a 6: pp 349-365.

BUYCE, M e R. and FRIEDMAN, G. Me, 1975. Significance of authigenic

K-feldspar i n Cambrian Ordovician carbonate rocks of t h e Proto-

A t l an t i c Shelf i n N. America. J S P 45: pp 808-821.

CADELL, H. M e , 1901. The carboniferous Limestone Coalf ie ld of West

Lothian. Trans. I n s t . Mine Eng. vo l XXII: pp 1-33.

CADELL, H. Me, 1903. The carboniferous Limestone Coalfields of West

Lothian. Trans. I n s t . Min. Eng. v o l XXII : pp 372-401.

CADELL, H. Me, 1920, A Whinstone l a c c o l i t e i n t h e Bo'ness coalf ie ld .

Trans. I n s t . Mine Eng. v o l LIX: pp 271-281.

CADELL', H e Me, 1923. A Volcano i n t he Bathgate Coalfield. Trans.

I n s t . Min. Eng. vo l LXV: pp 251-259.

CADELL, H. M., 1925. Rocks of West Lothian. Oliver and Boyd, Edinburgh

390 PP.

cAROZZI , A. V. , 1960. Microscopic sedimentary petrography. John Wiley

and sons, New York: 473 pp.

CARROLL, Dm , 1970. Clay Minerals : A guide t o t h e i r X-ray iden t i f i ca t ion . . .

GSA Spec. Paper 126: 78 pp.

CHAMB'ERLAIN, C. K., 1978. Recognition of t r a c e f o s s i l s i n cores. In:

Basan, P, (ed) , Trace Fossil Concepts, SEPM Short Course,

Oklahoma Ci ty , SEPM Tulsa, Oklahoma, pp 125-183.

C H m E R u m , J. A. and MAUS, R e R e , 1975. Water flow and hy&omechm- I

i c a l adaptations of branched ree f corals . Bul l Mar Sci 25( 1 ) : pp 112-125.

CHAMBERLAIN, K. C. and CLARK, D. L., 1973. Trace f o s s i l s and cono-

donts as evidence f o r deep water depos i t s , Oquirrh 3as in of Central

Utah. J. Pal. 47: pp 663-682.

cHAVE, K. E., 1964. Ske l e t a l du rab i l i t y and preservation. In: Inbrie,

J. E. and Newell, N. D, ( eds ) Approzches t o Paleoecology. John

Wiley and Sons, London, pp 377-387.

CHEENEY, R. F. ( i n manuscript) On S i t e S t a t i s t i c s i n Geology. 88 pp.

CHISHOLM, J. I., 1968. Trace f o s s i l s from t h e geological survey bore-

holes i n Em F i f e , 1963-1964. Bull. GeoL Surv. G t B r i t 28: pp 103-

. 119.

CLARKE, W. J., 1960. Sco t t i sh Carboniferous conodonts. Trans. Ed.

- . Geol. Soc. 18: pp 1-31.

CLIFTON, He Edward, 1976. Wave-forned s t ruc tu r e s - a conceptual model.

SEPhl Spec. Pub. 24: pp 126-148.

CONDRA, G. E. and ELIAS, M. K., 1944. Carboniferous and Pernian cteno-

stomatous Bryozoa. GSA Bull. 55 : pp 517-568.

CONNEL, J. H., 1978. Divers i ty i n t r o p i c a l r a i n f o r e s t s and cora l

reefs; Science 199: pp 1302-1309.

COWEN, R. and RIDER, J., 1972. Functional analysis of f enes t e l l i d

bryozoan colonies. Lethaia 5: pp 145-164.

CRAIG, G. Ye, 1952. A comparative study of t h e ecology and palaeo-

ecology of Lingula. Trans. Ed. Geol. Soc. vo l XV: pp 110-120.

CRAIG, G. Ye and JONES, N. S., 1966. Marine benthos, subs t ra te , and

palaeoecology . Palaentology 9 : pp 30-38.

cURRIE, E. Dm, 1954. Sco t t i sh Carboniferous Goniat i tes , Trans. Roy.

SOC. Ed. 52(2) : pp 527-614.

DAVIDSON-ARNOTT, R e G. D. and GREENWOOD, B. , 1976. Facies re la t ion-

ships on a barred coast , Kouchibouguac Bay, New Brunswick, Canada.

SEPM Spec. Pub. 24, pp 149-169.

DAVIDSON, ' T. , 1858-1863. A monograph of B r i t i s h Fos s i l Brachiopoda

p a r t 5 , vol . 2, Palaeontographi c a l Soc, , Monograph, 274 pp . DAVIDSON , T. , 1874'-1880. Catalogue of t h e brachiopoda of t h e Lothians

and Fife, Trans, Ed, Geol. Soc. iii: pp 68-87.

DEER, W. A m , HOWIE, R. A. and ZUSSMAI?, J. ,.1963. Rock f o d n g minerals,

V. 4, Longmans Press , London, 371 pp.

DE MEIJER, J. J.; 1969. Fos s i l non-calcareous algae from insoluble

res idues of a l g a l limestones. Leidse. Geol. Meded, 44: pp 235-239.

DE MEIJER, J. J., 1971. Carbonate petrology of a l g a l l ines tones ( ~ o i s -

Ciguera Fa. , Upper Carboniferous, ~ e & , spain) . Leidse. Geol.

Meded. 47: 1-97 PP-

DE RAAF, J. F. Me, BOERSM, J. R. and VAN GELJXR, A , , 1977. Wave-

generated s t ruc tu r e s and sequences f ron a shallow marine succession,

Lower Carboniferous, County Cork, I re land . Sedimentology 24: pp

451-483.

DICKSON, J. A. D. , 1966. Carbonate i d e n t i f i c a t i o n and genesis as revealed

by s ta in ing . J S P 36: pp 491-505.

DUNEWJI, R e J., 1962. Class i f i ca t ion of carbonate rocks according. t o

deposi t iond. t ex ture . In: H a , W. E. (ed) , Class i f i ca t ion of car-

bonate roclcs. AAPG, Tulsa, Okla. , pp 108-121.

DUNHAM, R. J., 1969. Ear ly vadose s i l t i n t h e Townsend Mouna ( r e e f ) , New Mexico. In : Frkidnan, G. M. (ed) , ~ e p o s i t i o n a l Environments

i n Carbonete Rocks - a Symposia, S.E.P.M. Spec. Publ., 14: pp

139-19 1 e

EDWARDS, B. D. m d PERKINS, R. D. , 1976. Dis t r ibut ion of microborings

i n . t he cont inenta l margin sediments of t h e southeastern United .

Sta t e s . J S P 46: pp 1122-1135.

ELDERS, C. A., 1975. Experimental approaches i n neoichnology. In:

Frey, R e W. (ed) , Trace Fos s i l s , Springer-Verlag, New York, pp

513-537.

ELLIOT, T. , 1974. I r i t e rd i s t r ibu t ary bay sequences and t h e i r . genesis.

~ed inen to logy 21: pp 611-622.

ELLIOT, T., 1975. The sedimentary h i s t o r y of a d e l t a lobe fro= a

Yoredale carboniferous cyclothem. Proc. Yorks. Geol. Soc. 40:

- pp 505-536.

ENOS, P. and PERKINS, R. D m , 1977. Quaternary Sedimentation i n South

Flor ida . GSA Menoir 147: pp 1-156.

ETHERIDGE, R. A. , 1858. A contr ibut ion t o t h e study of B r i t i s h Carbon- .

i f e rous tub icu la r Annelids. Geol. Mag. 7: pp 107-15.

EXUM, Fa A. and HARMS, J. C , 1968. Conparison of marine bar with va l ley

fill s t r a t i g r a p h i c t r a p s , W. Nebreska. AAPG ~ ~ 1 1 . 5 2 : pp 1851-1868. FALCONER, J. D., 1905. Igneous geology of t h e Bathgate and Linlithgow

Hills. Trans. Roy. Soc. Ed. v o l x l i : pp 359-370.

I FALCONER, J. D., 1906. Igneous geology of t he Bathgate and L in l i t hgw

H i l l s . Trans. Roy. Soc. Zd. 45: pp 133-150.

FELL, H e B., 1966. Echinoidea. In : Moore, R e C. (ed) , Trea t i se on

Inver tebra te Paleontology Per t V ( 3) , G.S .A. , Boulder, Colorado,

pp 1-313.

FERGUSON, J., 1978. Some aspects of t h e growth and ecology of

~ i ~ a n t o p r o d u c t i d s . Proc. Yorks. Geol. Soc. 42: pp 41-55.

FERGUSOI?, L., 1962. Palaeoecology of a L. Carboniferous marine t rans-

gression. J. Pal. 36: 1090-1107.

FOLK, R. L., 1962. A s p e c t r a l subdivision of limestone types. In:

Han, W. E. ( e d ) , C lass i f i ca t ion of Carbonate Rocks. AAPG, Tulsa,

Okla, pp 62-84.

FOLK, R. L., 1965. Some aspects of r ec rys t a l l i z a t i on i n ancient l ine-

stones. I n : Pray, L. C. and Murray, R e C. ( e d s ) , Dolomitization

and Limestone ~ i a g e n e s i s : a Sppos iun , SEPM Spec. Publ. 13: pp

14-48.

FORSYTH, C. , 1847. On t h e nines , minerals and geology of Linli thgar-

s h i r e , with geological map, Trans. High. Agric. Soc. Scot.,

J u l y 1845, pp 299-331.

FORSYTH, 1, H. , 1970. Geological Survey boreholes i n W. Fi fe (1965-6)

Bull . Geol. Surv. G t . ~ r i t . 34: pp 1-19.

FRANCIS, E. He, 1961. Volcanism i n r e l a t i o n t o sedimentation i n t h e

carboniferous rocks of the Sa l ine D i s t r i c t , Fife. Bull. Geol.

Surv. Gt. B r i t . 17: pp 116-144.

F'RAI?CIS, E. He, 1965. Carboniferous. In : Craig, G. Y. (ed) , The

Geology of Scotland. Oliver and Boyd, Edinburgh: 556 pp.

FRANCIS, E. H., 1967. Review of Carboniferous Permian volcanic i ty i n

scotland. Geol. Rundsch. 57: pp 219-246.

F ~ I D W L N , G. M., 1975. The making and unmaking of limestones, o r t h e

ups and dwns i n porosity. J S P 45 : pp 379-3518.

~ E I D M A N , G. M. and SANDERS, J. E., 1978. p r inc ip les of Sedimentology,

John Wiley and Sons, New York, 792 pp*

FREY, R. \Ie, 1975. The realm of ichnology: i t s s t rengths and limits-

t i ons . In : Frey, R. W. ( e d ) , The Study of Trace Fos s i l s , Springer-

Verlag, ~ e r l i n , 560 PP.

m y , R. W., HOWARD, J. D. and PRYOil, W e A * , 1978. Ophiomorpha i t s

morphologic, taxonomic, and environmental significance. Pa1 Pa.

Pal 23: pp 199-229.

F ~ S I C H , F. T., 1976. Fauna-substrate re la t ionsh ips i n t h e Corall ian

of England and Normandy. Lethxia 9 : pp 343-356.

F~~RsIcH, F. T., 1978. The influence of faunal condensation and mixing

on t h e preservation of f o s s i l benthic comuni t i es . Lethaia 11:

pp 243-250.

GARWOOD, E. J., 1914. Some new rock bu i ld ing organisms i n t h e L.

Carboniferous rocks of Westnorland. Geol Mag DXCV: 265.

GAVISH, E. and FREIDEWJ, G. M., 1969. Progressive diagenesis i n

Quaternary t o l a t e ( s i c ) Ter t i a ry carbonate sediments: sequence

and time sca le . J S P 39: pp 980-1006.

GEBZLEIII, C. D., 1969. Dis t r ibu t ion , morphology and accretion r a t e

of recent sub t i da l s t r ona lo l i t e s . J S P 39: pp 49-70.

GEIKIE, A. , 1879. S t i r l i n g , Lanarkshire, L in l i thgarsh i re , Memoirs of

t he Geological Survey Scotland (Map 31). 77p.

GEIKIE, A., 1900. The Geology of Centra l =d Western F i f e and Kinross

Mem. Geol. Surv. Scotland (Maps 32, 40, 48). 284 pp.

GEISTER, J. , 1972. Z u r okologie und wuchsform der Saulenkoralle

Dendogyra cylindrus Ehrenberg. Beobachtungen i n den r i f fen der

I n s e l San Andres. M i t t . I n s t . Colombo-Aleman Inves Cient 6: pp

77-87

GEORGE, T. N . , 1958. Lower Carboniferous palaeogeography of t he B r i t i s h

I s l e s . Proc. Yorks. Geol. Soc. 31: pp 227-318.

GEORGE, T. N. , JOHNSOI?, A. L., IOTCHELL, M., PREnTICE, J. E.,

RAMSBOTTOM, W. H. C . , SEVASTOPULO, G. D. and WILSON, R. B., 1976.

A Correlat ion of the Dinestian Rocks of t h e B r i t i s h I s l e s . Geol.

Soc. Lond. Spec. Report '?: 87 pp.

GINSBURG, R. N . , MARSZALEK, D.'S. m d SCHNEIDERMAN, N . , 1971. Ultra-

s t r u c t u r e of carbonate cements i n a Holocene algal ree f of Bernuda.

J S P 41: pp 472-481.

GINSBURG, R. N. and SCHROEDER , J. H., 1973. Growth and submarine

f o s s i l i z a t i o n of a l g a l cup r ee f s , Bermuda. Sedimentology 20: pp

575-6140

GI,AESSNER, M. F., 1969. Decapoda. In : Moore, R . C. (ed) , Trea t i se on

Inver tebra te Paleontology, R. Arthropoda, G.S .A. Boulder, Colo.,

pp 400-649.

GOLDRIIJG, R. and BRIDGES, P. , 1973. S u b l i t t o r a l sheet sandstones.

J S P 43: pp 736-747.

GOLDRIIJG, ,R. and KAZMIERCZAK, J. , 1974. Ecological succession i n i n t r a -

,formational hardground fornat ion. Palaeontology 17 : pp 949-962.

GOODET, G. A * , 1957. L i t ho log i ca lva r i a t i on i n t h e Lower Limestone

Group of t he Ifidland Valley of Scotland. Bull. Geol. Surv. G t .

B r i t . 12: pp 52-65.

GOODLZT, G. A., 1959. Mid-Carboniferous sedimentation i n t he Mifland

Valley of Scotland. Trans. Ed. Geol. Soc. 17: pp 217-240.

GRANT, R. E., 1968. S t r u c t u r a l adaptation i n two Permian brachiopod . genera: S a l t Range, West Pakistan. J. Pal. 42: pp 1-32.

G ~ u S , R. R e , CSMERLAIN, J e A , , BOCiiER, A . Me, 1977. S t ruc tura l modification of corals i n r e l a t i o n t o waves and currents. AUG

Stud. Geol. 4: pp 135-153.

GRZIJIIEK, L. B. ( ed ) , 1974. Grzimek's Aninal Life Encyc., Vol 1. V a n

Nostrend Reinhold Co., New York, 599 pp.

GaEENSMITH, J. T., 1966. Carboniferous d e l t a i c sedimentation i n E.

Scotland: a review and resppra i sa l . In : Sh i r ley , M e L. (ed) , Deltas. Houston Geol. Soc., Houston, Tex., pp 143-166.

GUTSCHICK, R. C. and RODRIGUEZ, J. , 1977. L ~ t e Devonian-Early Mississip-

pian t r a c e f o s s i l s end environments along t h e Cordil leran miogeo-

c l i ne , western U.S. In: Crimes, T. P. and Harper, J. C. ( eds ) ,

Trace Foss i l s ( 2 ) . Geol. Jour. Spec. I s sue 9: pp 195-209.

HARBAUGH, J. W., 1960. Petrology of t h e marine bank limestones of t h e

, L a s i n g Group (Pennsylvanian) , southeast Kansas. Geol. Surv.

Kansas Bull. 142: pp 189-234.

HALm!, A * , 1964. Origin of t h e limestone-shale rhythm i n t h e Blue

Lias of England. Jour . Geol. 72: pp 157-164.

HARMS, J. C , , SOUTHARD, J. B., SPEARING, D. R. and WAL!R, R. G , , 1975.

Deposit ional environments as i n t e rp re t ed from primary sedimentary

s t ruc tu r e s and s t r a t i f i c a t i o n sequences. SEPM shor t course No, 2,

158 PP*

- ~ I S O E , R. S., 1977. Caliche p ro f i l e s : ind ica tors of near-surface

subaer ia l diagenesis, Barbados, West Indies. Bull. Can. Pet .

Geol. 25: pp 123-173-

H A R ~ J , W . D. and GOREAU, T. F., 1970. Jamaican cora l l ine sponges:

t h e i r morphology, ecology, and f o s s i l representa t ives . Symp.

~ 0 0 1 . Soc. London v. 25: pp 205-243.

HECKEL, P. H e , 1972. Recognition of shallow-marine environments. In :

Rigby, K. J. and Hsmblin, W. K. ( e d s ) , SEPM Spec, Pub, 16: pp

226-287

HECKEL, P. H e , 1972b. Poss ible inorganic o r ig in f o r Stromatactis i n

c a l c i l u t i t e i n t h e Tully Linestone, Devonian of New York. J S P

42: pp 7-18.

HECKEL, P. H. , -1974. The nature , o r ig in and s ignif icance of t h e Tully Limeston'e. GSA Specia l Paper 138: 244 pp.

HILL, D., 1938. ,Carboniferous Rugose Corals of Scotland. Pal. Soc.

Monograpk , London. 208 pp.

HIND, W . , 1896-1900. A Monograph of B r i t i s h Carboniferous Lamelli-

branchiata! Pal . Soc. Monograph, ~ 0 1 s . I and 11, London, 482 pp. ,

HINDE, G. J., 1887-1912. A Monograph of Br i t i sh Fos s i l Sponges from

paleozoic and Jurass ic s t r a t a . Pal. Soc. blonograph Vol. I , London,

264 pp.

HORODYSKI, R. J., 1977. Lyngbya mats a t Lagma Mornona, Bzja, Mexico:

comparison with proterozoic s t romatol i tes . J S P 47: pp 1305-1320.

HOVELL, H , and GEIKIE , A. , 18 61. The Geology of the ne i ghbourhood of

Edinburgh ( ~ a p 32). Idemoirs of t he Geological Survey of Great

B r i t a in . 151 pp.

HUBBARD, J. A. E. B. and POCOCK, Y. P., 1972. Sediment r e j ec t i on by

Re cent s c le rac t in ian corals : a key t o palaeo-environmental recon-

s t ruc t i on . Geol. Rund. 61: pp 598-626.

IMBRIE , J . and BUCKATTAN, H. , 1965. Sedimentary s t ruc tu r e s i n modern

carbonate sands of t he Bahamtis. In : Middleton, G. V. ( ed ) , SEPM

Spec. Pub.-12: pp 149-173.

JAMES; N. P., 1972. Holocene and Pleistocene calcareous crust ( c d i c h e )

p rof i l es : c r i t e r i a f o r subaer ia l exposure. J S P 42: pp 817-837.

JAMIESON, E. R. , 1971. Palaeoecology of Devonian Reefs i n Western

Canada. Proc. N. Am. Pal . Conv., Chicago, Allen Press, Lawrence,

Kansas, pp 1300-1341.

JOHNSON, H. D., 1977. Shallow marine sand ba r sequences: an example

from t h e Pre-Carribrim of North Norway. Sedinentology 24: pp 245-270.

JOEINSOIJ, R. G., 1964. The Community Approach t o Paleoecology. In:

.. ~ m b r i e , J. E. and Newell, N. D. (eds) , Approaches t o Paleoecology,

John Wiley and Sons, New York, pp 107-135.

JOHNSON, R. G. , 1972. Conceptual models of benthic marine comuni t ies .

In: Schopf, T. J. (ed) , Models i n Paleobiology. Freeman Cooper

and Co. ; San Francisco, Cal i f . , pp 148-159.

K E L ~ R , W. D., 1978. SEM's of kaol ins col lected from diverse environ-

ments of or igin . Clays and Clay Minerals 24: pp 107-113.

KELLING, G. and WILLIAMS, B. , 1966. Deformational s t r uc tu r e s of sedi-

. mentary o r ig in i n t he Lower Limestone Shales ( b a s a l carboniferous)

of S. Pcmbrokeshire, Wales. J S P 36: pp 927-939.

K E ~ J E D Y , W e J., 1967. Burrows and surface t r ace s from the Lower Chalk

of Southern England. Bull . B r i t . Mus. Mat. His t . Geol. 15: pp 127. KEI'EDY, W e J . and I.lcDOUGALL, J . D . , 19 69. Crust ace an burrows in the

Weald Clay (L. cretaceous) of S. E. England end t h e i r environmental

s ignif icance. Palaeontology 12: pp 459-471.

KENIJEDY, W e Q., 1960. Tectonic evolution of t h e Midland Valley. Trms .

Geol. Soc. Glasgow 23: pp 106-123.

KOBLUIC, D. R., Ebf8ERTOl?, S. G . , IDOLYI, 2.1. and RISK, M. J., 1977.

The ~ i lu r ian-Devonim disconfornity i n Southern Ontmio. Bull.

Can. Pet. Geol. 25(6): pp 1157-1186.

KOBLUK, D. R e , BOTTJER, D. J. RISK, M. J . , 1977b. Disorientat ion

of Paleozoic hemispherical corals and stronatoporoids. Can. Jour.

~ a r t h Sciences 1 4 : pp 2226-2231.

KOBLUK, D. R. uld RISK, 14. J. 1977. Algal borings and f r a b o i d a l py r i t e

i n Upper Ordovician brachiopods. Lethaia 10: pp 135-144. '

KONTROUITZ , M e , 1975. A study of d i f f e r e n t i a 1 t raaspor ta t ion of ostracods . J. Pal. 49: pp 937-941.

K W M , N. end SAIIUEIIS, J. E., 1974. I n l e t sequence: a v e r t i c a l sequence

of sedimentary s t ruc tu r e s and t ex tures created by l a t e r a l migration

a o f ' t i d a l i n l e t s . Sedinentology 22: pp 491-522.

a m , N. and SAi?DZRS, J. E., 1976. Charac te r i s t i cs of shoreface storm

deposi ts : modern end ancient examples. J S P 46: pp 145-162,

LAND, L. S., 1970. Pfireatic vs. vadose diagenesis: evidence from a

f o s s i l water t ab l e . Sedinentology 14: pp 175-185

LAND, L. S. and EPSTEIN, S., 1970. Late Pleistocene diagenesis and

do loa i t i za t ion , nor th Jamaica. Sedimentology 14 : 181-200 pp

LANE, N . G . , 1971. Crinoids and Reefs. Proc. N. An. Pal. Conv. v. 11,

Allen Press , Lawrence, Kansas : pp 1430-1444.

LAW, !.I., 1933. Sco t t i sh Carboniferous Ostracoda. Trans. Roy. Soc.

Edin. v. LVII: pp 352-392.

L O I J G ~ ~ , M e W e and l.IENCH, P. A., 1978. Diagenesis of Cretaceous lime-

s tones i n t h e Edwards aquifer system of South-Central T e x ~ : a

e lec t ron microscope study. Sediment ery Geology 21: pp

241-276

M ~ ~ G ~ G O R , A. G., 1928. The c l a s s i f i c a t i o n of Carboniferous o l iv ine

basalts and nugeari tes. Trans. Geol. Soc, Glasgow 18: pp 324-360.

M~cGRECOR , A. C . , 1948. Problems of Carboniferous Permi an Volcanicity

i n Scotland. Quart. Jour. Geol. SOC: 54: pp 133-324.

MacGREGOR, A, C., 1960. Divisions of the Sco t t i sh Carboniferous on

~ e o l o g i c a l Survey Idaps. Bul l . Geol. Surv. G t , Brit. 16: 27 pp.

14ACGREGOR, M., 1930. Sco t t i sh Carboniferous s t ra t igraphy: an in t ro -

duction t o t h e study of t he Carboniferous rocks of Scotland.

Trans. Geol. Soc. Glasgow 18: pp 442-559.

MACGRZGOR, M. and AlDERSON, F., 1923. Econonic G e o l o a of t h e Central

Coa l f ie ld of Scotland, Area V I . Mem. Geol. Surv. Scotland, 134 pp,

MACGREGOR, M. A * , and HALDANE, D., 1933. Economic Geology of t h e

Centra l Coalfield, Area 111. Men. Geol. Surv. Scotland, 128 pp.

IYIACGREGOR, M. and lflacGREGOR, A. G. , 1961. ' h e Midland Valley of Scotland,

(2nd ed.) , B r i t i s h Regional Geology, Geol. Surv. G t . B r i t , , pp 94,

WRZ, R. H . , 1975. Paleoautoecology of s o l i t a r y rugose corals from .

t h e B e i l Limestone of Eastern Kansas. unpublished Ph.D. t h e s i s ,

U. of Kansas, Lawrence, Kansas. 250 pp.

IMIET, B., 1977. F o r m i n i f e r a l zonation i n t h e Lower carboniferous:

methods and s t r a t i g r a p h i c a l i ap l i c a t i ons . In : Kaufhan, E. G. end

H a e l , J. E. (eds) , Concepts a ~ d Methods of Biostrat igraphy, Dowden,

Hutchison .and Ross, Strousberg, Penn., pp 445-462.

MAMFIT, B, and RUDLOFF, B. , 1972. Algues Carboniferes de l a pas te

sep ten t r iona le de l'flnerique du Eord, Revue de Micropaleontologie

2 : 114 pp.

MAMET, B. and ROUX, A. , 1974. Sur quelques algues tubu la i res scaliformes

de l a Tethys Paleozoique. Revue de Micropaleontologie 17: pp 134-156.

MAMET, B. and ROUX, A., 1975. Algues Devoniennes e t Carboniferes de l a

Tethys Occidentale. Revue de ~ i c ropa l eon to log i e 18 : pp 1-186.

MARTINDAU, W. , 1976. Calcareous encrust ing organisms of t he Recent

and Pleistocene r ee f s of Barbados, West Indies. PhsDs (unpublished)

Edinburgh Universi ty, Edinburgh, Scotland: 141 pp.

MATHEWSOI.I, J. E., 1977. Chaetetids and t h e i r palaeoenvironment i n t h e

Anoret Limestone Member (~esmoinsean) of Labette Co., Kansas.

M,Sc. ~ h e s i s . Kansas S t a t e Universi ty, Manhattan, Kansas. 217 pp.

McCROSSAN, R. G., 1958. Sedimentary boudinage s t ruc tu r e s i n t he

Devonian I r e ton Formation of Alberta, J S P 38: pp 316-320.

McINTOSH, M. J., 1974. Some Sco t t i sh Davidsonacean brachiopods. Scot.

Jour. Geol. l o ( 3) : pp 199-122.

McDE, E. D. , 1957. Flume experiments on t h e production of s t r a t i f i c a -

t i c n a d cross -s t ra t i f i ca t ion . J S P 27: pp 129-134.

MCKEE, E. D., 1964. Inorganic Sedimentary S t ruc tures , In: ImSrie, J,

and Newell, ,'N. D.. (eds) , Approaches t o Paleoecology. John Wiley

and Sons, London: 432 pp.

IEHRA, 0. P. and JACKSON, M. L., 1960. I ron oxide removal from s o i l s

and clays by a c i t r a t e -d i t h ion i t e system buffered i n sodium bi-

carbonate. Proc. 7th Nat. Conf. Clays and Clay Min., pp 317-327.

XZYERS, W. J., 1974. Carbonate cement s t ra t ig raphy of t he Lake Valley

Formetion (blississippian). J S P 44: pp 837-861.

hEYERS, W. J., 1978. Carbonate cements : t h e i r regional d i s t r i b u t i o n , an6

i n t e rp re t a t i on i n Mississippian limestones of southwestern New

Mexico. Sedimentology 25 : pp 371-400. MIDDLETON, G. V. and HAMPTON, M. A. , 1973. Sediment gravi ty flows:

of flow and deposition. In : Middleton, G. V. and Bouma,

A. H . (co-chairnen) Turb id i t i es md Deep Water Sedimentation:

p a c i f i c Sectn. SEPM Anaheim Short Course, pp 1-38.

blILLER, J. ( i n prep.) Taphonwy t h e palaeoecology of t r i l o b i t e s .

Paleobiology.

MONTY, C. L. V., 1967. ' Dis t r ibu t ion and structure of Recent s t romato l i t i c

a l g d . na t s , Eastern Andros I s . , Bahmas. Ann. Soc. Geol. Belg.

Bul l . 90: pp 55-100.

MONTY, C. L. V. , 1976. Origin end Cevelopnent of crypt a l g a l f a3r ics

In: Walther, M. (ed) , Stromatol i tes . E l sev ie r , Ansterdam, Holland.

pp 193-249.

MOORE, D., 1959. The r o l e of de l t e s i n t h e formation of some B r i t i s h

Lower carboniferous cyclothems . J. Ceol. 67 : pp 522-539.

MORROV, D. W., 1978. Doloni t iza t ion of l e t e Paleozoic burrow f i l l i n g s .

J s P 48: pp 295-306.

MUIR-TJOOD, H. M. and COOPER, G. A., 1960. !4orphology c l a s s i f i c a t i on end

l i f e hab i t s of t h e Productoidea (~ rach iopoda ) . GSA Menoir 81:

447 PP=

mm H. G., 1978. F i e ld Guide t o some Carbonate rock environnents.

~ a i r l e i g h Dickinson Universi ty, Madison N. J., 407 pp.

IJEIELL, 11. D O , IMBRIE, J., PURDY, E. G. and THURB33, D. L., 1959.

organism cornunit ies and bo t toa f ac i e s , Great Bahama Bank. Bull.

Am. Mus. Eat. H i s t . 117: 69 pp.

I J E ~ , A. C. , GEaELEIN, C. D. , SCOFFIIq, T. P., 1970. The composition,

s t r uc tu r e and e rodab i l i t y of su5 t i da l n a t s , Abaco, Bahamas. 'J S P

40: pp 274-2970

N E W Y , A. C. and LAND, L. S. , 1975 . Line nud deposit ion and celcareous

algae i n the Bight of Abaco, 9&83w : A budget. J S P 45: pp 463-486,

NICKEL, E., 1978. The present s t a t u s of cathode luminescence as a t o o l

i n sedimentology. Minerals Sci . Sngng. 10: pp 73-89.

NOBLE, J. P. and HOWELLS, K. D. , 1974. S a r l y nar ine l i t h i f i c a t i o n of

nodular l ines tones i n t h e S i l u r i an of N. Brmswick. S e d i n e n t 0 1 0 ~ 21: pp 597-609.

RUDDS, J., 1975. ~ i t h o s t r o t i o n t i d a e . Ph.D. t h e s i s , unpublished,

Universi ty of Durham, Durhm, 280 pp,

PARKS, J. M., 1966. Variat ion i n Aulophyllum fungi tes from t h e Peters- '

h i l l Limestone, Lower Carboniferous, Bathgate, West Lothi an,

Scotland. Trans. Ed. Geol. Soc. XVI: pp 178-188.

PARSONS, I. , 1973. Class i f i ca t ion of X-feldspar polyriiorphs by X-ray

neans. Min. Mag. 39: pp 117-119.

PEACH, N. B . , CLOUGH, C. T., HINXIjWJ, B. A , , WILSON, J, S., CMIPTON,

C. B., M A m , H. B. and BAILEY, E. B., 1910. The Geology o f t h e

l~eighbourhood of Edinburgh (Map 32) 2nd ed i t ion . Memoirs of t h e

Geological Survey, pp 445.

PERKIIJS, R. D. and HALSEY, S. D., 1971. Geologic s ignif icance of micro-

bor ing fungi and algae i n Carolina she l f sediments. J S P 41:

pp 843-853,

PIA, J., 1927. Thallophyta. In : Hirmer , PI. ( ed) , Hanbuch der Palao-

botanik. Oldenburg, Munich, 1: pp 31-136.

PINGITORE, I?. , 1976. Vadose and phrea t ic diagenesis: processes,

products and t h e i r recognit ion i n corals . J S P 46: pp 985-1006.

~ K O R N Y , V. , 1978. Ostracods . In : Boersma, A. (ed) , Introduction

t o marine nicropaleontology. E lsev ie r , New York, 376 pp.

PURDY, E. G., 1964. Sediments as subs t ra tes . In : I nb r i e , J. and

IJewell, N , D. (eds) , Approaches t o Paleoecology. John Wiley and

Sons, London. pp 238-273.

PURDY, E. G., 1968. Carbonate diagenesis: an environmental survey,

Geol. Romans 7: pp 183-228.

m y , E. G., 1974. Reef configurations: cause and e f f ec t . SEPM Spec.

FU~I.. 18: pp 9-76.

RACZ, L., 1965. carboniferous calcareous algae and t h e i r associa t ions

in t h e San ~ m i l i a n o and Lois Ciguera Fomcitions. ~ e i d s e Geol.

Meded. 31: pp 1-112.

WSBOTTOM, W. H. C. , CALVER, 14. A * , EAGAR, R e 14. C . , HODSON, F.,

HOLLIDAY, D. W. , STUBSLJWIELD, C. J. and WILSO?T, R. B., 1978a.

A ~ o r r e l a t i o n ' o f t h e S i l e s i en rocks i n t he B r i t i s h I s l e s .

~ e o l o g i c a l Socie ty of London Specia l Report 10 , Sco t t i sh Academic

Press. 82 pp.

M~ISBOTTOI4, W. H. C., 197810. The Carboniferous. In: McKerrow, W. S. (ed) , The ecology of f o s s i l s , Duckworth, London, 384 pp.

W, J. F., 1978. Calcretes and t h e i r d i s t i nc t i on from s t rona to l i t e s .

In : Walter, M. R e ( e d ) , St romatol i tes , Elsevier Pub. Co. Amsterdam,

Holland. pp 55-71.

READING, H. G. (ed) , 1978. Sedimentary environnents and fac ies .

Blackwell S c i e n t i f i c Public. Oxford. 557 pp.

REID, R. E. H., 1968. Hyaloste l ia smithi and t he sponge genus Hyalostelia.

J. pal . 42: pp 1234-1245.

RHOADS, D. C , , 1970. Mass p roper t i es , s t a 5 i l i t y end ecology of marine

muds r e l a t e d t o bu r rming ac t i v i t y . In : Crimes, T. P. and Harper,

J. C. ( ed s ) , Trace Foss i l s . Geol. Soc. Spec. I s sue 3, pp 391-406.

RIDIMG, R. , 1975. Girvanella and other algae as depth ind ica tors .

~ e t h a i a 8: pp 173-179.

RIDING, R . , 1977. Calc i f ied Plectonena (blue-green algae) : a Recent

exac.ple of Girvanella from Aldabra. Palaeontology 20: pp 33-47.

ROCK-COLOR CHART CObD4ITTEE, 1970. Rock Color' Chart. National Research

Council, Geologicel Socie ty of h e r i c a , Boulder, Colo., 95 pp.

RIGBY, K., 1950. Mass Movement i n Permian rocks of Trens-Pecos, Texas.

J S P 28: pp 298-315.

ROVE, G. T. , 1974. The e f f e c t s of benthic fauna on t h e physical prop-

e r t i e s of deep-sea sediments. I n : Inderbitzen, A. L. (ed) , Deep

Sea Sediments, Marine Science 2. Plenum Press , New York, pp 381-399.

RUiIWICK, M. J. S., 1970. Living and Fos s i l Brachiopods. Hutchison

Univers i ty Library, London, 199 pp.

SANDO, W. J., 1977. The s ignif icance of coi led protocoral la i n sone

Miss iss ippiaa horn corals . Palaeontology 20: pp 47-58.

SANDERS, H. C., 1968. Marine benthic d ivers i ty : a comparative study.

Amer. Nat. 102: pp 243-282.

S C I ~ ~ E R , We, 1972. Ecology and Pa laeoeco log of marine environments.

Ol iver end Eoyd, Edinburgh, 538 pp.

S C ~ L ~ , R. S . , 1974. Biological i n t e r ac t i ons determining l a r v a l

s e t t l e n e n t of marine inver tebra tes . Thalass ia Jugoslavi ca 10:

pp 263-296.

SCHOLU, P. A., 1978. Carbonate rock consti tuents, textu.es,cements,

m d poros i t i es . AAPG Men. 27: 241 pp.

SCHROEDER, J. H., 1972. Ca lc i f i ed f i l a ~ e n t s of an endol i th ic elgae

i n Recent Bermuda Reefs. N. Jb. Pal . Flh., 1: p~ 16-33.

SCHWARZ, H. V., 1975. Sedimentary s t ruc tu r e s aid f ac i e s analysis of

shallow marine carbonates. Contributions t o Sedinentology 3:

100 pp.

SCHWARZACHER , W., 1963. The o r i en t a t ion of crinoids by current action.

J S P 33: pp 580-586.

SCOFFIII, T. P., 1970. Trapping m d binding of s u b t i d a l carbonete sedi-

ments by s a r i n e vegetation i n Bimini Lagoon, Bahmas. J S P 40:

pp 249-273.

SCOFFIIJ, T. P., 1972. Cavi t ies i n t h e ree fs of t h e Wenlock Limestone

(Mid -~ i lu r i an ) of Shropshire , Englmd. Geol. Rund. 61: pp 565-578.

SCOFFITJ, T. P., 1972be Foss i l i za t ion of Bermuda patch ree fs . Science

178: pp 1280-1285.

SCOFFIIU', T e P. , STEARN, C e W e , BOUCHER, Dm , FRYDL, Pe , HAWKINS, C. M.,

HUNTER, I. G. and MacGEACiY, J. X . , i n press. Calcium carbonate

budget of a f r ing ing reef on the west c o s t of Barbados. Par t 11:

~ r o s i o n , sediments and i n t e r n e l s t ruc ture . Bull. M a r . Sci.

SCRUTTON, C., 1975. Hydroid-serpulid s p b i o s i s i n t h e Mesozoic and

Ter t i a ry . Palaeontology 18: pp 255-274.

SEILACHER, A., 1978. Use of t r a c e f o s s i l s f o r recognizing deposi t ional

environments. In : Basan, P. (ed) , Trace Fos s i l Concepts. SEPM

Short Course 5, Tulsa, Oklahona. pp 175-201.

Sm.WJIUK, V. 1971. Subaer ia l leeching i n t h e limestones of t he Bowan

.. Park sha le group, Ordovician, c en t r a l western, New South Wales.

J S P 41: pp 939-950.

- sHELDOH, J. W., 1967. S t r a t i g r aph i c models and general c r i t e r i a f o r

recognit ion of a l l u r i al, berr ier-b ar , and t u r b i d i t y current sand

deposits . AAPG Bul l 51: pp 2441-2461.

SHIELLS, K. A. G. and PEIJI?, I. E., 1971. Notes on t h e geology of

Trearne Quarry (Upper ~ise*an), Ayrshire and on the palaeoecology

of i t s productoid fauna. Scot. Jour. Geol. 7 (1) : pp 29-49.

SHINE, Em A * , 1963. Spur and groove fornat ion on t h e Flor ida ree f

t r a c t . J S P 33: pp 291-303.

SHWN, E. A,, 1968. Bur rwing i n Recent lime sediments i n Flor ida and

t h e Bahamas. J. Pal. 42: pp 878-894.

SHIar?, E., 1969. Submarine l i t h i f i cat ion of Holocene carbonate sedi-

ments i n t he Persian Gulf. Sedimentology 12: pp 109-124.

sHIIII?, Em A m , LLOYD, R e M. and GIBSBURG, R e I?. , 1969. Anatomy of a

modern t i d a l f l a t , Andros I s land , Behamas. J S P 39: pp 1201-1228.

sHINIJ, E, A , , HALLEY, R e Be, HUDSOiJ, J. H e and LIDZ, R. H , , 1977. Limestone compaction: an e n i w a . Geology 5 : pp 21-24,

SIMPSON, S. , 1970. Notes on Zoophycus m d Spirophyton. In: Crimes,

T, P. and Harper, J. C. (eds) , Trace Fos s i l s , Geol. Jour. Spec.

I s sue 3: pp 505-515.

SIPPLE , R-Fm and GLOVER, ~ . ~ . , 1 9 6 5 . Structures i n carbonate rocks made

v i s i b l e by luminescence petrography. Science 150: pp 1283-1287.

SKZMPTON, A. W e , 1950. The consolidation of clays by grav i ta t iona l

coapaction. Quart. Jour. Geol. Soc. 125: pp 373-411.

SMITB , S. , 1913. On the genus Aulophyllum. Quart . Jour. Geol. Soc.

69 : pp 51-77.

SOMMER, S. E., 1972. Cathodoluminescence of cerbonates. Chem. Geol.

9: pp 257-2640

SPmiJG, A. C. , 1967. Slump fea tures , Faye t tev i l l e Fn. , northwestern

z ens as. J S P 37: pp 804-817.

SQUIRES, D. F., 1964. F o s s i l co ra l t h i cke t s i n Wairarapa, New Zealand.

J. Pal. 38: pp 904-915.

STNILEY, S. M. , 1970. Relation of s h e l l fo rn t o l i f e hab i t s of t h e

Bivalvia. GSA Elenoir 125 : 296 pp.

SUTIiERWJD, J. P. and 'MLSON, R . H., 1977. Developnent end s t a b i l i t y

of t h e foul ing c m u n i t y at Beaufort,, ITorth Carolina. Ecol. Mon.

47: pp 425-446.

SWIFT, D. J. P., 1968. Coasta l erosion a d t ransgress ive s t ra t igraphy.

Jour. Geol. 76(4) : pp 444-456.

TASCH, P., 1973. Paleobiology of t he Inver tebrates . John Wiley and

Sons, Mew York, 944 pp.

TERMIER , He , TERMIER , G. and VACKARD , D . , 1975. On M o r a v d n i d a and

Aouj ga l i i da (Pori f e r a , Is chyrospongia) - Upper Paleozoic "pseudo

algae". In: Fliigel, E. (ed) , F o s s i l Algae. Springer-Verlag,

Ber l in , 371 pp.

TEICHERT, C., 1958. Concepts of fac ies . AAPG Bull. 42: pp 2718-2744.

THORSOM, G., 1957. Bottom communities. In : Hedgepeth, J. ( ed ) , GSA

~ e n o i r 67, pp 461-534.

TOOmY, D. F., WIISOI?, J. L. and REZAK, Re, 1977. Evolution of Yucca

Mound complex, Late Pennsylvanian phylloid-algal build-up,

Sacramento Mts., IJev Mexico. AAPG Bull. 61: pp 2115-2133.

TRUEMAN, E. R e and ANSELL, A. D m , 1969. The mechanisms of burrowing

i n t o s o f t subs t ra ta . Oceanogr. Mar. Biol. Ann. Rev. 7: pp 315-366.

TSIEN, He H., 1968. Dis t r ibu t ion of corals i n the Middle and Upper

Devonian ( ~ r a s n i a n ) reef complex of Belgiun. I n t l . S p p . on the

Devonian, Alber ta Soc. Pet. Geol., Calgary, pp 273-293.

vOIGT, E., 1977. On grazing traces produced by t he r ~ l d u l a of f o s s i l

and Recent gastropods and chitons. In : Crimes, T. P. and Harper,

J. C. ( eds ) , Trace Foss i l s 2, Geol. Jour. Spec ia l I s sue 9: pp 335-346.

WAIhmIGHT, S. A . and KOEXL, M. A. R . , 1976. The nature of flow and

t h e reac t ion of benthic Cnidaria t o it. In : Mackie, G. 0. (ed) , Coelenterate Eco1oe;y and Behaviour , Plenum Press , New York, 744 pp.

WALKDEN, G. Id., 1972. The mineralogy and or ig in of interbedded clay way-

boards i n t he Lower Carboniferous of the Derbyshire Dome. Geol.

J. 8: pp 1.43-160.

WALKDEN, G. M., 1974. Palaeokarst surfaces i n Upper is& (carbonif-

erous) l ines tones of t h e Derbyshire Block, England. J S P 44: pp 1232-1247.

\JALKDEIi, G. M. , 1977. Volcanic and erosive events on an Upper ~ i s e ' a n

carbonate platform, North Derbyshire. Proc, Yorks. Geol. Soc.

41: pp 347-366.

WALKER, K. R . , 1974. Mud subs t ra ta . I n : Ze ig le r , A. M., e t a l .

p r inc ip les of benthis cornunity ana lys i s , Sedinenta I V , U. of

Mic"Ci, l~52mi: pp 5.1-5.11.

WALrCER, K. R. and ALBERSTADT, L. P., 1975. ' Ecological succession as

an aspect of s t r uc tu r e i n f o s s i l connunities. Paleobiology 1:

pp, 258-287.

WATTS, K . L. , 1978. Displacive c a l c i t e : evidence from recent and

ancient ca lc re tes . Geology 6: ?p 669-703.

WEAVER, C. E . , 1958. The e f f e c t s m d geological s ignif icance of K

"fixation1' by expandeble c lay mater ia ls derived from muscovite,

b i o t i t e , ch lo r i t e and volcanic 'material . Am. Miner. 43: pp 839-861.

YATKINS , R. 111. , 1975. Paleoecology of some Cmboniferous Pectinacea.

Lethaia 8: pp 125-131.

WEBB, J. E., 1964. Biological ly s i gn i f i c an t proper t ies of submerged

submarine sands. Proc. Roy. Soc. Lond. B. 174: pp 355-402.

WELLS, J. W., 1957. Corals. I n : Hedgepeth, J. W. ( e d ) , GSA Memoir 67:

pp 1087-1104. mIMER, R. J. and HOYT, J. H . , 1964. Burrows of Calianassa major - Say

geologic ind ica tors of l i t t o r a l and shallow n e r i t i c environnents.

J. Pal. 38: pp 761-767.

WINLAND, D . , and MATHEWS, R . K . , 1974. Origin and s ignif icance of grape-

s tone , J S P 44: pp 921-927.

WILKINSOH, B . H . , 1979. ~ i o m i n e r a l i z a t ion , paleoe coloey and t he evolution

of calcareous nar ine organisms. Geology 7: pp 524-527.

wILLIAMSO~J , I. A . , 1970. Tonsteins : t h e i r na ture , o r ig in , and uses.

Mining. Mag. 122: pp 119-122.

WILSON, J. Be, 1976. Attachment of t h e cora l Caryophyllia srsithi S.

and B. t o tubes of t he polychaete Ditrupa a r i e t i n a ( ~ u l l e r ) and

other subs t ra tes . J. m a r . b i o l . Ass U.K. 56: pp 291-303.

WILSON, J. B., 1979. 'Patch1 development of t he deep-water cora l

~ o p h e l i a per tusa (L ) .. on Rockhall Bank. Jour. Mar. Biol. Assn.

UK 59 : pp 165-177.

WILSON, J. L., 1975. Carbonate Facies i n Geologic History. Springer-

Verlag, New York, 471 PP.

WILSON, 14. J. , BAIN, D. C. , McRARDY, W. J. and BERROW, M. L. , 1972.

Clay mineral s tud ies on some Carboniferous sediments i n Scotland.

Sedim. Geol. 8: pp 137-150.

WILSOI?, R. B., 1966. A s tudy of t h e Neilson S h e l l Bed, a Lower Carbon-

i fe rous Marine Shale. Bull . Geol. Surv. G t . B r i t . 24: pp 105-130.

W I L S O N , R. B. , 1974. A study of t he Dinantian marine faunas of south-

e a s t Scotland. Bull . Geol. Surv. G t . B r i t . 46: pp 35-65.

WOBBER, F. J., 1967. Post deposi t ional s t r uc tu r e s i n t h e L iass ic of

S. Wales. J S P 37: pp 166-174.

WOLF, K. He, 1965. Petrogenesis and palaeoenvironments of Devonian

a l g a l limestones, N. S. Wales. Sedimentology 5: pp 5-37.

WOOD, A., 1963. B r i t i s h Carboniferous species of Girvanella (calcar-

eous a lgae) . Palaeontology 6 : pp 264-276.

WRAY, J. L., 1977. Calcareous dgae, Developments i n Palaeontology

and s t r a t i g r aphy 4 , E l sev ie r , Amsterdam, 185 pp.

ZANKL,' J. H . , 1.969, S t r u c t u r a l and t e x t u r a l evidence of e a r ly l i t h i -

fi cation' i n limestones. Sedimentology 21: pp 241-256.

This t h e s i s was completed with t h e ass is tance of s eve ra l people

and i n s t i t u t i o n s , a l l of whom t o which I ax extremely grateful .

Forenost. among them. i s D r . John Mil ler , vho encouraged and helped ne

i n f i e l d work, l ab research, wr i t ing , d r a f t i ng and proofreading. I

w i l l alweys be thankful f o r high standards he s e t and t h e approach

t o sc ience he has taught me. I n t h i s respect I am a l s o indebted t o

my supervisor , D r . Euan Clarkson, f o r h i s c r i t i c i sm , he lp i n wr i t ing

and t h e i n s igh t s i n t o l i f e i n general which s l ipped i n during our

digress ions from science. Professors G. Y. Craig and S i r F. Stewart

generously ,extended the f a c i l i t i e s of t he Grent I n s t i t u t e t o me

throughout my extended course of research end wri t ing.

I have f e l t pr ivi leged t o be able t o use t he f a c i l i t i e s of the

Royal Sco t t i sh Museum. D r . Charles Waterston, Keeper of Geology,

k indly extended t o me t he use of the Museum's f a c i l i t i e s and arranged

f i n a n c i a l ass i s tance f o r me i n t h e purchase of a duplicate ~ thesisk+1ecti0n. . ~ . - - -

I would l i k e t o thank D r . Waterston and s eve ra l o ther members of e

s t a f f , i n p a r t i c u l a r h l r . B i l l Baird, Mr. Bob Reikie and Miss Audrey

Heat l ie . . Audrey helped t o process and pick throu&h the insoluble

residues. ,

The ,generous f i nanc i a l a i d of t h e Iiature Conservancy Council

made it .poss ible t o sandblast t he southern quarry face of t h e

~ e s e r v o i r ,

. Several .colleagues have helped ne t o i d e n t i f y d i f f e r en t elements

of the P e t e r s h i l l Fm. fauna. M r . Murray Mitchell , f r o 3 t he I n s t i t u t e

of Geological Sciences, Leeds allowed me t o use t he IGS col lect ions

and aided me i n my i n i t i a l c o r a l i den t i f i c a t i ons . I am espec ia l ly

g ra te fu l , t o D r . Alan Timns, from t h e B r i t i s h Museum, who introduced

me t o t h e hazards of productoid taxonomy. D r . Robert Riding performed

a similar task i n introducing me t o algae and t h e i r problems of

c l a s s i f i c a t i on . D r . R. B. Wilson, of t h e I n s t i t u t e of Geological

~ c i e n c e q , Edinburgh, i d e n t i f i e d severa l specimens f o r me, mainly

t he b iva lves , a d confirmed ny crdn i den t i f i c a t i ons of others.

Professor R. C. L. Conil, from t h e University of Louvain l e Nueve,

Belgium, was pa r t i cu l a r l y he lpfu l i n iden t i fy ing t he forauiniferans

i n t h e ~ e s e r v o i r I4br.

Several members of s t a f f from t h e Grant I n s t i t u t e have helped

t o solve t he numerous problems which arose during reseerch. Mr. C.

~ h a p l i n arranged and helped t o have t h e boreholes d r i l l e d . M r . G.

Wilson and l a t e r Miss D. Baty have a s s i s t ed ne i n photography, while

I4z-s. D. Grieve, our l i b r a r i a n , managed t o t r a c e down even my most

obscure references. I n t h i s respect I an a l s o indebted t o Mrs. M.

Sutherland and Mr. C. W i l l , t h e able l i b r a r i ans of t h e I n s t i t u t e of

Geological Sciences.

Mr. A. Sutherland has a s s i s t ed me on numerous co l lec t ing t r i p s

end arranged t o have t h i s t h e s i s bound.

I doubt t h a t it would ever have been possible t o survive writ ing-

. up without a l o t of he lp and understanding from my fr iends . Mr. C.

egg's garage proved t o be a p a r t i c u l a r l y consoling refuge during ny

moments of woe. I f e a r t h a t I must have been pa r t i cu l a r l y t r y ing f o r

Miss ~ t e p h a n i e Hal l , t o whom I am espec ia l ly g ra te fu l . Mr. Pe te r

staffel's support add i t iona l ly extended t o helping with t he draf t ing.

The presentation of t h i s t h e s i s ares a great dea l t o t he f lawless

typing of Mrs . Lucian Be gg . Las t ly , I would l i k e t o thank my parents who, by t h e i r example,

have encouraged me t o l e a rn as we l l as t ake asl i n t e r e s t i n o thers and

my surroundings.

A P P E N D I C E S

APPENDIX A

CROSS-SECTION OF 'ME LOVER PETERSHILL FM,

Figure A-1 i s located i n the back pocket s o t h a t it may be

r e f e r r ed t o while t he t e x t i s being read. It shows a cross-section

of t h e ~ e s e r v o i r 14br. and t he b a s a l sandstone f ac i e s of t h e S i lve r -

mine Mbr., based on da t a presented i n Ch 2 , borehole information,

and previous repor t s of t he sequence ( references given i n Introduction

a d Ch 2) . The configuration of the underlying l ava surface i s con-

j e c tu r a l .

APPENDIX B

BOREHOLES I N THE PETERSHILL FORMATION

The first par t of t h i s appendix cons i s t s of petrographic notes on

borehole cores, based on t h i n sect ions , pee l s , and t h e observable macro-

fauna, The second par t i s a d r i l l i n g record. Each time t h e core was

pulled up ( p u l l @ ) t h e dis tance reached and t h e length of core recovered

was recorded. Core ba r r e l s a r e cut i n f e e t , and there fore a l l o r i g ina l

measurements appear i n f e e t and inches. The cores a r e present ly l abe l led

by t h e i r p u l l numbers. The t a b l e s provided here show what depth each

p u l l was taken from.

Rarely, t h e length of core recovered exceeded t h e dis tance d r i l l ed .

E.g. p u l l number 7 of borehole 1 recovered 28" of core while t h e distance

d r i l l e d was only 24".. This occurred due t o incomplete recovery from the

previous p u l l , number 6. . I n these instances t h e t o p length of core was

placed i n with t h e p u l l i n t e r v a l it was cored i n .

Three separate attempts were made a t s inking a borehole a t Silvermine.

On each, t h e d r i l l fouled, possibly due t o a t e c t o n i c a l l y disturbed zone.

The core p resen t ly l abe l led as core 5 i s an amalgamation of t he th ree

attempt s .

Petrographic notes from

Borehole 1, Sunnyside Reservoir, NS 9833 7033

Borehole begun 50 cm below limestone/sandstone contact , a t t h e t o p of

t h e Reservoir Member.

0.0-2.75 m

3-28 cm th i ck , unsorted and well-sorted, fine-grained packstones

and poorly-s o r ted c r ino ida l packstones a l t e rna t i ng with 10 cm th i ck ,

black calcareous mudst ones. Bioturbation moderate ( 30%) t o extensive

( 60-80%) throughout l imest ones : Chondrites , Zoophycus , i n d i s t i n c t t r a c e s ,

and abundant f a e c a l p e l l e t t r a i l s . Fine-grained laminae i n packstones

concentrate foraminiferans (endothyrids , ammodiscids , ~ e t r a t a x i s )

suggesting t h a t t h e assemblage i s d r i f t ed . Limestone f o s s i l s :

Dibunophyllum, Chaetetes , Lonsdaleia, L i thos t ro t ion , Palaeosmilia,

productoids , and bryozoans . Calcareous mudst ones a r e l e s s f oss i l i fe rous ,

predominantly containing f i n e s k e l e t a l debr is .

2-75-5.7

medium thickness , grey, s l i g h t l y argi l laceous and argil laceous

packstones and t h i n calcareous mudst ones, Limestones predominantly

composed of f i ne (mm-sized) s k e l e t a l debr is with occasional horizons

of ? i n s i t u macrofauna. Bioturbation extensive. Limestone f o s s i l s :

~ o n s d a l e i a and s o l i t a r y rugosans.

5.7-9.2 m

5-10 cm t h i c k , grey argi l laceous biomicrospari tes , grey s l i g h t l y

argi l laceous packst ones, and r a r e cream m i c r i t i c wackest ones, a l terna-

t i n g with t h i n calcareous mudstones. Mudstones a re generally unfoss i l -

i f e rous : s p i r i f e r s and strophomenids ra re . Argillaceous biomicrosparites

are compacted, extensively bioturbated, and contain Lonsdaleia f l o r i -

formis, D i b u n o p h y l l ~ and other s o l i t a r y rugosa. Cream, m i c r i t i c wacke- - stones have more diverse fauna including spinose productoids and c idaroid

echinoids. Chert common throughout succession.

5-15 cm th i ck (mean 5 cm) nodulzr creau biomicrosparites al terna-

t i n g with equal thickness c r ino ida l calcareous mudstones. 'Branched

filamentous a lgae present i n both limestones and mudstones. Biota (of . .

. both limestones and mudstones) includes : Eomarginifera, strophhomenids , Koninckophyll~m cf . dianthoides , Hexaphylli a , Dielasma, Antiquat qnia,

Stacheoides , Kamaena, Sphinct oporel la , F i s t u l i po ra and Lituotubella.

12.7-14.4 m

t r a n s i t i o n a l boundary t o grey, 1minate.d argi l laceous biomicro-

s p a r i t e s and black calcareous madstones. Fzuna sparse , mostly fragments

of brachiopods , cora l s , bryozoans , =ld s i l icect ls sponges. Sequence

becomes progressively more argi l laceous downward.

b lack carbonacous shale with t h i n green tuffaceous laminae. Shale

contains diverse , abundant fauna of pectinoid bivalves , ostracods ,

Lingula, Hyalostel ia, and small spinose productoids. Occasional coal ,

p lant deb r i s , and spore laminae. Very o i l y horizons common; d r i l l i n g

water of ten came up i n o i l y beads.

green, pas ty , fine-grained, tuff'aceous sandst one, s l i g h t l y calcareous.

16.8-17.2 m

t u f f aceous sandstone containing ?rounded pebbles of ba sa l t , plant

debr is .

b lack, ves icu la r o l iv ine ba sa l t . Badly weathered, heavi ly c a l c i t -

ized. Phenocrysts typ ica l ly ' a l t e r ed t o c a l c i t e , z e o l i t e s , or kao l in i t e .

Petrographic notes from

Borehole 2 , NS 9850 6925

Borehole was begun 675 cm below the t o p limestone i n t h e Reservoir Mbr

medium t o th ick , grey, argi l laceous bio&crospari tes and medium

t o , t h in calcareous mudstones. Limestones are unsorted, extensively

bioturbated: Zoophycus , 1 cm diameter cy l i nd r i ca l meandrine burr w s . Extent of b ioturbat ion decreases s t e a d i l y downward from extensive (60-

8GI) t o moderate (40-60%). The few unbioturbated beds show p a r a l l e l

c l a s t i c lamination. Limestone/mudstone contacts are gradational ,

showing s igns of b oudinage . Limestone composition: 60-80% (gra in bulk)

microspar, 10-20% f o s s i l fragments ( l e s s than 1 mm) . Few whole f o s s i l s

except s p i r i f e r s , beyrichid ostracods , Bairdia sp.. Mudstones have a

higher proportion of f o s s i l debr i s , lack whole f o s s i l s en t i r e ly .

medium, s l i g h t l y argi l laceous , grey and cream wackest ones with

coarse c r i no ida l debris laminae. Overturned, coarsely fragmented

Li thos t ro t ion colony horizon at 160 cm.. ' Li thas t ro t ion colony horizon

contains Entornoconchus , Thalassinoides , Hexaphylli a , and spinose pro-

ductoids . 1.7-4.0 m

, 10-30 cm th i ck , cream wackestones and t h i n calcareous mudstones.

Coarse c r i no ida l debr is laminae common. Crinoids, strophomenids,

spinose productoids , ostracods , f e n e s t e l l i d s , and Aulophyllum f u n d t e s

comuon i n t h e limestones.

4.0-8.5 m

medium t o t h i n , grey, s l i g h t l y argi l laceous biomicrospari tes . Bedding sur f aces wavy, gradat ional , showing signs of boudinage. Lime-

. . s tones separated i n t o nodular lumps. Sequence extensively bioturbated

throughout; pa r t i cu l a r l y Zoophycus and Chondrites, Foss i l s : &. funai tes ,

Caninia, zaphrentoids.

t h i ck , cream and blue-grey micr i t e wackestones and mudstones.

Upright, probably i n s i t u Li thost rot ion .iunceum horizon. ?Tha lass ino ide~

amongst L. junceum.

medium, grey argi l laceous wackestones gradually passing downward

i n t o laminated calcareous mudst ones. Extensively bioturbated. Few whole

f o s s i l s . Eomerginifera longispina.

calcareous mudstones and t h i n argi l laceous bioni crospar i tes .

The proportion of carbonate decreases s t e a d i l y downward. Foss i ls :

Eomarginifera, se rpu l ids , ostracods , Chondrites.

uniform grey, non-calcareous , carbonaceous shale. Fauna abundant,

concentrated along laminae, consis t ing of Aviculopecten, small spinose

productoids , Lingula, ostracods , z aphrentoids , and Produc tu~ . Plant

debr is laminae and b r i t t l e , black tons te ins become more common t a r a r d

bottom.

14.2-15.3 m

green, laminated, calcareous t u f f . Sand-size a l t e red ? volcano-

genic fragments and very f i n e s h e l l debr is larainae.

15.3-17.2 m

gradual damward t r a n s i t i o n i n t o black, non-calcareous , unfoss i l i -

f erous shale. Plant debr is abundant.

17.2-18.2

t h i n , fine-grained quar tz sandstone with evenly disseminated roo t l e t s .

18 2-19.2 . . . .

ol iv ine b a s a l t l ava , t o p metre extensively a l t e r ed , brownish red t o

purple ( ? ) , haematite s ta ined and c a l c i t e veined. Feldspars and pheno-

c ry s t s replaced by kao l in i t e . '

l e s s we athered, black ves icu la r o l iv ine bas a l t . Phenocrys t s ( 1-2 .

mm diameter) of: o l iv ine; round f ractured c ry s t a l s surrounded by a l t e ra -

t i o n rims of ch lo r i t e replaced by c a l c i t e or sphe ru l i t i c chalcedony

feldspar; l a rge polysynthetically-twinned ol igoclase o r andesine, augite;

r a r e , twinned euhedra. Groundmass cons i s t s of fe ldspar , clinopyroxene ,

and opaque minerals. Vesicles f i l l e d with c a l c i t e , quartz and r a r e l y

zeo l i t e s .

Note : The log of a water borehole which appears on t h e 1898

1:10560 geological map records approximately 11 m of mixed sandstones

and t u f f s i n 300 m north of t h e s i t e of borehole 2. The di f ference i n

thickness between t h e 1898 borehole and t h a t logged here suggests t h a t

t h e thickness of t h e ba sa l sandstones and t u f f s i s very i r r egu l a r .

Petrographic notes from . .

Borehole 3, P e t e r s h i l l Reservoir , mid-reservoir NS 9851 6955.

Borehole begun 11 m from the ' t o p of t he Reservoir .Mbr.

0.0-1.5 m . .

. - . 20-30 cm th ick , grey, argi l laceous and s l i g h t l y argil laceous bio-

microspari tes and s l i g h t l y th inner calcareous mudstones. Bedding

boundaries gradat ional , showing signs of boudinage. Limestopes are

extensively bioturb ated : Zooph~cus , Chondri t e s , i r r e g u l a r me andrine

( type 3) burrows, and f aeca l t r a i l s . Limestones predominently composed

of f i n e (ram s ized) s k e l e t a l debr is : cora l s , brachiopods , bryozoans , and

sponges common, Macrofauna r a r e , concentrated a t tops of limestones:

Gigantoproductus, and . s o d t a r y Rugos a.

1.5-4.0 m

gradat ional t r a n s i t i o n i n t o calcareous mudstones and t h i n a rg i l -

laceous biomicrospari tes. Thin laminae of black shale appear, along

with r a r e green tuffaceous c lay horizons.

t r a n s i t i o n t o black carbonaceous shale with t h i n sapropel ic spore-

r i c h l d n a e , coals , p lan t debr i s , and tuffaceous green clay (? tons te ins ) . Shale uncemented, swells and disaggregates when placed i n water.

Foss i l s : Lingula.

7.1-7.7 m

t h i n t u f f aceous sandstone f o l l&ed by green t u f f . I

Petrographic notes . from . .

Borehole 4, southern end of t h e P e t e r s h i l l Reservoir, NS 9850 6945.

. .

l i g h t cream t o buff , i n places blue-grey, layered wackestones and

mdstones with breccia ted areas and stromatactoid cav i t i e s ( r a r e ) .

Sequence i s poorly bedded. Fauna diverse and abundant, concentrated a t

horizons, consis t ing of: f enes t e l l i d s , Lituotubel la , spinose productoids ,

Ent omoconchus , heterophyl l id corals , and juvenile s o l i t a r y Rugos a

r a r e ) .

1.2-2.7 m

marked c l a s t i c par t ing a t 1..2 m, underlain by 10-21 cm th i ck , grey

biomicrospari tes and t h i n grey calcareous mudstones. Li thost rot ion

colonies common between 2.0-2.7 m , a l t e rna t i ng with coarse s k e l e t a l

(mainly brachiopod) debris . Limestones contain abundant de l i c a t e frag-

ments: foraminiferans, bryozoans, sponge spicules . Trace f o s s i l s include

i r r e g u l a r , i n d i s t i n c t burruws , and Chondrites . Calcareous mudstones

contain l e s s abundant fauna and a higher percentage of s k e l e t a l debris .

20-30 cm th i ck A. junceum .biomicrosparites interbedded with t h i n ,

argi l laceous biomi c rospar i t es and calcareous mudstones. - L. junceum

~ o l o n i e s contain Thalas sinoides burrows.

3.6-4.6 m

medium thickness , grey s l i g h t l y argi l laceous biomi crospar i tes end

argi l laceous biomicrospari tes. Limestones are grey t o cream, with

occasional d i f fu se blue-grey patches. Branched filamentous algae per-

vasive throughout limestone matrix, s h e l l s extensively bored. Sparsely

fo s s i l i f e rous , dominated by spinose productoids. Abundant microproblematica:

Kamaena, Shartymophlycus . I

t r a n s i t i o n a l change, t o grey, laminated calc&eous mudstones,

l a rge ly unsorted.

4.8-4.9 m

t h i n l y bedded, nodular, cream micr i t e wackestones. with c lo t t ed

fabr ics . Trace f o s s i l s ; Chondrites , ?Thalassinoides.

t r a n s i t i o n a l change i n t o black, carbonaceous shales and. calcareous

mudstones. Shales have &abundant, d iverse fauna of b ivalves , produc-

t o i d s , ostracods, and plant fragments. Mudstones are laminated or

i n d i s t i n c t l y bioturbated, containing Rugosochonetes, L. junceum,

Antiquatonia, and zaphrentoids . Shales become more prevalent and

darker towards bottom, as o i l y horizons, t h i n coals , and plant debris

laminae become more common.

Petrographic notes . from

Borehole 5 , Silvermine NS 9912 7161

Borehole begun a t t o p of Reservoir Mbr.

. . black t o dark grey, s l i g h t l y calcareous mudstones, extensively

s i l i c i f i e d . Poorly-sorted, t h i n s h e l l debris 1a.minae d i s t r ibu ted

evenly throughout. Occasional t h i n argil laceous biomi crospar i tes . I 10-30 cm th ick grey s l i g h t l y argi l laceous biomi crospar i tes and I

I th inner calcareous mudstones. Limestone fauna sparse: Dibunophyllum,

Nati c o ~ s i s , chonetoid brachiopods. Extensively i n d i s t i n c t l y bioturbated

throughout.

5.0-6.0 XU

medium t o th ick , grey, argi l laceous and s l i g h t l y argil laceous

biomi c rospar i t es a l t e rna t i ng with medium thickness , black, calcareous

mudstones. Beds increase i n thickness downwards. Extensive i n d i s t i n c t

b io turba t ion throu&Out. Foss i l s r a r e .

9.1-11.0 m

t h i ck t o massive, grey argi l laceous biomicrospari tes. Single

beds up t o 56 cm. Extensive i n d i s t i n c t b ioturbat ion throughout.

~ o s s i l s r a r e : Gi~antoproductus , s o l i t a r y Rugosa, small s p i r i f e r s ,

~ v i culope cten, ?Schizodus. Ve r t i c a l s h e l l o r ien ta t ions , perhaps due

t o boudinage/thixotropi c sediment behaviour.

dark grey t o black, argi l laceous wackestones and calcareous

mudstones gradually giving way t o s l i g h t l y calcareous mudstones.

Extensively bioturbated. S h e l l debr is horizons and r a r e i n s i t u fauna,

cons i s t ing of: zaphrentoid cora l s , Gigantoproductus, s p i r i f e r s and

chonetoids.

Note: Cadell (1925, .p. 375) gives t h e following sec t ion from

ins ide t h e Hilderstone Silvermine, nearby:

Depth from surface "1

. ,

0- 10 m calcareous mudstones

10-114 m dyke

14- 18 m shale

18- 28 m limestone

28- 40 m t u f f

40- 50 m interbedded t u f f s and lavas

5 0- 140 ? t u f f s .

*1 I have corrected cadell's f igures f o r t e c ton i c d ip , 20:270.

Borehole 1, Sunnyside.

Depth Length Distance reached core d r i l l e d Corrections comments f t . i n . in . in . '

t o p 4" added t o 2

t o p 5" of 5 moved t o 4

10'' added t o 6 from t o p 7 t op 5" of 8 added t o 7

t op 2 pieces of 1 3 added t o 12

bottom seds a t -49' 2"

P u l l numbers a r e recorded on

cores, s to red i n ~ d i n b u r ~ h

un ivers i ty Geology Department

Borehole 2, P e t e r s h i l l Lime Works

Depth Length Distance reached core d r i l l e d Correct ions c m e n t s f t . i n . i n . in .

Borehole 3, P e t e r s h i l l Reservoir.

P u l l Depth Length Distance reached core d r i l l e d Comments correct ions ft . i n . i n . i n .

chippings

24' 10" - 25' 5" cored.

Borehole 4, P e t e r s h i l l Reservoir.

Pu l l No.

Depth reached f t . i n .

Length core i n . '

Distance d r i l l e d

i n . Correct ions comments

6" added t o 2

10" added t o 3

l o s s i n shale

l o s s a t t o p shale

l o s s a t t o p shale

Borehole 3, Silvermine.

3 boreholes were sunk a t Silvermine Quarry. The f i r s t two

reached depths of 5 and 4.2 m before fouling. The t h i r d reached a depth

of 11.7 m. The core was logged a t t h e d r i l l s i t e by wr i t ing t he depth

reached on t h e core as it came out of t h e ba r r e l . This method d i f f e r s

from t h e one I employed previously, and it was there fore not possible t o

t abu l a t e t h e d r i l l i n g d a t a f o r these holes as shown f o r t h e others.

APPENDIX C

CLAY MINERAL ANALYSIS

Procedure

Representative samples of t he common l i t ho log i e s were se lec ted f o r

insoluble res idue and clay mineral analys is , A descr ipt ion of t he pet-

rology and coarse insoluble residue f r ac t i on (>64u) appears i n Appdx 'F.

The s m p l e s were t r e a t e d as follows f o r c lay mineral analysis:-

1. isa aggregation - Where poss ible , samples were crushed i n t o - centimetre-sized fragments. S i l i c i f i e d samples, sandstones, and indur-

a ted s i l t s t o n e s had t o be powdered using a Tema d i s c m i l l , as other

methods of disaggregation f a i l ed .

2. Acid treatment - The carbonate f r ac t i on of a l l samples was - removed by treatment with 30% (by volume) of a c e t i c acid , f o l l a r e a by

s eve ra l r i n s e s i n d i s t i l l e d water.

3. Size f rac t iona t ion - The coarsely crushed samples were sep- - m a t e d i n t o >35, 200-35, and 200-240 mesh s i z e f rac t ions f o r microscopic

examination (q.v. Appdx F ) , t he ~ 2 4 0 mesh ( 6 4 ~ ) being re ta ined f o r c lay

mineral analysis . After separat ion t h e <64 f r ac t i on was air dr ied and

weighed t o wi thin 50.01 gm.

4. I ron oxide removal and dispersion - Amorphous grain coatings - and i r o n oxide cements were removed from the c64 f r ac t i on following the

techniques of Mehra and Jackson ( 1960) . After s eve ra l r i n s e s , samples .

were dispersed i n d i s t i l l e d water t o which a few drops of Calgon (sodium

hexametaphosphate) i n so lu t ion were added, followed by u l t rason ic t r e a t -

ment f o r a t l e a s t 10-15 minutes. This treatment was car r ied out t o en-

sure t h a t c lay mineral gra ins had been re-separated and adequately dis-

persed a f t e r air drying.

5. S ize f r ac t i ona t i on - The <5p f r ac t i on was se lec ted f o r an- - a ly s i s as a compromise between not s i z e separa t ing and analyzing t he <2u

f r ac t i on comonly exanined by oceanographers a d s o i l s c i e n t i s t s . I n

a de t a i l ed analysis of c lay mineral procedures ,. Archer (1969) concluded

t h a t s i z e f rac t iona t ion should be avoided i f poss ible , but t h a t it was

sometimes necessary i n order t o resolve clays from t h e masking e f f ec t

of quartz. The advantage of separat ing t he c51~ f r ac t i on i s t h a t it i s

more represen ta t ive of t h e e n t i r e sanple m d v i r t u a l l y a l l the c5p mat-

e r i a l may be separated with ease , avoiding possible e r r o r from sub-

sampling ( i . e . examining only a small proportion of the c5p f r ac t i on ) .

An estimated 897 of the c51~ mate r ia l present was separated i n t he course

of four successive sedimentation f rac t iona t ions (q,v. Archer 1969).

6. Mounting - Basally o r ien ta ted , (001) r e f l e c t i o n , mounts of - < ~ I J f r a c t i on were prepared by evaporating drops of a d i l u t e suspension

of sample onto a porous, unglazed bathroom t i l e , heated t o 90%. The

or ien ta t ion of these samples was fu r the r improved by covering the coa-

t e d t i l e with a glass s l i d e and squeezing it i n a hydraulic press ( 1

ton11 minute). The e f f ec t of t h i s treatment was t o lower background

s l i g h t l y and increase peak i n t e n s i t y and reso lu t ion (e.g. Fig. C-1).

7. Operating conditions - Samples were scanned a t ;'/minute - using Ni - f i l t e red Cu-K r ad i a t i on , generated a t 36 Kv and 20 Ma. F i r s t

batches of samples were analyzed with a P h i l l i p s 1010/1050 wide-range

goniometer , l a t e r changing t o a P h i l l i p s PW19 65/40 curved carbon crys-

t a l monochromator. F i l t e r i n g s l i t s were chenged from lo dispersion,

0 lo s c a t t e r and 0 .1 receiving t o j0 d i spers ion , j0 s c a t t e r and O.1°

receiving. These new scanning conditions ana equipment enhanced c lay

mineral peak r e s o l u t i o n , pa r t i cu l a r l y i n t h e 4-8' 20 range.

8. Treatments - Several standard sample treatments , applied - before and a f t e r mounting, helped t o i den t i fy the ' various c lay mineral

groups present.

Figure C - 1

E f f e c t s of squeezing.

Tracings of X-rzy diffractograrcs showing how apply ing pressure

t o samples improves t h e i r o r i e n t a t i o n &?d, hence, t h e c l a r i t y of

t h e i r X-ray t r a c e . A shovs 14 and 78 peeks of U - an o r i e n t a t e d

sample a?d S - t h e sane semple squeezed under 1 t o n / l minute.

Hor i zon ta l l i n e s underneath show background i n t e n s i t y of 20 f o r

each s a s p l e . B shovs e f f e c t s of squeez ing on apoor ly-def ined 7 . d

k a o l i n i t e peak, U - o r i e n t a t e d , A - squeezed 1 t o n / l minute , 3 - 5 t o n s / l minute. Although longer squeez ing tixzes enhanced o r i e n t -

a t i o n f u r t h e r s t i l l , t i l e s f r e q u e n t l y s h a t t e r e d .

U : Untreated - basa l l y o r ien ta ted samples.were maintained a t

a r e l a t i v e humidity of 56$, maintained by keeping them i n a dess icator

containing s eve ra l grams of Ca(N03)2.4H20, i n order t o equ i l ib ra te

G : Glycolated - samples were placed i n an atmosphere sa turated

0 . with ethylene glycol a t 90 C f o r a minimum of 6 hours t o t e s t f o r ex-

pansion of smecti te . H : Hydrochloric acid - samples were bo i led- i n 6N hydrochloric

acid i n order t o remove ch lo r i t e .

DMSO : dimethyl sulfoxide - samples were exposed t o an atmosphere

sa tu ra ted i n dimethyl sulfoxide a t 8 5 ' ~ f o r 24 hours. This creates ' a

kaolinite-DMSO complex with a d(001) a t 11 1, allowing d i s t i nc t i on be-

tween kao l in i t e and ch lor i t e .

K : potassium hydroxide - samples were sa tu ra ted i n potassium

hydroxide so lu t ion f o r 15 hours, heated f o r 1 hour a t 9o0c, r insed

and dried. This technique has been used by various authors (Weaver

. 1958; Walkden 1972) t o measure t he mount of K+ uptake of i l l u t e l

smecti te and hence, t o d i s t ingu ish volcanically-derived smecti tes from

those formed by weathering of muscovites.

H : Heating - samples were heated t o 350'~ t o collapse i l l i t e /

smect i tes and t o 550 or 6 2 9 ~ t o dest roy kao l in i t e . I n most samples

heat ing t o 550'~ was su f f i c i en t t o des t roy kao l in i t e .

Results

Residues from P e t e r s h i l l Fm. contained varying proportions of

i l l i t e / s m e c t i t e , k a o l i n i t e , ch lo r i t e end ( 2 ~ ) muscovite associated

with quartz, fe ldspar , mat ase, dolomite and small amounts of py r i t e

and gypsum, Many of the c r i t e r i a enployed t o i d e n t i f y these minerals

are we l l known and need not be repeated i n d e t a i l (q,v, Carro l l 1970;

Walkden 1972).

I l l i t e / s m e c t i t e - This mineral i s i den t i f i ab l e from t h e presence

of r e f l ec t i ons a t -102 and a t 5.0, 3.35, '2.5 and 1.52. I n untreated

samples ( u , Figs. C-2; C-3; C-4; C-5), t h e i l l i t e / s m e c t i t e (001) peak

i s round, crowned, or asymmetrical, occurring between 1 0 - l d . On gly-

co la t ion t h e peak t y p i c a l l y s p l i t s i n t o two, a t '9.9 and ' l l .ga .

fieat treatment and KOH s a tu r a t i on r e s u l t i n an incomplete collepse of

t h i s s t r u c t u r e t o form an asymmetrical peak i n t h e 10.1-10.7x region.

The responses. of t h i s mineral t o these treatments suggest it t o be a

mixed l aye r c lay composed of i l l i t e and smecti te l aye r s , derived from

t h e weathering of volcanic mater ia l . The marked displacement observed

i n t h e 102 peaks towards t h e smecti te (001) would suggest t h a t a high

proportion of expandable l ayers a r e present.

Peak pos i t ions i n untreated and glycolated samples a re var iable

a able C-6) l a rge ly due t o t h e types of associated minerals. Samples

containing l a r g e amounts of c h l o r i t e (e.'g. Fig. C-5) t y p i c a l l y have a

crowned peak i n t h e 10-142 range with maxima corresponding t o i l l i t e ,

smecti te and c h l o r i t e (001) r e f l ec t i ons . Where large amounts of d is-

c r e t e i l l i t e a r e l i k e l y t o be present (e.g, i n c l a s t i c rocks) t he 101

peak i s well-defined, asymmetrical and near t h e i l l i t e (001) a t 101.

I n these samples it appears t h a t t h e r e l a t i v e l y high proportion of

d i s c r e t e i l l i t e may have displaced t h e i l l i t e / s m e c t i t e peak somewhat.

The e f f ec t of i l l i t e i s more d i f f i c u l t t o discern than t h a t of ch lo r i t e ,

hawever, because t h e degree of expans.ion of i l l i t e / s m e c t i t e i s a l s o

var iab le (q.v. Table C-6).

~ a o l i n i t e - This mineral i s i den t i f i ab l e by the presence of basa l

ref lect ions at 7.1, 4.48, 4.39, 3.76, and 3.582. Treatment with DMSO

expands t h e s t r u c t u r e , s h i f t i n g t h e (001) r e f l e c t i o n t o -1d ( ~ i g s . C-2;

C-4), was a u se fu l means of d is t inguishing kao l in i t e from ch lo r i t e , Heat-

i n g t o 550'~ destroyed t h e ' k a o l i n i t e s t r uc tu r e i n t h e P e t e r s h i l l Fm. sam-

ples ( ~ i g . C-5; Table C-6). '

Figures C-2 t o C-5 X-ray di f f ractogrvns from various l i tho log ies .

These t rac ings i l l u s t r a t e t h e appearance of the more common

clay mineral assemblages and t h e i r responses t o various treatments.

Abbreviations: U - untreated; G - glycolated; DMSO - dimethyl sul f - .

oxide sa tu ra ted ; K - potassium hydroxide t r e a t e d ; 550 - heated 550°c/

1 hr . A l l peak posi t ions given i n Angstroms. C-2 shows appearance

of a limestone res idue, almost exclusively cozposed of i l l i t e l s m e c t i t e

with a smal l amount of ch lor i t e . I l l i t e / s m e c t i t e appears as a round

peak a t ld which expands on glycolation i n t o two peaks a t 11 and '9.58,

Another i l l i t e o r i l l i t e / s m e c t i t e peak appears a t 4.42 followed by a

smaller quartz peak a t 4.d. Anatase and ch lo r i t e form a minor peak .

a t 3.5 followed by a l a rge combined quartz end i l l i t e peak (Q).

Fig. C-3 shows a diffractogram t r ac ing of a c lay wayboard predominantly

composed of i l l i t e / s m e c t i t e and k a o l i n i t e . Note t h a t peak i n t e n s i t i e s

of t h e acid-treated, glycolated sample a re so much grea te r than those

of t h e untreated sample t h a t a small amount of ch lo r i t e could be pre-

sen t . Re la t ive ly l a rge amounts of ch lo r i t e can be detected by the

change i n t h e shape of t h e U peak at 1 0 - 1 d - Fig. C-4, a d i f f rac to-

gram t r a c i n g f r o m t h e prominent t u f f at S. Mine Lime Works. DMSO

treatment of such samples c l ea r ly resolves kao l in i t e and ch lor i t e .

Note s h i f t of kao l i n i t e t o la on trektment, leaving ch lo r i t e a t 7 . d

( arrow).

The black shale shown i n Fig. C-5 contains l a rge amounts of

i l l i t e I s m e c t i t e , k a o l i n i t e , ch lo r i t e (arrow) and minor amounts of

quartz and ana tase .

Chlor i te - Chlor i te displays a s e r i e s of r e f l ec t i ons at '1411

and a t 7, 4.7, and 3.52, which are unaffected by glycolation. g oiling

i n lN H C 1 d id not always remove c h l o r i t e , while bo i l i ng i n 6~ H C 1 suc-

ceeded i n always removing it, possibly with some kao l in i t e , The re la -

t i v e i n s o l u b i l i t y of t he P e t e r s h i l l Fm. ch lo r i t e suggests t h a t it i s

wel l -crysta l l ized. . .

Where la rge amounts of ch lo r i t e are present (e.g. Figs. C-1; C-5)

a d i s c r e t e peak i s resolvable i n t h e 142 posit ion. Small amounts of

ch lo r i t e are more d i f f i c u l t t o resolve , as t he 14a peak i s masked by

t h e i l l i t e / s m e c t i t e combined (001) peaks. DMSO treatment was found t o

be t h e most e f f ec t i ve method f o r de tec t ing ch lo r i t e , but the technique

of ten destroyed t h e t i l e . The other widely p rac t i sed technique, acid

treatment, succeeded i n removing ch lo r i t e , bu t , unfortunately, it a l so . . . .

enhanced t h e t r a c e i n general. Many samples yie lded b e t t e r t r a c e s a f t e r

H C 1 t reatment , even where it was l i k e l y t h a t a small amount of ch lo r i t e . .

had been removed. Archer (1969, p 77) a t t r i b u t e d t h e improvement t o

' . fu r the r removal of gra in coatings and amorphous mate r ia l from the sample.

Thus it was d i f f i c u l t t o compare untreated and acid t r e a t e d samples for

peak a rea losses due t o t he disappearance of ch lor i t e . By cambining

s eve ra l techniques, however, it was usua l ly possible t o dis t inguish

between k a o l i n i t e and ch lor i t e .

2M mica (muscovite) - Megascopic f l akes of mica were present i n

many res idues ( q . ~ . Appdx F) . Diffractograms from these f lakes (picked

out by hand) showed typ i ca l 2M (h , k , 1 ) r e f l ec t i ons a t 3.7, 3.51t3.49 . . . .

(doublet) , 3.18, and 3.092. The presence of these peaks was then used

t o i d e n t i f y 2M micas i n t r a c e s from randomly-orientated mounts of sam-

ples from throughout the . sequence.

Signif icance of clay minerals - A camparison of the ' are& of t h e 4

(001) peaks provides a general i d e a of t h e r e l a t i v e amounts of clay

? i 9

' 6 -:: 2 g 0 1

i

L U

: b, m e 2 0

. 3r % a

2 ~ 1 3

s s p ,

0, 4

t

.i h -.

8 5: , .d

8 2

;.-.?i fa'?{

e

L 'i ' tb 10 . - 0

8 5.; 3 3 2 :I

l;i S m

x g -a 3 3 4

A U

: b, n e . Y o

3 &

3 5 . 3

3 . i e ? a 3

% % ' 3

4 f n n

1 9 I- - , i: - 5 : n l a t g I s s = -5 f -.!1 5 ? ? 1 ;n 2 " W

1 5 2 5 ' 5 % .. -4 2 6 0 1 1 * 5 t: a a .% a s

n m

8 a , ,u

! 8 3 j !$ 8 8 9 4

a ,

16 Y

4 ., n e 2 n

Z i 3 3 .; 5

3 t . ,. 2.- p j E: , r 4

2 S

:

5 4 0, II

@ I . *

'8 r(

K m m 0

R U

: n a

- 2 s k E 4 4.

g S

2 s g

s i:,

E i 4 i

E i C: 3 3 s

1 . -

I

2 I , -

U

Y ., . I I 4 e 3 f -

8

2 % : 0, rl

= m o ~ m ~ = ~ - . - . = ~ - = ~ a

8

3 1 1 1 1 I

. * l I @ l

A *

J

Id

5

: 7 p:

3 E

4 .n

P:

* L

6 - * * a

? z * q % *

d d W L I e . - 0

. 3 lj C w n

S S , , ~

8

1

9

n

- - n 2 ;

,

4 f2

1

1

m m

M -

1

I

e 9: U

a .

1

I

D B

m

u s

I

1

D P

..

$ 4

p1

Y . n

I .r(

5 3 9 : B ""'

m t n

1 . -

i? H

l , I 1 l o I I I I

, , ) , 1 0 I I 0 1

L o 2 4 2 0

U

G L n 'e 6 n n

".

a P ~ ~ s s = ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

s . 5 . B ! *

2 0

n -

::

3

< < u u

X

I

1 1

Y = .! 2 h

i .. " , 4

m

n

. : " m " a

* .* 3 9

5 2

0

Is n': 2 n

-, . Y o . " \ .

'I L

! 2 5 s

3 3

I

8

.-.

SS,!33Rm

5

u I n

8 1

g z

d 4 ; * < e > e 2 a u o p ' * . < .

CI

b,

Y : Y c

4 , Z Z R S S S S

& 5

$ 4 r n

1 1

1 1

!

w

9

~ s - 2 5 8

Z %

.a" 0

j 3 i

c . - . . - . m 1 n r o ~ m 3

S ? I , P I S (Y-..

w , , w v 2 2

i r. 2 3

3 f

1 8 1

I 1 1

5

Y u

1 I r r( w a n

9

" Z A * '

s D g 3 Q , u

"5 ;t

n

8

4. 7 . s a r ea

5. 3.5 a r ea

Notes :

Blank = not recorded; Dash (-) = absent; areas measured i n vern ie r

un i t s ; peak posi t ions given i n Angs t rb s .

1. Treatment abbreviations U - untreated or ien ta ted sample, 56%

R.H.; R - randomly or ienta ted;

G - glycolated; H - boi led 1 min i n HC1;

H &T - boi led 1 min i n 6~ H C 1 ; DMSO - dimethy sulfoxide t r e a t e d ; K - potassium

hydroxide t r e a t e d ; 550 + 625 - heated

f o r 1 hour.

P - peak posit ion. Peaks described as:

S - sharp; C - crowned; B - broad; A s

- asymaetrical; .D - well-defined; R - round. A - area of peak.

P - posi t ion; symbol beneath posi t ion

denotes t h a t a s i ng l e peak has s p l i t on

glycola t ion i n t o two. A - area.

Area i n vernier u n i t s of 7.3.8.

Area i n vernier u n i t s of peak(s) a t

3.5a, Db = doublet , comprised of 3.50 +

3.57 peaks usua l ly belonging t o kaolin-

i t e and anatase.

6. Clay minerals and Top l i n e l i s t s clays i n order of r e l a t i v e

accessory minerals abundance (based on areas) . K - kao l in i t e ;

C - ch lo r i t e ; I /S - i l l i t e - smec t i t e ;

I - i l l i t e ; 2M - mica. Second l i n e lists

accessory minerals , Q - quartz; F - fe ld-

spar; A - anatase; D - dolomite.

minerals present. m e a r ea of a c lay mineral peak i s widely accepted

as r e f l e c t i n g t h e amount of clay present. I n t h e pa s t , many attempts . .

have been made t o quant i fy t h e di f ferences i n the ' amount of clays

present i n an assemblage by applying weighting fac tors i n order t o

compensate f o r d i f ferences i n t h e d i f f r ac t i ve a b i l i t y of d i f f e r en t

clay species . I n t h i s study no such attempt was made because it w e s

impossible t o separate i l l i t e / s m e c t i t e , d i s c r e t e i l l i t e , and muscovite,

or t o compare samples subjected t o d i f f e r en t treatments s s d ana ly t i c a l

methods . I n order t o be able t o examine t rends i n composition, t he areas

of t h e 101 i l l i t e / s m e c t i t e and t he 72 kaolinite-chlori%e peaks were

r e corded ( ~ a b l e s C-6 ; C-7) . I n some cases the 3.5a kaol in i te -ch lor i t e

peak was a l s o recorded. The r a t i o of i l l i t e l s m e c t i t e t o kao l in i t e+

ch lo r i t e was determined from t h e r e l a t i v e areas of t h e 10 end 72 peaks.

The k a o l i n i t e t o ch lo r i t e r a t i o was then est imated from a c a p a r i s o n

of DMSO or hea t t r e a t e d samples a t 7 or 3.58. Peak a rea measurements

axe l i s t e d i n Table C-6. This same data i s shown i n Table C-7, expres-

sed i n percentage form.

The r e s u l t s of t h i s analysis suggest t h a t volcanogenically-derived

i l l i t e - smec t i t e s are by far t h e most prevalent c lay minerals present

throughout t h e sequence (Table C-7). They are the dominant clays i n

a l l l i t ho log i e s , thus suggesting t h a t l o c a l volcanism was a source of

sediment.throughout t h e P e t e r s h i l l Fm. deposi t ional h i s to ry . I n a re-

g ional study of t he Carboniferous of t he Midland Valley (which sampled

from horizons equivalent t o t he P e t e r s h i l l Fm. ) , Wilson, Bain, McHardy

and Berrow (1972) did not f i nd i l l i t e / s m e c t i t e s elsewhere i n t h e Lower

Limestone Group. They ( i b i d , p 142) found k a o l i n i t e t o be t h e dominant

clay mineral i n limestones from other p a r t s of t he basin. This would

s t rongly suggest t h a t t h e i l l i t e / s m e c t i t e s of t he P e t e r s h i l l Fm. are

derived from t h e l o c a l volcanics.

As might be expected, the l o c a l sediment contribution i s n o s t .

apparent during periods when t h e e x t r i n s i c sediment i n f l u x was re la-

t i v e l y l o w ( i . e. during limestone-forming periods, Table c'-7) . I n

t h e sandstones and shales of t h e P e t e r s h i l l F'm. (which presumably

accumulated during periods of higher e x t r i n s i c sediment in f lux) t he

l o c a l input appe ar s t o have been d i lu ted by kao l in i t e , 2hi

mica and, perhaps a l s o by ch lor i t e .

The o r ig in of the ch lo r i t e i s somewhat problematic, however.

It does not appear t o be present i n t h e limestone samples, perhaps

suggesting t h a t t h e ch lo r i t e i s allochthonous. The presence of chlor-

i t e could have been missed, a s these samples were among the f i r s t an-

alyzed. Chlor i te was found i n a l l samples analyzed i n t he l a t t e r ' p a r t

of th is study, which r a i s e s t h e p o s s i b i l i t y t h a t t h e d i s t r i bu t i on of

ch lo r i t e i s a.n a r t i f a c t of t he methods employed i n analysis . Chlori te

p a r t i c u l a r l y i n small amounts, i s notor iously d i f f i c u l t t o de t ec t ,

e spec ia l ly i n t h e presence of i l l i t e / s m e c t i t e and kao l in i t e . ' Wilson

e t al. (1972) did not repor t ch lo r i t e from elsewhere i n t h e Midland

Valley, which could suggest t h a t t he P e t e r s h i l l Fm. ch lo r i t e i s local ly-

derived, associa ted with weathering of t he volcanics. However, they

could have f a i l e d t o f i n d ch lo r i t e f o r t he same reasons t h a t it may

have been n i ssed i n t h i s study. Thin sec t ions of weathered lavas from . ~

t he Bathgate H i l l s show t h a t a l t e r a t i o n t o ch lo r i t e i s a common weather- .

i n g pat tern . Thus, while it s e e m l i k e l y t h a t t he ch lo r i t e present i n

t h e P e t e r s h i l l Fm. sediments i s of l o c a l o r ig in more precise analyses

on t h e limestone residues and of samples from elsewhere, neea t o be

ca r r ied out before this suggestion can be adopted without some reserva-

t i on .

APPENDIX D

GLOSSARY OF COMMONLY USED TERMS . .

Note: Terms with possibly ambiguous meanings a re defined here; . .

def in i t ions of other ' terms i n t he t e x t can be found i n Bathurst

(1971) and Chilingar and B i s se l l (1967).

ASSEMBLAGE - a group of f o s s i l s occuring along a bedding plane or . .

within a bed. Several types of assemblages are common i n t h e Reservoir

Mbr. limestones: a ) hydrodynamic - t ranspor ted o r moved from place of . .

or ig in ; b ) r e s idua l - winnowed, i . e . t h e matrix and smaller elements

have been removed; c) l i fe-surface - an undisturbed assemblage, imply-

i ng r ap id b u r i a l ; d) cumulative - successive l i f e surfaces concentrated

a t a s ing le horizon; and e ) aggregative - behaviourally formed assembla-

ges . These terms are defined more f u l l y i n Mil ler ( i n prep. ) . BAND - a concentrat ion of f o s s i l s spreading along a plane within or at

t h e surface of a bed.

BIOMICROSPARITE - (q.v. Folk 1962) used t o describe both wackestones

and packstones where o r ig ina l deposi t ional t ex tu r e cannot be ascertained,

or where both occur with equal frequency.

BRECCIA - an accumulation of angular fragments, l a rge r than sand-size.

CAVITY - a megas copic hole or opening within t h e matrix, which may be

empty, p a r t l y o r wholly i n f i l l e d with sediments.

DISSOLUTION - t h e t ak ing up of a substance by a l i q u i d with t he forma-

t i o n of a homogeneous so lu t ion , i n t h i s case r e f e r r i ng t o t he action of

meteoric water on carbonates. Although technica l ly l e s s cor rec t ,

t tsolution" has been employed i n descr ibing k a r s t fea tu res on discontin-

u i t y surfaces because of common usage. .

EROSION SURFACE - a non-geneti c term describing any horizon along which

erosion can be seen t o have taken place. '

HORIZON - t h e s trat igraphic pos i t ion of a l ayer or bed wi thin a sequence,

HYDROGRAPHIC ZONES - fcreshore - t h e zone ly ing between mean high and

low water marks; shoreface - t h e next zone offshore, between t h e mean

low water mark and the ' limit of s t rong wave act ion, usual ly marked by

a change i n s lope; nearshore - including both foreshore and shoreface

zones; inner shelf margin - a broad nearshore zone on t h e F lor ida

, carbonate platform, extending from the keys across an a r ea of near-

shore shoa l s , patch r ee f s , and hardgrounds t o t h e ree f r idge, wnich

divides t h e inner and outer she l f margins.

LAYER - a la te ra l ly - t raceab le thickness of sediment which i s d i s t in -

guishable by grain s i z e o r fauna from adjacent layers .

SP~,CIES/FAUNA - t h e f o s s i l s of a un i t are described as a) dominant-

most abundant i n t h e number o r bulk, synonymous with predominant ;

b ) ubiquitous/cosmopolitan - occurring i n many f ac i e s ; c ) characteris-

t i c or d iagnost ic - pa r t i cu l a r t o one or r a r e l y two fac ies / subs t ra tes ,

u se fu l i n recognizing t he fac ies / subs t ra te i n question.

APPENDIX E

EXPERIMENTS WITH RECENT CARBONATES

This appendix describes severa l of a s e r i e s of experiments designed

'

t o inves t iga te t h e t e x t u r a l and mass proper t ies of Recent, fine-grained

carbonates. The sediment employed was a poorly-sorted, mixed carbonate

sand and mud, taken from Flor ida Bay, Flor ida (kindly supplied by D r .

T. P. scoff i n ) consis t ing of Pen ic i l lus and Halimeda-derived mud, var i -

ably-sized s k e l e t a l sand deb r i s , and a few organic fragments, mainly

derived from Thalassia and mangroves. I n t h e experiments, t h e sediment

was dispersed i n normal s a l i n i t y s ea water (courtesy of D r . E. R.

~ h o l k o v i t z ) i n t o a rectangular g lass vesse l measuring 18.7 cm length

x 9.0 cm width x 30 cm height (Fig. E-la) .

~xpe r imen t 1 Rapid, episodic sedimentation and simultaneous

framework accmulat ion. Figure E-lb . Cm-sized pieces of curved p l a s t i c mesh ( t he type cwmonly

used f o r s ieving) comparable i n s i z e t o t h e l a rge r fenes t ru les of t he

bryozoans encountered i n t h e Reservoir Mbr. limestones were employed

t o simulate ancient bryozoan fronds, (Fig. E-lb) . The sediment was

dispersed r ap id ly and evenly i n t o t h e ve s se l and allowed t o s e t t l e .

Each pulse r e su l t ed i n t h e accumulation of a mm-thick laminae, graded

from sand t o c lay (Fig. E-lb). Each laminae blanketed t h e pre-existing

sediment sur face , evenly covering i t s features .

Pieces of curved mesh were introduced a t i r r egu l a r i n t e rva l s i n

order t o see how they would a f f e c t the t ex ture of t h e accumulating

sediment ( see Fig. E-lb) . Mesh fragments were not i n th ree dimensional

contact . A minimum of 10 hours was allowed t o lapse between sedimenta-

t i o n i n t e rva l s .

Sedimentation by t h i s mechanism resu l ted i n t h e bui lding up of a

laminated and graded f ab r i c showing various cha rac t e r i s t i c s t h a t might

be a t t r i b u t a b l e t o a l g a l binding ( ~ i g . E-lb). The mesh had l i t t l e

e f f ec t on accumulation pa t te rns , other than t o introduce an uneveness

t o t h e sediment surface. Cavit ies did not form beneath t h e mesh..

The i r r e g u l a r i t y of t h e surface did , however, lead t o t h e accre-

t i o n of wavy, bulbous laminae, with small breaks and cutt-off laminae

s imi la r t o those commonly described from a lga l ly . bound sediments.

Par t s of many laminae were incl ined a t su rp r i s i ng ly , s t eep angles t o

t h e hor izontal . The importance of t h i s experiment i s t h a t it demon-

s t r a t e d t h a t i n t e rmi t t en t , rapid sedimentation, over an uneven surface ,

i s i t s e l f t h e only necessary r equ i s i t e f o r t h e accumulation of such a

fabr ic . The s t a b i l i z i n g influence of a l g a l f i laments i s not necessary.

The grading observed i n t h e laminae presented here might be an obvious

means of d is t inguishing a l g a l and sedimentation-produced lamination. .

These p a r t i c l e s i z e di f ferences a r e , however, f a i r l y small, and could

be obscured by r ec rys t a l l i z a t i on . This type of lamination i s generally

comparable t o t h e layer ing observed i n some of t he packstones i n t h e

~ e s e r v o i r Mbr . high-carbonates ( q.v. Ch 7) . Although Reservoir Mbr.

layered f ab r i c s do possess abundant filamentous a lgae, these experi-

ments point t o a possible a l t e rna t i ve mechanism f o r t h e i r genesis.

~xper iment 2 The e f f e c t s of d i s rup t ion during sedimentation.

I n experiment 1 t h e vesse l was not d is turbed while t he sedi-

ment was allowed t o bu i ld up. I n experiment 2 t h e ve s se l was t i l t e d

(up t o 12') , tapped by hand, and occasionally rocked during and a f t e r

sedimentation. Minor rocking and tapping had l i t t l e e f f ec t on' t h e

ove ra l l f a b r i c of t he accumulating sediment. Tapping on t h e s i de of

t h e ve s se l while it was inc l ined at an angle of 12' ( a minimal f igure

f o r depos i t iona l slopes i n t h e P e t e r s h i l l Fm. limestones) hail a very

i l l

i n t e r e s t i n g e f f ec t . While no immediate e f f ec t was v i s i b l e , wi thin 5-

10 minutes a f t e r tapping, small c av i t i e s could be seen t o form a t t h e

i n t e r f ace between t he coarser sand-sized sediment (accumulated by

rapid f a l l o u t ) and t h e t h i n , much f i n e r mud above (accumulated over

many hours/days from suspension f a l l -out) . iff e r e n t i a l movement along

t h i s boundary by p l a s t i c flow created a s e r i e s of subhorizontal cavi-

t i e s measuring 1.0-1.5 rnm i n height and a few centimetres i n width.

These c a v i t i e s , of t e a r o r i g in , were somewhat s i m i l a r , although smal-

l e r , than t h e e a r l y p w t s of s t r o rn~ tac to id cav i t i e s . They, only formed

i n t h e uppermost two or th ree laminae of the sediment, a t t he boundary

between t h e rapidly-set t led and suspension-settled sediment.

When t h e ve s se l was returned t o t h e hor izon ta l f o r subsequent

sediment addi t ion, the cav i t i e s were closed by loosely-packed mate r ia l

from t h e cav i ty walls . These cav i t i e s might have been maintained open

if: t h e v e s s e l had been kept t i l t e d , t he suspension f a l l out l ayer had

been allowed t o s t a b i l i z e fo r longer, or i f a s t a b i l i z i n g mechanism

. (a lgae or e a r l y cementation) had been present.

~xpe r imen t 3 Attempts a t producing i n t r a c l a s t s . Sediments which had been alluwed t o s i t f o r severa l months

wire dis turbed i n various ways i n order t o examine whether loose sedi-

ment clods, s imi la r t o t h e crumbly-edged i n t r a c l a s t s found i n t h e Res-

e rvo i r Mbr. could be formed. A l l experiments were ca r r ied out under-

water, without allowing t he sediment t o dry. Various ki tchen imple-

ments were used t o d ig i n t o t h e sediment and l i f t off scoops and s l i c e s .

Although -it was found t h a t t he sediment had consolidated i n t o a f i rm

p l a s t i c , none of t h e digging around produced d i s c r e t e , cldd-like frag-

ments of sediment t h a t would remain i n t a c t a f t e r a long period of gentle

rocking. . It was concluded t h a t t h e degree of consolidation r e f l ec t ed

i n t h e i n t r a c l a s t s i n t h e Res'ervoir Mbr. limestones was greater than

t h a t of t h i s sediment, and t h a t such i n t r a c l a s t s were therefore prob-

ably l i t h i f i e d contemporaneously.

Experiment 4 Sedimentation i n t o a pre-exist ing framework.

Many of t he d e t a i l s and r e s u l t s of t h i s experiment have

already been described i n Chapter 8.

Sediment was introduced i n rap id , shor t p u l s e s ' i n t o a pre-

ex i s t i ng framework of mesh (shown i n Fig. E-la) . ' The amount of sedi-

ment i n each pulse was much smaller than t h a t i n previous experiments,

with t he r e s u l t t h a t t he degree of gra in segregation (grading) 'and

lamina thicknesses were much smaller , A cu l tu re of mucilageneous

algae (presumably a mixture of red and blue-green fi laments, a l g a l

un i ce l l s and diatoms) taken from the F i r t h of Forth, was introduced

i n t o t he sediment a t - t he outset of t h i s experiment. The cul ture took

hold quickly and spread t o cover t he t op sediment surface and t h e o s i d e

of t he v e s s e l neares t t h e sun. This t h i n a l g a l f i lm was allowed t o

re-es tabl ish ' i t s e l f between sedimentation pulses.

The r e su l t an t f a b r i c was examined i n d e t a i l by f reezing the sedi-

ment, ex t r ac t i ng it from the vesse l , and sawing it i n t o blocks. The

of some of these blocks a re shown i n Fig, E-2.

Point counts of the negatives from photographs of the 'b lock faces

revealed t h a t t h e meshwork only const i tu ted 11% grain bulk (1321 points) ,

a f igure comparable with t h a t commonly reported f o r t he bryozoan content

of ancient rocks with stromatactoid cav i t i es . Moreover, the spacing

between fronds ( see Fig. E-2) as seen on t he block faces , was such t h a t

they could e a s i l y be missed as framework formers i n t h i n sect ion.

The f a b r i c r e su l t i ng from sedimentation i n t o a pre-existing frame-

work produced a s e r i e s of i s o l a t e d cav i t i e s s imi la r i n s i z e h a

dispos i t ion t o t he e a r l y elements of stromatactoid cav i t i e s in the

Reservoir Mbr. limestones.

These cav i t i e s , t h e i r genesis, and s ignif icance a re described i n

Ch il. A second, unexpected r e s u l t , derived from observations on t he

manner i n which t he cav i t i e s had been i n f i l l e d . The f loors of some

of t h e s h e l t e r c av i t i e s were of ten inc l ined a t angles of up t o 30-40'

t o t h e hor izon ta l (Fig. E-2a,c).

I n ancient sediments such cavi ty f loors a re commonly used as geo-

p e t a l s t r uc tu r e s i n order t o determine palaeoslope . I n calcula t ing

palaeoslope it i s assumed t h a t t h e f l oo r of a primary cavi ty was ori-

g ina l l y hor izon ta l and t h a t t he di f ference i n i nc l i na t i on between t he

geopetal s t r uc tu r e and bedding can be used t o i n f e r t he sense and

amount of palae os lope.

The r e s u l t s of these experiments, however, ind ica te t h a t t h e f loors

of c av i t i e s wi thin a framework may not always be r e l i a b l e geopetal

s t r uc tu r e s . It is unl ikely , however, t h a t t he i nc l i ned ' f l oo r s produ-

ced i n s i t u a t i o n s analogous t o those described here would have a con-

s i s t e n t or ienta t ion. Thus sediment f l oo r s which can be shown t o be

cons i s ten t ly o r ien ta ted (by t h e use of s t a t i s t i c a l analys is) may s t i l l

be regarded as r e l i a b l e geopetal s t ruc tures .

- --

Fig. E-1 Experiments w i t h Recect carbo2ate sedirients.

a. The v e s s e l i n which t h e v e ~ i o u s sed ixecze t ion e v e r i -

ments were c a r r i e d out . Wid:h of v e s s e l = 1?.7 ca.

Coarse p l a s t i c mesh, s i n u l a t i n g e bryozoan d e ~ o s i t i o n a l

franework has been p laced i n s i z e , ;? lor t o Experiment 4.

b. The r e s u l t s of experiment 1. A regular leminated

f a b r i c b u i l t up of laminae grading from sand t o mud

s i z e d p a r t i c l e s . Note d iscont inuous laminae, bu lb cus uprar6--r owded and

i n c l i n e d l a a i n a .

Fig . E-2 Experimental s t roma tac to id c a v i t i e s .

A l l f i g u r e s show r e s u l t s from Experiment 4, s c a l e b a r s show cen t i -

metre d i v i s i o n s . Rather i r r e g u l a r c r i s s - c r o s s i n g l i n e s a r e due t o i c e

c r y s t a l s .

a. Steeply-dipping laminae beneath mesh showing t h a t sediments

i n f i l l i n g i n t o mesh framework may have a high angle of repose.

Each lamina r e p r e s e n t s a sed imenta t ion pulse .

b . Small c a v i t i e s developed i n t h e s h e l t e r of f l a t p ieces of

mesh and a t T - in t e r sec t ions .

c. A s t e e p l y - i n c l i n e d i n f i l l i n g beneath a f rond .

Note t h a t c a v i t i e s a r e only developed benea th a few of t h e fronds.

d. S tacked f ronds c r e a t i n g m u l t i p l e , i s o l a t e d c a v i t i e s .

Note how s u s c e p t i b l e t o co l l apse t h e whole f a b r i c would be if

meshwork were t o p a r t i a l l y d i s so lve . Note a l s o t h e high angle

of i n c l i n a t i o n i n some i n f i l l i n g s .

e . C a v i t i e s developed i n t h e s h e l t e r of f l a t p i eces of mesh,

and a t T - in t e r sec t ions . Needle at l e f t p o i n t s t o h f i l l e d

s k e l e t a l ( gas t ropod) s h e l t e r e d void.

APPENDIX F

INSOLUBLE RESIDUES FROM THE PETERSHILL FORMATION

Note: The f i r s t pa r t of t h i s appendix i s a descr ipt ion of specimens

se lec ted f o r acid dissolut ion, before and a f t e r treatment. Petrographic

descr ipt ions a r e based on t h i n sec t ions , peels and hand specimens.

The res idues a r e described as they appeared under a binocular micro-

scope and from SEM s tud ies of se lected elements ( ~ i g s . F-2, F-3).

The specimens described here comprise a represen ta t ive sample of

t h e common l i t ho log i e s i n t h e P e t e r s h i l l Format ion.

The second par t of t h i s appendix l i s t s these samples i n s t r a t i -

graphical order, showing t h e i r percentage of insoluble mater ia l , e s t i -

mated percentage clay (where appl icable) , and dolomite. Procedural

camments on how these f igures were derived follow.

Samples 1205, 1204, South Mine Lime Works, col lected 15.7 and 15.4 m

above intermember boundary, a t base of exposure.

Petrology

Both samples a r e fine-grained quartz sandstones, with t h i n s i l t

and organic laminae. They show plane and small-scale cross-lamination.

Sand grains a r e overgrown, such t h a t o r i g ina l g ra in parameters a r e not

determinable. Heavy minerals ( r a r e ) a r e very-well t o well-rounded.

Minor cons t i tuen ts include: l a rge mica f l akes , organic debr i s , yellow-

i s h a l t e r e d ?volcanogenic sand gra ins , and pyr i t e . Chalcedonic quar tz ,

c a l c i t e , and opaque Fe-oxide cements a r e pa tch i ly d i s t r ibu ted .

~ e s i d u e

Smples contained s o l i t t l e carbonate t h a t ac id treatment f a i l e d

t o disaggregat e t h e rock Samples were there f ore crushed ; consequently

t h e res idue w a s not described.

Samples 1203, 1202, 1201, South Mine Lime Works, col lected 8.0, 7.0, , .

6.0 m above base of exposure, t h e internember boundary.

Petrology

A l l t h r e e samples are laminated, black s i l t s t o n e s , predominantly

composed of terrigeneous mud, organic d e t r i t u s , and quartz s i l t , with

prominent p a r a l l e l .sand and mica laminae. Deposit ional s t ruc tures a re

obscured i n 1202 by i nd i s t i nc t burrowing.

Residue

The sample had t o be mechanically crushed, the re fore residues were

not examined microscopically ( see above) .

Sample 1200, South Mine Line Works, col lected 3.35 m above t h e base of

exposure.

Petrology

A grey, i n places yellow t o blue-grey, calcareous t u f f . Largely

t e x t u r e l e s s , consis t ing of uniformly disposed c lay, and intergrown cal- .

c i t e . Some samples contain d i s t i n c t laminae of subangular, brown c l a s t s

of probable volcanic o r ig in or laminae of f o s s i l s ( f o rmin i f e r ans and

brachiopod f r a p e n t s a re i d e n t i f i a b l e ) .

~ e s i d u e - Residue consis ts almost e n t i r e l y of c lay and chalcedonic quartz

replaced s k e l e t a l and volcanic fragments, euhedra of ? apa t i t e , and

p y r i t e f rmboids . \

sample 320, South Mine Lime Works, col lected 2.4 m above t h e base of

exposure.

Petrology - A fine-grained quar tz sandstone with minor proportions of organic

d e t r i t u s , mica, and pyr i t e . ' No obvious deposi t ional textures . Chalce-

donic quartz and c a l c i t e cemented. ' .

Residue ~ The sample was mechanically crushed.

I Sample Se 194, P e t e r s h i l l Reservoir, south end, 1.9 cm above base.

Petrology

1 A cream coloured, slightly breccia ted, layered wackestone. Fabric

cons i s t s of a l t e rna t e fragment-rich and lime mud layers , a few mms

t h i c k . Layers a r e generally p a r a l l e l and even i n th ickness , with r a r e

e ros iona l truncations. Ske l e t a l debr is ( l e s s than 1 mm) consis ts of

bryozoans , brachiopods , cr inoids and ostracods . I n s i t u f o s s i l s include

product oids , chonet oids , and attached f o r aminif erans . ~ e s i d u e

1. Authigenic .quartz- predominant, approximately 60% of res idue,

occurring as : a) c ryp tocrys td l ine chalcedonic quartz replacements

of matrix, of ten preserving a l g a l f i l m e n t s ; b ) s k e l e t a l replace- '

melits of t h e more commonly occurring f o s s i l s ; c ) 100-200~ doubly-

terminated quartz euhedra.

2. m i t e - cammon, approximately 10% of res idue, occurring as :

a ) loose framboids and l i n e a r chains of c ry s t a l s , probably over-

growths or replacements of a l g a l f i laments ('eig. Fig. F-3b);

b ) s k e l e t a l replacements p a r t i c u l a r l y of bryozoans (Fig. F-3e) ,

and thick-shelled brachiopods . 3, Phosphatic fragments- very r a r e , perhaps 1% of res idue, i n t h e

form of: round. gra ins of unknown or ig in , f a eca l p e l l e t s (Fig.

F-ze), and ? apa t i t e c ry s t a l s .

4. Heavy minerals - Very r a r e ; four f i n e sand s i z e ? zircon grains.

Sample Sq 500, South Quarry, l a t e r a l l y equivalent t o build-up f lanks ,

180 cm above base exposure. '

Petrology.

A dark olive-grey, argi l laceous biomicrospari te, showing exten-

s i v e , i n d i s t i n c t b ioturbat ion and Zoophycus. Fauna i s r a r e , sparsely

and evenly d i s t r i bu t ed , consis t ing of: chonetoid brachiopods, ostracods,

s p i r i f e r s , and f e n e s t e l l i d bryozoans. Both body f o s s i l s and Zoophycus

show s igns of compaction. Matrix consis ts of argi l laceous microspar

and pseudospar (30-451 grain bulk) i n places extensively replaced by

chalcedonic quartz. The percent ages of f i n e ske l e t a 1 fragments vary

considerably, depending on degree of b ioturbat ion. '

Residue

The sample d id not disaggregate due t o extensive matrix replace-

ment by chalcedonic quartz. Residue cons i s ted 'o f cm-sized chunks of

spongy-textured chalcedonic quartz end piecemeal s h e l l replacements.

organic matter and py r i t e were trapped i n these fragments, occurring

as d e t r i t u s and framboids respect ively . The saslple contained enough

hydrocarbon produce-an o i l y f i lm on t h e surface of t h e acid during

d i sso lu t ion .

S m p l e Se 119 ,. South end, P e t e r s h i l l Reservoir. 4.5 m above base exposure

Petrology

A cream-coloured, unsorted c r ino ida l packstone. Matrix consis ts

of va r iab ly- rec rys ta l l i zed microspar, of ten shar ing piecemeal c lot t ing.

~ i l a m e n t o u s algae v i s i b l e i n par ts . Large areas of matrix and pa r t s of

f o s s i l s replaced by chalcedonic quartz. Fos s i l s (40% grain bulk) con-

s ist s predominantly of c r ino id columnals, concentrated i n nm-cm t h i ck

layers . ~ r i n o i d a l l ayers a l t e r n a t e with Schellweinella-rich layers . . .

which have been' compacted' i n t o broken, p la te - l ike fragmenis . Many

i n t e r -pa r t i c l e voids are un f i l l ed with matrix. 'Commonly occurring ,

f i n e fragments include: bryozoans, s i l i c eous and calcareous sponges,

product oid spines , and brachiopods . Residue

he sample was too extensively s i l i c i f i e d t o disaggregate t o the

point t h a t i t s residue could be examined.

Sample 100, from south end P e t e r s h i l l Reservoir, 80 cm above base of

exposure.

Petrology

A 4 cm th ick c lay wayboard horizon. The'.top and bottom of clay

a r e reddish-brown, while middle 3 cm a re ol ive t o cream or blue-grey.

The c lay i s very pasty, containing l i t t l e or no s i l t - s i z ed debris .

F o s s i l s a r e f a i r l y common.

~ e s i d u e

1. Pyr i t e - predominant, approximately 95% of coarse res idue,

occurring as spher ica l framboids.

2. ?Apatite - yellowish euhedra almost c e r t a in ly of apa t i t e .

3. ?Wulfenite - euhedral p l a t e s , up t o severa l hundred microns

across , showing c r y s t a l hab i t s and a l u s t r e t y p i c a l of wulfenite.

4. Authigenic quartz - replacements of skeletons.

Note : Although sample 100 was t h e only wayboard analysed i n d e t a i l ,

s eve ra l others were dissolved, and t h e i r res idues examined a f t e r

se iving. s eve ra l such samples contained rounded, d e t r i t a l quartz

silt, suggesting t h a t at l e a s t some wayboards a r e of d e t r i t a l

o r ig in .

~ Sample Se 72, from south end of P e t e r s h i l l Reservoir, 1 0 em below top

of borehole 4.

Petrology

An extensively breccia ted lime mudstone with a diverse , i n s i t u

fauna. ' The primary deposi t ional fabr ics ' are l a rge ly obscured by brec-

c ia t ion . Undisturbed par t s of semple show well-defined layer ing, con-

s i s t i n g of fragment-rich l ayers (up t o 60% fragments of sand s i z e ) and

lime-mud r i c h layers (with as l i t t l e as 10-15% grain bulk of fragments).

Predominant fragments are: bryozoans , brachiopods , ostracods (~ntomo-

conchus ) , bivalves , and sponge sp i cules . ' Fragment ri ch-layers are '

poorly-sorted; some of microfauna, e.g. Te t ra tax i s and Li tuotubel la

are i n l i f e a t t i t u d e s , at tached t o t he surfaces of laminae. Dolomite

replacement rhombohedra are common, occurring concentrated along laminae.

Residue

1. Authigenic quartz - predominant, approximately 90% of . res idue ,

1 cons i s t ing of cryptocrysta l l ine replacement of matrix, incorpor-

a t i n g dolomite rhombohedra, a l g a l filaments and vo id- f i l l ing mega-

quartz ;

2 . Dolomite - abundant, 28% of res idue, occurring as: a ) replacement

rhombohedra; b ) anhedral 16 crospar/pseudospar s i z ed c rys ta l s .

Sample Se 200, south end, P e t e r s h i l l Reservoir , 2.5 m above base.

Petrology

A cream coloured biomicrospar with a few cm-sized blue-grey i n t r a -

c l a s t s . I n t r a c l a s t s a r e not i n three-dimensional contact. m e cream

m a t r i x (65% grain bulk) cons i s t s of uniform, i n places swir ly o r c lo t -

t e d mi crospar . Fine, unsorted, ske l e t a1 debr i s common including sponge

spicules , ~ r o d u c t o i d sp ines , and fra@ents of echihoderms, ostracods,

b iva lves , t r i l o b i t e s and bryozoans . Sediment encrust ing foraminiferans

1 are a l s o common: Tetra taxis and Li tuotubel la .

Residue

I 1. Authigeni c quartz . occurring as cryptocryst a l l i n e chalcedoni c quartz

replacements of the ' matrix and s k e l e t a l fragments.

Sample Se 5006, south end P e t e r s h i l l Reservoir , 340 cm above base.

Petrology

A dolomitic laminated packestone with wavy, mm-thick wispy laminae

of sub-hedral ( 5 0 ~ ) dolomite pseudospar. ' Foss i l s (75% grain bulk) are

l a r g e l y fragmented, belonging t o ( i n order of abundance)': productoids,

echinoids , cr inoids , ostracods , calcareous sponges, o ther brachiopods , and bryozoans. Foss i l s show s l i g h t signs of compaction. '

Residue - . .

1. Authigenic quartz - predominant,' 70% of res idue, occurring as

c ryp tocrys ta l l ine chalcedonic quartz replacement of t h e matrix

and f o s s i l s , mainly brachiopods and bryozoans . 2. Dolomite - approximately 10% of res idue, i n t h e form of:

a) '100-2501.1 zoned euhedra with c a l c i t e cores ; s t a in ing

revea l s t h a t outer zones are more i r o n r i c h ;

b ) dolomite pseudospar, presumably derived from the laminae.

3. p y r i t e - r a r e , occurring as :

a) framboids ; b ) loose octahedra; c) s k e l e t a l replacements.

Sample 557 ~ q , from South Quarry, 60 cm above base of sequence a t

eros ion surface A.

Petrology

Blue-grey. stromatactoid cav i ty packstone wi th poorly-sorted frag-

,,ts (mean s i z e -12 ma, range Up t o .33 mm) of f enes t e l l i d s , Hyalostel ia, . .. . .

o s t r a c o d ~ (87% disas t icula ted ' , valves ' o r ien ted convex' damward),

~ t a c h e o i d e s cf . meandriformis , gastropods, Eotuberi t ina. productoid

s h e l l s and spines , s p i r i f e r s , bivalves , calcisponge spicules , e&in-

oid sp ines , echinoderm p la tes , F i s tu l ipora , and t r i l o b i t e thorac ic

segments. ' Allochems show a s l i g h t p r e f e r en t i a l o r ien ta t ion para l l e l - . .

i n g t h e i n d i s t i n c t layer ing seen i n t he matrix. Matrix consis ts of

c l o t t e d micr i t e , i n places, r e c rys t a l l i z ed t o microspar. Stromatactoid

c a v i t i e s present throughout, as we l l as l e s s than 1 mrn s i zed primary

1 s h e l t e r c av i t i e s (beneath overturned s h e l l s ) .

Residue

1. Authigenic quartz - predominent, approximately 75% of res,i.due,

consis t ing of:

a) black t o brown i r r egu l a r p l a ty fragments of clay and organic

he ld together by cryptocrysta l l ine chalcedonic quartz. The

I absence of d e t r i t a l clays or argi l laceous par t ings from

1 t h i n sect ions suggest these fragments a r e a burraw i n f i l l i n g ; I

b ) s k e l e t a l replacements of filamentous algae (e.g. Fig. F-2),

sponges (Fig. F-2b) and brachiopods . 2. Pyr i t e - r a r e , occurring as loose framboids and filamentous a l g a l

i n f i l l i n g s .

Sample Ls A , from the e a s t bank, P e t e r s h i l l Reservoir , 30 cm below the

t o p limestone.

Petrology

o l ive grey-brown uackestone with abundant, i n s i t u s o l i t a r y

corals . Matrix Consists of unif 0rrd.y r ec rys t a l l i z ed microspar, showing

of extensive i n d i s t i n c t b ioturbat ion. I n s i t u fauna include: .

~i gantoproductus , Antiquatoni a , t e r eb ra tu l i d s , s p i r i f e r s , and os tracods . Most allochemical debr i s i s l e s s than 3 mm, consis t ing of fragments of

brachiopods, cr inoids , ostracods , bryozoans , and foraminiferans .

Residue

I 1. ' ~ u t h i g e n i c quartz - predominant, occurring as: .

a ) cemented fragments of matrix, s k e l e t a l replacements of cora l s ,

productoid spines, ostracods and other ' she l l s ,

b ) void f i l l i n g mega-quartz . 2. Pyr i t e - r a r e , occurring as loose framboids and a l g a l filament

i n f i l l i n g s . 3. Phosphatic' fragments - r a r e , i n t he form of conodonts and s h e l l

fragments.

4. Dolomite - very r a r e , occurring as replacement euhedra.

S a m ~ l e s LSD and LsE, P e t e r s h i l l Reservoir , e a s t bank, 25 and 50 cm b e l w

LsA

Petrology

Both snmples a re s l i g h t l y argi l laceous foraminiferan-filamentous

a l g a l wackestones. Matrix, 402 grain bulk , consis ts of microspar, with

. loose ly interwoven filamentous a lgae, p a r t i a l l y enveloping s m a l l p a r t i -

c l e s and occasionally shar ing a p re f e r en t i a l sheet-form hab i t . Algal

and deposi t tonal fabr ics are l a rge ly destroyed by bioturbat ion. Allo-

chems a re dominantly l e s s than 1 mm fragments of co ra l , brachiopod,

sponge, bryozoans , dasycladaceans , ostracods and t r i l o b i t e s . Predom-

i nan t whole f o s s i l s include ostracods ( 80% d i s a r t i culated, 50% of dis-

a r t i cu l a t ed s h e l l s convex up) , and small f oraminiferans . Residue - 1. ~ u t h i g e n i c quartz - p r e d h n a n t 70-90% residue i n t he form of:

a) cryptocrysta l l ine chalcedoni c quartz replacing matrix,

b ) f o s s i l fragments.

2. pyr i t e - abundant, i n the form of: . .

a) 10-151.1 cy l i nd r i ca l replacements of a l g a l f i laments ,

~ b ) incomplete s k e l e t a l replacements of commonly occurring f o s s i l s ,

1 and c) coarse, polycrysta l l ine framboids, approximately 2 0 0 ~ i n

I 3. Organic matter - common, i n t he form of:

a ) soluble hydrocarbon found f l oa t i ng on t h e surface of t he sanple

during i r o n oxide removal;

1 b ) fragments of spores and plant debr is , and

1 c ) c l ea r and brown fi laments of probable a l g a l o r ig in ,

I 4. Galena - very r a r e , occurring as microscopic cubes and octahedra. -

1 Sample LsF, P e t e r s h i l l Reservoir, e a s t bank, 25 cm below LsE.

~ Petrology

I A s l i g h t l y argil laceous bioturbated packstone. Allochems (70%

gra in bulk) a r e l e s s than 1 mm, consis t ing of fragments of productoid

sp ines , th in - she l led brachiopods , Li thos t ro t i on, os tracods , sponge I ~ sp icu les , f oraminiferans , bryozoans , productoids an2 r a r e crinoids and

Kamaena. Whole allochems include foraminiferans (endothyrids, small

p lectogyral forms, ammodiscids , tubu la r and spher ica l attached forms) , ostracods (90% a r t i cu l a t ed , most aligned near ly p a r a l l e l t o bedding) ,

and gastropods. The matrix i s i n d i s t i n c t l y bioturbated throughout.

S l i g h t compactional re-or ienta t ion of f l a t fragments i s observed i n

matrix, but most grain Contacts are only s l i g h t l y sutured. Ostracods

a d foraminiferans show s l i g h t compactional deformation. Matrix con-

s i s t s of uniform pseudospar and clay. Hydrocarbons are present i n i n t e r -

s t i c e s between t he mosaic of pseudospar c ry s t a l s giving them unusually

dark boundaries. Heating a t h i n sec t ion t o 4 0 0 ~ ~ remo-red t he organic

mat ter , lightening t h e C O ~ O U ~ of t h i n sec t ions considerably.

1. ' Authigenic quartz - predominant 602, occurring as cry-ptocrystal-

l i n e cher t replacements .of matr ix and s k e l e t a l fragments.

2. Pyr i t e - abundant, i n t he form of:

a) 2 0 0 ~ euhedra; b ) loose framboids; and c ) a l g a l filament i n f i l l -

l i ngs , approximately 30p diameter.

1

1 Sample LsH, P e t e r s h i l l Reservoir , e a s t bank, co l l ec ted 50 cm below LsF.

I Petrolcgy

~ A s l i g h t l y argil laceous unsorted lime mudstone. Uniform matr ix I

1 (80%) cons i s t s of pseudospar, 50-150~ diameter, mean 7 0 ~ . Allochems ,

1 (approximately 20 gra in bulk) a r e mostly fragments l e s s than .7 mm i n

I diameter, consis t of Li thost rot ion junceum, productoids , t h i n she l l ed

brachiopods , and s o l i t a r y cora ls . Whole s h e l l s include small foram- I

i n i f e r ans and ostracods. Chalcedonic quar tz replacement of both matr ix I

and s h e l l s i s extensive throughout.

Residue

1. Authigenic quartz - predominant, cons i s t ing of:

a ) cry-ptocrystalline cher t replacement of t he matrix;

b ) f ibrous chalcedony replacements of mctrix and s k e l e t a l fragments,

c ) cher t replacing skele tons of L i thos t ro t ion , s i l i c eous hexactin-

e l l i d sponges, bryozoans , and a l g a l f i laments.

2. Pyr i t e - common, i n t h e form of :

a ) s k e l e t a l replacements of sponge, bryozoan and Li thos t ro t ion

fragments ;

b ) geopetal f l oo r s i n t h e dissepiments and t abu l a r chambers of

L i thos t ro t ion ;

c) a l g a l f i lament i n f i l l i n g s . d) l e s s than 200P loose framboids.

3. Phosphatic matter -rare, occurring as fragments of conodonts.

se rpu l ids , ver tebrates and coarsely ribbed p la tes ' of indeter-

minate o r ig in ,

4. Organic matter - r a r e , occurring as:

a ) shiny fragments of ? plant o r i g in lacking ornament

b ) t r i l e t e spores end ? a l g a l un i ce l l s

c) laminae of coa l i f i ed amorphous mater ia l .

Sample LsJ, col lected from t h e e a s t bank P e t e r s h i l l Reservoir, 25 cm

below LsH, lowest limestone i n t o p excavation.

Petrology

Extensively bioturb ated, grey wackest one. Multiple generations

of burrows o b l i t e r a t e deposi t ional t ex tures . Common burrows include

Zoophycus, type 5 burrows, and f aeca l trails. Matrix consis ts of

uniformly r ec rys t a l l i z ed m i crospar . S k e l e t a l debr is (40% grain bulk)

i s dominantly l e s s than 1 mm i n diameter, consis t ing of cora l s , gastro-

pods, productoid spines , brachiopod s h e l l s , f oraminiferans (pa r t i cu l a r l y

~ a r l a n d i a , Eos ta fe l l a , and Archaediscus) , ostracods (80% of s h e l l s d is-

a r t i c u l a t e d ) and crinoids . Residue

1. Authigenic quartz - predominant, occurring as s h e l l and matrix

replacements; very l i t t l e matrix replacement ( the re fore estimated

percentage clay i s l i k e l y t o be accurate) .

2. Pyr i t e - common, as loose framboids end s k e l e t a l replacements and

filamentous algal i n f i l l i n g s 50-60p diameter.

3. phosphatic fragments - very r a r e .

Sample 300, P e t e r s h i l l Reservoir, borehole 3, a t surface .

Petrology

An argi l laceous wackest one, showing s igns of extensive i nd i s t i nc t

burrowing l a t e r crosscut by Zoophycus. Wavy c lay laminae present

throughout , except where a isrupted by bioturbat ion. 40% s k e l e t a l debris

l e s s than 1 mm, doninantly endothyrids , b i s e r i a l for-, ostracods ;

r a r e bryozoans and gastropods ; very r a r e cr inoids . Matrix composed

pseudospar and m i crospar . Both allochems and matrix are extensively

r e crys t a l l i zed.

Residue

1. Authigenic quartz - predominant, occurring as :

a) grey fragments of c ryp tocrys ta l l ine chalcedonic quartz

binding together c lay l d n a e , allochems, and preserving

moulds of allochems ;

b ) s k e l e t a l replacement of brachiopod spines , sponges and

bryozoans . 2. Pyr i t e - r a r e , loose f rmbo ids and s k e l e t a l replacements.

3. Organic fragments - r a r e , i n t h e form of:

a) Colourless or straw coloured fi laments of probable a l g a l

o r ig in ;

b ) b lack, vase-shaped, spores and broken lus t rous fragments

of p lan t matter.

4. phosphatic fragments - r a r e , occurring as conodonts, heavi ly

ribbed ? ver tebrate sca les , and spher ica l gra ins of indeterminate

or igin .

5 , ~ o l o m i t e - very r a r e , occurring as corroded (poss ibly by treatment)

zoned euhedra.

Sample 301, P e t e r s h i l l .Reservoir, Borehole 3, 33 .em. '

Petrology

Grey wackestone; matrix consis ts of uniform microspar, shming

extensive, i n d i s t i n c t bioturbation. Burrass l ack definable boundaries

bu t concentrate s h e l l debris. ' Allochems 20% gra in bulk; mean s i z e l e s s

than 2 mm, consis t ing of bryozoms , foraminiferans , s m a l l productoid

spines , ostracods (mostly a r t i cu l a t ed ) , and corals .

,Residue

1. Authigenic quartz - predominant, approximately 60% of res idue,

occurring as:

a) i r r e g u l a r fragments ( s t i l l i n t h e form of t h e o r ig ina l

sample before acid d i sso lu t ion) . Such fragments a re crypto-

c r y s t a l l i n e chalcedonic quartz replacements of t h e former

microspar matrix. m i t e i n f i l l e d branched a l g a l f i laments,

near 18p diameter, a re i n t e r g r a m throughout many fragments.

2. Chalcedonic quartz replacements of fe ldspars (Figs. F-1; F-2)

common, approximately 20% of residue. Replaced c rys ta l s a r e

sand-size , probably formerly orthoclase. Most replacements

were of s ing le prismatic c ry s t a l s approximately 2 5 0 ~ long, with

an a:b a x i a l angle of 63' (Fig. F-1) . Simple (010) Carlsbad

contact twins a re common (Figs . F-1; F-2) A l l c ry s t a l s a re

euhedral , lacking s igns of t ranspor ta t ion. One exceptional

c r y s t a l (Fig. F-2) had g r a m around an organic walled f i lament,

almost c e r t a in ly of a l g a l o r ig in - Most c ry s t a l s a re completely

replaced; a few a re p a r t i a l l y intergrown with kao l in i t e .

3. chalcedonic quartz replacements of small s k e l e t a l fragments - common .

4. ' Pyr i t e - comon, approximately 5-lo%, occurring as: 20-50~ s i z e

f rmbo ids , and elongate c lu s t e r s ( ~ i g . F-2b) possibly overgrcwths'

of filamentous algae.

5 . organic matter - r a r e , approximately 8% ,of residue, occurring as:

spores, brown or black, shiny fragments, and straw-coloured f i l a -

ments, s imi la r t o those i n t e rg rom with fe laspar c ry s t a l s (see

Fig. F-1). '

6. Phosphatic f o s s i l s - very r u e , consis t ing of: conodonts end

ribbed fragments of ? f i s h sca les . '

7. Dolomite - very r a r e , consist ing of loose euhearal c rys ta l s .

Sample 307, P e t e r s h i l l Reservoir, borehole 3, 1 4 4 cm b e l m surface.

Petrology

Medium grey, laminated argil laceous biomicrospar wackestone ,

'showing s igns of compaction throughout: completely compacted de l ica te '

f o s s i l s , s l i g h t l y deformed thick-shelled f o s s i l s , pseudostylol i tes ,

and pressure so lu t ion enhanced i n t e rg ra in boundaries. Matrix consis ts

of f a i r l y uniform 20p diameter microspar. Ske l e t a l fragments (24%

grain bulk) a r e l a rge ly l e s s than 1 mm diameter, and consis t of:

f oraminiferans ( p a r t i c u l a r l y endothyrids) , brachiopod, bryozoan , and

co ra l debr i s , and ostracods (50% a r t i cu l a t ed , predominantly concave-

up) . Obvious s igns of b io turba t ion were absent, bu t could have been

present , obscured by re-arrangement of compactional fabr ic .

~ e s i d u e

1. Authigenic quartz - predominant, i n t h e forms of chalcedonic

quar tz replacements of t h e matrix, o f t en binding together c lays ,

and s k e l e t a l fragments.

2. Pyr i t e - r a r e , occurring as loose framboids.

3. Organic matter - r a r e , i n the form of b lack f ibrous fragments

Fig. F-3a) and hydrocarbons which f l oa t ed on acid during ( e . g-

dissolut ion.

Samples 308 and 312, borehole 3, taken from t h e 1.6 m and 2.0 m l e v e l

respect ively .

Petrology

Both 'are laminated argi l laceous wackes tones, showing prominent

compactional laminae. T rms la t i ona l movement (evidence of i n t r a -

s t r a t a l flow) has drawn f o s s i l s out p l a s t i c a l l y along some laminae.

Signs of compaction a re extensive throughout ; even i n robust s h e l l s ,

such as endothyrid foraminiferans. Ske le ta l debr is , predominantly

l e s s than 1 mm, i n diameter, comprising 30-40% gra in bulk, consis ts of:

a) fragments of bryozoans , corals , and ostracods , and b ) whole, com-

pacted, ostracods, gastropods, f o r d n i f e r a n s . An exceptional spine

encrus ta t ion of Stacheoides cf . meandrif ormis suggests t h a t t h e small

i n s i t u productoids found i n sample l i ved epifaunally. Matrix consis ts

of uniform microspar, clays, and py r i t e , with intergrown a l g a l f i l a -

. , ments ( 3 0 ~ i n diameter).

Residue

. . 1. Authigenic quartz - predominant, occurring as a matrix replacement

binding together fragments of t ranspor ted d e t r i t u s and replaced

s h e l l s .

2. Organic d e t r i t u s - common, i n t he form of hydrocarbons, shiny

black spores (Fig. F-3f) , blocky ribbed fragments (F-3a), and

a l g a l f i laments.

3. D e t r i t a l quartz - very r a r e , consis t ing of a few sand-size grains.

Samples 316, 317 and 318, borehole 3, P e t e r s h i l l Reservoir, collected

a t 5m, 5.5'm. i . 8 m respectively. -

Petrology. '

A l l t h r ee samples are black carbonaceous shales showing well-

developed f i s s i l i t y . ' Most specimens swell and disaggregate when . .

placed i n water; only very l imi ted areas a re cemented a t all. Matrix

i s l a rge ly composed of clay, and organic de t r i t u s (ribbed fragments

(e.g. Fig. F-3a) , .spores (e.g. F-3e), c lea r ly i den t i f i ab l e par t s of

p lants (e.6. F-3c,d), and coa l i f i ed f r amen t s ) . Foss i l s , comprising

a var iable 10-40% grain bulk i n the laninae where they are present,

consis t of Eomarginifera, s p i r i f e r s , bivalves, ostracods, foramini-

ferans , m d sponge spicules. ., A few laminae were covered i n paired,

horizontally-orientated Lingula s quami formis , Most macrof o s s i l s

appeared t o be i n s i t u , however, laminae consist ing of fragments were

a l so present. The f o s s i l s only occur i n d i sc re te laminae, seldom

exceeding a few millimetres i n thickness, Most of each specimen i s

unfoss i l i ferous .

Residue

1. Authigenic quartz - predominant i n sample 316; organic matter i s

predominant i n the others. Quartz occurs i n t he form of micro- . - > . .

crys ta l l ine chalcedony, binding together other insoluble elements

of matrix.

2. Organic matter - i n t h e form of hydrocarbons, and organic de t r i tus .

The proportions of both forms increase markedly damward.

3. Pyr i t e - abundant ,a lso increasing d m w a r d between samples, i n

t h e form of loose polycryst a l l i n e aggregates and s h e l l replace-

ments, p a r t i c u l a r l ~ of i na r t i cu l a t e brachiopods (Fig. F-2f) ,

4. D e t r i t a l quartz - sand and s i l t s ized quartz grains, r e s t r i c t e d

t o a few laminae.

5. ~ o l o m i t e - v e r y ra re , i n the form of a few euhedra, only occuring

i n 316.

Figure F-1 *he commonly occurring c r y s t a l h a b i t s

of auth igenic f e l d s p a r c r y s t a l s obtained from

i n s o l u b l e r e s i d u e s from the Reservoir Mbr. Limes tones

g.1. 46,5446

Fig. F-2 SEM photographs of t h e comon insolubie residues from

t h e Reservoir Mbr. Limestones. 5.1 46,547 D

a. P lan t fragment : note medial s u t u r e , which suggests t h a t fragment

nay have been ce lamit id .

Scale b a r = 7 2 ~ .

b. S i l i ceous sponge m i crosc lere . The a x i a l hollow provides evidence

t h a t t h e microsc lere o r i g i n a l l y belonged t o a s i l i c e o u s sponge.

Tne micros c l e r e i s preserved as a chalcedoni c quar tz replacement.

Scale b a r = 74u.

c. Authigenic f e ldspar c r y s t a l . A s i n g l e pr ismat ic c r y s t a l of an

au th igen ic f e l d s p a r , replaced by chalcedonic quar tz .

The euhedra l h a b i t and engulfed organic f i lament ( almost c e r t a i n l y

of a l g a l o r i g i n ) provide evidence of auth igenic o r ig in f o r the

c r y s t a l .

Sca le b a r = 4 3 ~ .

d. Close-up of f i lament engulfed by former auth igeni c f e ldspar .

Sca le b a r = 13u.

e. Phosphatic f a e c a l p e l l e t .

Scale bar = 2 6 0 ~ .

f . Pyri te-replaced r ibbed s h e l l , probably belonging t o an i n a r t i c u l a t e

brachiopod.

Scale b a r = 2 5 0 ~ .

Fig. F-3 SEM photographs of the comon h s o l u b l e residues

from limestones a d sheles i n t h e Reservoir Mbr.

9.7. 46,S47 D

a. Coarsely-ribbed p lan t fragment, and f ine-grained organic

debr i s t y p i c a l of black sha les .

Sca le b a r = 1 0 0 ~ .

b . Elongate c l u s t e r of oc tahedra l c r y s t a l s , probably formed b y

o v e r g r m t h on a l g a l f i lament . Sca le b a r = 2411.

c.+d. Well-preserved p lan t fragment, note t h a t stomata a re

p resen t ( close-up F-2d) . F-2c s c a l e b a r = 7 4 p ; F-2d s c a l e b a r = 2411.

e . P y r i t e i n t e r n a l mould replacement of a trepostomatous bryo-

zoan, probably a form s i m i l a r t o Tabulipora.

S c a l e b a r = 67p.

f. S l i g h t l y compacted spore , s h a r i n g s u r f i c i a l ? fungal

i n f e s t a t i o n .

Sca le bar = 4 h v ,

Part I1 - Percentages. of insoluble res idue i n t h e samples .. analysed,

Note on procedure

Samples were f i r s t cleaned of surface d i r t , then dr ied and crushed

i n t o approximately 1 cm s ized fragments, ' 30% ace t i c ac id was used t o

dissolve samples. ' Non-calcareous samples , ,and s i l i c i f i e d ' samples which

d id not r e a c t , were removed from the acid, r i n sed , and powdered using a

jaw crusher and a t ema . Their insoluble res idues were not examined vis-

ua l l y as they did not contain sedinentological ly valuable information.

For ease of examination, residues were separated by wet se iving,

as shown on Table F-4. The l e s s than 240 mesh f r ac t i on was sub-sampled

fo r c l ay mineral analysis .

Estimated percentage clay . .

This calcula t ion was made i n order t o provide an approximate e s t i -

mate of t h e percentage of d e t r i t a l c lay i n each sample, It was only

performed on limestone samples, as a means of determining a r e l a t i v e

measure of t h e i r o r ig ina l d e t r i t a l content. Because near ly a l l lime-

s tones contain s i gn i f i c an t percentages of chalcedonic quartz occuring

as a matrix replacement, it was impossible t o be assured t h a t a l l the

clay-sized mate r ia l had been f reed during acid treatment. Some samples

f a i l e d t o disaggregate a t a l l and there fore t h e i r c lay contents could

not be estimated. This problem i s insurmountable i n working with

s l i g h t l y s i l i c i f i e d limestones. Mechanical crushing ( the only other

meens of reducing a samples p a r t i c l e s i z e ) had t h e disadvantage t h a t

it a l s o reduced authigeni c quartz t o clay-sized p a r t i c l e s , thus making

it impossible t o separate d e t r i t a l from authigenic const i tuents . The

high ~ r o p o r t i o n s of authigenic quertz i n some samples account fo r t he

high insoluble residue percentages even though these samples were clas-

s i f i e d as being near ly pure carbonates Moreover, some of the' clay i n

these samples could be seen t o be authigenic , occuring as k a o l i n i t e

void l i n ings . The descr ip t ive term has been applied t o t he sample

as it was when it was deposited, not t o its current composition.

TABU F-4 s i , z e - w t z

Weight weight% > 35 200-35 200-240 ~s . insoluble mesh a h mesh

120.50 99 * * * 210.71 68 * * f

115.00 loo * * *

lestinated visually l o s s on bo i l i ng res idue i n HCL-calculated as 5 of sample

3see Table F-5

* = not measured - sample f i n e l y ground p r i o r t o treatment 1 = not determined blank = not present-

Table F-5 (below) shows how estimated $ clay was determined,

Table F-5

SAMPLE = Carbonate + Residue

mater ia l ) 240 < 240 mesh l a rge ly authigenic la rge ly d e t r i t a l :

material: c lay, organic matter- chal qtz

+ + pyr i te authigenic material: .

chal q tz + pyr i te

% clay = wt.Residue - A W t Sample x 100

The estimated % clay was calculated by subtract ing the weight of

non-clay residue from the t o t a l weight of the res idue, and calculat ing

the r e s u l t as a $ of the t o t a l weight of t he sample. This f igure i s a

maximum fo r the t o t a l amount of clay, as it must a lso include some

authigenic clay-sized chalcedonic quar tz , py r i t e , and authigenic clay.

APPENDIX G

TRACE FOSSILS FROM THE RESERVOIR MBR. '

Note : The f i r s t p a r t of t h i s appendix consis ts of a descr ipt ion of . .

the common t r a c e f o s s i l s i n t he Reservoir Mbr. These t r ace s have been

numbered 1-9 f o r use i n subsequent references (e.g. Fig. G-6). The

t h r ee morphotypes of Thalassinoides (numbers 7a, n , 7c) were kept sep-

a r a t e i n order t o i l l u s t r a t e t h a t they are cons i s ten t ly found together.

I n pa r t 11, the r e s u l t s of t he comparative t e s t ( r e f e r r ed t o i n

t e x t , Ch 5 ) a re given. The ichonofauna of 71 ver t i ca l ly -s l i ced plaqu-

e t t e s and peels was t a l l i e d ( ~ i g . G-6). The r e l a t i v e a rea bioturbated

by each of t h e t r ace f o s s i l groups A , B , C ( c f . Ch 5) was then estima-

t ed on t he 33 l a rge s t specimens which did not show s igns of extensive

compaction a able G-7). Pr ior t o carrying out t h i s p a r t of t he study, . .

t he a c t u a l areas bioturbated by t he d i f f e r en t t r a c e f o s s i l groups were

drawn out and measured accurate ly with a planimeter on th ree specimens. . .

The v i s u a l est imates of the areas bioturbated on these specimens were , .

found t o coincide f a i r l y c lose ly with t he ac tua l measured area (ti5.5'

area) . Thus it was f e l t t h a t t he v i s u a l est imates provided' an accur-

a t e approximation. Note t h a t t h e areas l i s t e d able G-7) are only

f o r t h e l a s t burrowing event. Samples with undisturbed deposi t ional

t ex tu r e s , such as layer ing were considered t o be apparently unbiotur-

bated. -

Par t I - TAXONOMIC DESCRIPTIONS

Type 1 Sinuous cy l i nd r i ca l burrow

~ e s c r ip t ion Sinuous 'cyl indr icel burrows, 3-4 mm i n diameter,

appearing i n fu l l - re l i e f . I n t e r n a l s t r uc tu r e poorly-defined, probably

a meniscus back f i l l i ng , s im i l a r i n colour and composition t o matrix,

Burrow boundaries i n d i s t i n c t .

Comments Type 1 burrods ese only found i n carbonaceous black

shales .

Type 2 I n d i s t i n c t burrows

Figs. 5-3; 5-4

Description A group of burrows, lacking well-defined boundaries

and i n t e r n a l s t ruc ture . Preserved ES a swi r ly t ex ture of laminae s i m -

i lar i n composition t o matrix, but often containing s t r i n g s of faeca l

p e l l e t s . External form usua l ly not v i s i b l e , occasionally round, o r . .

upward-domed, mushroom-shaped. Burrows only preserved i n f u l l - r e l i e f ,

o f ten ex i chnial .

Type 3 Zoophycus Massalongo 1855

Fig, 5-3

Description Incl ined s p i r a l laminae 0.9 mm thick; lobate i n

plan-view ou t l ine , spreading from a v e r t i c a l a x i a l tube approximately

1 cm diameter. Laminae var iab ly inc l ined , i n some l i t ho log i e s a l t e r ed

by compaction. Spacing between leminae a l so var iab le . Preserved i n

f u l l - r e l i e f .

Comments Zoophycus i s t h e most abundant t r a c e f o s s i l i n t h e

~ e s e r v o i r Mbr . It is a u se fu l index of subs t r a t e consistency i n i t s e l f .

In g e l subs t r a t e s , burrows may be t raced f o r a considerable v e r t i c a l

dis tance (up t o 40 cm), an ind ica t ion of t he depth t o which sediments

could be penetrated. I n argi l laceous , g e l subs t r a t e s , laminae arch . ~

around burrows, while i n p l a s t i c substrates ' , t h e sediment does not

show s igns of compaction around t h e burrow laminae. '

Type 4 P1 ano l i t es Nicholson 1873

Description An unbranched sinuous cy l i nd r i ca l meniscus-backfilled

burrow, 8-10 mm i n diameter. Burrows are usual ly o r ien ta ted subhorizon-

t a l l y . F i l l s consis t of t i g h t l y packed, shallow, meniscus-shaped back-

f i l l i n g s of concentrated s k e l e t a l fragments and clay. Incomplete back-

f i l l i n g of ten r e s u l t s i n a small hole being l e f t i n the ' middle of the

burrow. Burrows preserved i n f u l l - r e l i e f .

Comments It i s e a s i l y possible t o confuse some cross-sections of

Zoophycus and Planol i tes , as both consis t of meniscus backf i l l ings .

The two can be dist inguished, however, as Zoophycus i s formed of a l t e r -

na t e ly reworked and undisturbed lamellae (Simpson 1970) whereas t he

b a c k f i l l s of Planol i tes consis t of e n t i r e l y reworked sediment.

Type5 Loosely backf i l l ed bur ra rs

~ e s c r i p t i o n A group of 1-3 cm diameter variably-shaped, sometimes

c i r c u l a r , o r branched, burrows appearing i n f u l l - r e l i e f . Burrow wal ls

a re sharp and lack s igns of mixing, l i n i n g or cracking. I n f i l l i n g s

a re coarser and-more loosely-packed than matrix, o f ten showing menis-

ca te or concentric laminae.

Type 6 Segmented burrows

Des c r ip t ion Cyl indr ical , i r r e g u l a r l y meandrine , unbranched f u l l -

r e l i e f burrow, 3 mm i n diameter. Tight ly back f i l l ed with a l t e rna t e

meniscus-shaped laminae and s t r i n g s of e l l i p t i c a l f a e c a l p e l l e t s ; each

p e l l e t app roAmate1~ 2 5 0 ~ long. The meniscus-shaped laminae are l i g h t ,

whereas t h e ~ l l e t s a re dark grey, giving the burrow a d i s t i n c t l y seg-

mented appearance.

T Y P ~ ' 7 hal lass in odes Ehrenberg 1944

Thalassinoides paradoxica (Woodward) 1962

forma minuta (forma nov.)

Figs. G1 t o G-5

D i agnosi s Morphologically s imi l a r t o T: paradoxi ca , sensu

Kennedy (1967), but smaller i n s i z e ; tunnels usua l ly near 5 mm exter-

n a l diameter and seldom exceeding 15 mm. Burrow wal ls may be sediment

l i ned , blue-grey s ta ined (?mucus l i n e d ) , or e n t i r e l y unlined.

Holotype P e t e r s h i l l Reservoir , Bathgate, West

Lothian. vise'= age, V3C.

In t roduct ion The i chnogenus Thalassinoides and t h e ichnogenera

with which it commonly overlaps, Ophiomorpha and T e i chichnbs (Frey,

Howard and Pryor, 1978) a re among the b e s t known environmental indica-

t o r s from Mesozoic and younger sediments. Thalassinoid burrows have

, no t , however, h i t h e r t o been formally described from the Palaeozoic,

although s eve ra l authors have reported t h e i r presence o r probable

occurrence (chamberlain and Clark 1973; Gutschick and Rodriguez 1977;

Morrow 1978). The Reservoir Mbr. specimens a re well-preserved and m e

there fore given a formal descr ipt ion i n order t o f a c i l i t a t e i den t i f i -

ca t ion elsewhere, and extend t h e range of Thalassinoides t o t h e ~ise(an.

~ h a l a s s i n o i d e s burrows information on k b s t r a t e consis-

tency as w e l l as being a cha rac t e r i s t i c element of t h e level-bedded,

high-carbonate biomi crospar i te fac ies .

'The ~ e s e r v o i r Member mate r ia l consis ts of t h r ee types of burrows

( A , B, C; Fig. G-4) usual ly found together i n t h e same specimen (e.g.

Fig. G-2c). 'Their c lose associa t ion, almost c e r t a in in te rgrada t ion ,

m d morphological s i m i l a r i t y with burrows s imi l a r t o previously-

described ~ h a l a s s i n o i d e s , form the b a s i s f o r concluding tha t the three

burrow types belong t o t h e same ichnogenus. '

Figure G - 1 Genera l appearance of Tha la s s ino i des paradoxica forma

minuta (forma nov. ) . Photos o f holoty-pe.

Traces p re se rved i n convex e p i r e l i e f , on t h e undersurface

of a bedding s l a b of L i t h o s t r o t i o n co lon ie s . Prominent

burrows have been darkened f o r emphasis. RSb 197q/./

Subhor i zon ta l g a l l e r y sys tern, gene ra l view.

b . Same specimen. Close-up of ove r s i zed branching p o i n t .

Such enlargements are t y p i c a l of t h e i n t e r s e c t i o n s of s e v e r a l

t u n n e l s .

Same specimen Y- and T- in t e r sec t ions . The coarse , somewhat

ropy e x t e r i o r appearance of burrow l i n i n g i s t y p i c a l of Type A

l i n i n g s .

Description An i r r egu l a r burrow system of v e r t i c a l (usual ly

l i ned ) sha f t s spreading i n t o sub-horizontal branched tunnels a t one

or more l eve l s . The sub-horizontal elements, which a re both l ined

and unlined, form a Y- and T-branched system bifurcated a t i r r egu l a r

2-5 cm i n t e rva l s (Fig. G-1). Par ts of tunnels a re o f ten swollen,

p a r t i c u l m l y a t branching po in t s ( ~ i g , G-l), Branches of ten much

smaller than main tunnels ( ~ i g . G-1) . Shafts commonly 7-20 mm i n ex t e r i o r diameter, usual ly e l l i p so i -

d a l or round, extending v e r t i c a l l y up t o 20 cm. The a x i a l pa r t s of

such tunnels often open, approximately 5 mm i n diameter. Horizontal

tunnels are i r r egu l a r i n cross-section, of s im i l a r diameter t o shafts ,

and may extend up t o near ly 1 m.

Scratch marks, commonly reported from elsewhere, were not pre-

served i n t he Reservoir Mbr. mater ia l ,

I n t e r n a l s t ruc tures

- Type A burrows ( ~ i g s . G-2b, c ; 6-10c, f ) . Burrow with dark, con-

cen t r i c a l l y laminated sediment l i n ing , usua l ly composed of mate r ia l

nore argi l laceous than t h e surrounding matrix. Such l in ings normally 3

stand out sharply from the matrix because of t he higher proportions of

incorporated clay. . The concentric lamination wi thin t h e l i n i n g (Fig.

G-2b) c l ea r ly es tab l i shes t h a t the sediment has been b io log ica l ly man-

ipula ted. Lined burrows a r e t yp i ca l l y oversized, and only the axial

t h i r d of a tunnel cross-section i s open (Figs . G-2b ; G-4). Type A

burrows we a ther p r e f e r en t i a l l y , leaving round or e l l i p s o i d a l pockmarks

on bedding surfaces (Fig. 9-3a). Such marks a re another cha rac t e r i s t i c

means of iden t i fy ing Thalassinoides.

Comments Type A burrows are genera l ly similar t o Recent shrimp

burrow l i n ings described by Shinn (1968) and Brzithwaite and Talbot

(1972)

Figure G-2 Thalass inoides burrows : appearance on pol i shed

p l a q u e t t e s . A l l s c a l e b a r s a r e 1 cn; v e r t i c a l l y o r i e n t a t e d

rock s l i c e s .

a . A Type B burrow anong t h e c o r a l l i t e s of a L i t h o s t r o t i o n j u n c e m

colony. The w a l l of each burrow i s s t a i n e d dark blue-grey. Note

t h a t t h e s t a i n decreases i n d e n s i t y away from t h e burrow w a l l . The

i n f i l l i n g c o n s i s t s of cream biomicrospar , s i m i l a r i n composition t o

ma t r ix , b u t l a c k i n g s t a i n i n g . R ~ M I47q.1, z

b. Oblique s e c t i o n through a Type B , sediment l i n e d , burrow wi th an

open axial t u n n e l ( s p a r i n f i l l e d ) . Burrow system a l s o developed mong

L i t h o s t r o t i o n c o r a l l i t e s . RW1474.1.3

c. Typ ica l appearance of Thalass inoides . A t t o p , a sediment- l ined

Qpe A burrow (A) extends sub-ver t i c a l l y and may in t e rconnec t wi th an

i n f i l l e d and broken Type B ( B ) underneath. m e Thalass inoides system

appeers t o have d i s r u p t e d a Chondri tes ( c ) system. Note t h a t i n t h i s ,

t h e u s u a l p r e s e r v a t i o n s t a t e , 2. burruw g a l l e r i e s a r e no t p a r t i c u l a r l y

obvious. Note a l s o t h a t a sediment s u r f a c e e n c r u s t a t i o n of F i s t u l i p o r a

( F ~ ) provides evidence of s u b s t r a t e f i rmness and s t a b i l i t y . F i s t u l i p o r a

growths a l s o form a m u l t i p l e e n c r u s t a t i o n on a producto id sp ine (arrow

a t l e f t of 1 cm s c a l e b a r ) i n d i c a t i n g t h a t t h e productoids l i v e d ep i -

f a u n a l l y on t h i s s u b s t r a t e type . 17JM ISM./. q

d. Type C Tha la s s ino ides burrow, i n f i l l e d wi th da rke r meniscus-

b a c k f i l l e d , a r g i l l a c e o u s sediment. Arrow p o i n t s t o s h a r p b u r r m w a l l ,

a s i g n of sediment cohesiveness . The ma t r ix i n which burrow was

formed i s an i n f i l l i n g i n a crack a long e ros ion su r f ace A i n t e r p r e t e d

as a s u b a e r i a l d i s c o n t i n u i t y . These burrows e s t a b l i s h t h e marine

o r i @ n of t h e fill. RJM 19V I. 5

e . A re-excavated Type B burrow. Riat and l e f t ha lves of s l i c e

through a core are mir ro r images, each b e i n g 2.5 cm i n diameter.

Several i n t e r v a l s o f re-excavat ion have l e d t o t h e formation of con-

c e n t r i c , blue-grey s t a i n e d burrm walls ( ar row) . The core shows a

s e c t i o n through a h o r i z o n t a l t u n n e l . and a connect ion t o a v e r t i c a l

shaf t ( r iph thand c o r e ) . fljk l r 74. I I

',:.:'>d ' .~.' - . . . r ' . .'..:. \ -

M a , , . . . u " *.

PAGE NUMBERING AS ORIGINAL

Type B burrows (Figs. G-2; G-3; 5-5 ; 3-5). Burrows lacking a

sediment l i n ing , but rimmed by a blue-grey s t a i n ( in te rpre ted as a . .

mucus secre t ion) . This supposed mucus s ec r e t i on , o r l i n ing , i s pre- . .

served as a blue-grey s t a i n , a few mill imetres t o a few hundred m i - ' U,

crons t h i ck , which decreeses i n dens i ty away from t h e o r i g i n a l tunnel

w a l l ( ~ i ~ . G-3). The stained rim i s composed of mic r i t e , denser than

t h e surrounding microspar matrix and often containing a higher propor-

t i o n , of fine-grained- pyr i t e , The s t a i n most of ten appears t o penetrate

d i r e c t l y i n t o the matrix, although it has a l so been found i n sediment

i n f i l l i n g s of t he same composition as t h e enclosing matrix, re-excavated

burrows and l i n i n g f rac tures (Figs. G-2; G-3; 3-5). 'Blue-grey' s t a ined

sediment fragments are common within Type B burrows and throughout t he

matrix i n which t he burrows a re found.

These presumed mucus-lined burrows most often' form pa r t of the

hor izon ta l pa r t s of the Thalassinoides system. They. have of ten become

i n f i l l e d and subsequently been re-excavated, as described i n Fig. G-3,

Such burrow f ab r i c s are t y p i c d of Type B burrows ' and there fore a l so

of " ' - p r a d o ~ c a forma minuta.

The blue-grey s t a i n i s l i k e l y t o have formed where t he burrower' . . . .

has forced a cementing mucus i n t o t h e matrix, o r perhaps p las te red a

mixture of sediment and mucus on t h e burrow wal l . ' Several authors

(q.v. B ra i t hwd te and Talbot 1972; Frey, Howard and Pryor 1978; Elders !

1975, p 528; Weimer and Hoyt 1964) have found t h a t Recent Thalassinoides- I

producing organisms may l i n e t h e i r burrows s imi la r ly . The s t a i n i s

c l e a r l y of b io log i ca l o r ig in as it i s a l so found l i n i n g t he re-excavated

pa r t s of burrows (Figs. G-3; G-2e).

Comments Type I3 burrows show evidence of l im i t ed e a r l y l i t h i f i -

cation. Angular f r a ~ e n t s of blue-grey s t a ined matrix and t h e sharp-

ness of the walls themselves i nd i ca t e t h a t type B wal l s were 'very f i rm

Fig. G-3 A re-excavated Thalass inoides burrow, Type B.

The ma t r ix c o n s i s t s of cream coloured biomicrospar which has been s t a i n e d blue-grey a t t h e burrow wa l l s (dense s t i p p l i n g ) . The e a r l i e s t burrow (1) i s i n f i l l e d wi th sediment s i m i l a r i n composition t o t h e matr ix. A second burrow ( 2 ) has been excavated w i t h i n t h e i n f i l l i n g i n t h e f i r s t , and a l s o has a blue-grey s t a i n e d wa l l . Burrow 2 i s in t u r n c o n c e n t r i c a l l y l i n e d wi th sediment , and has an open a x i a l vo id , which i s i n f i l l e d wi th s p a r r y cement.

~ u l t i p l e excavated burrows provide evidence t h a t t h e blue-grey s t a i n i n g i s of b i o l o g i c a l o r i g i n , as it i s a s soc i a t ed wi th t h e former sediment-clearing and s t a b i l i z i n g a c t i v i t i e s of a burrower.

Note t h a t t h e s t a i n i s denser and t h i c k e r on l a r g e r t u n n e l s , sugges t ing t h e y were e i the r occupied f o r longer o r t h a t t hey r equ i r ed g r e a t e r s t rengthening .

(Figs. G-2; G-3). . I n some cases, however, wal ls have f ractured, a s ign

of b r i t t l e consistency. Fractur ing can be Seen t o have .occurred while

the ' ga l le ry system was s t i l l inhabi ted, as f rac tured burrows have been

re-excavated and re-lined.

Fragments of blue-grey s ta ined burrows a re of ten ' rounded, and

. appear ' t o have been transported. It i s l i k e l y t h a t such rounded par-

t i c l e s are exhumed former burrow l i n ings , similar t o those widely re-

ported i n present day environments were ca l l i anas s id shrimp burrows

a re widespread (Enos and Perkins 1977). Thus type B burrows are

c lose ly analogous t o Recent c a l l i anas s id shrimp burrows in t h a t they'

a re s i t e s of e a r l y l i t h i f i c a t i o n , and form sedimentary par t i c les .

Type C burrows (Figs. G-2; 3-5, G-4; 7-2a). These port ions of

thk Thalassinoides system arre e n t i r e l y unlined', and usual ly f a i r l y

l a rge (8-16 mm) , forming sinuous, subve r t i c a l shaf t s . ' Argillaceous

meniscus back f i l l i ngs are p a r t i c u l a r l y common ( ~ i g s . G-2; G-4; 3-5;11-12) . The burraw wal ls and i n f i l l i n g s a re o f ten s l i g h t l y dolomitized.

Comments !TypeCbur r a rwa l l s p r o v i d e t h e m o s t re l i ab lemeans

of determining subs t ra te consistency, as they l a ck any l i n i n g o r s i gn

of re-enforcement. The walls are often extremely jagged and uncom-

patted; a s i gn t h a t t h e enclosing substrate was very cohesive. i'.

Occurrence Thalassinoides paradoxi ca forma minuta burrows are

most abundant, b e s t preserved, and t y p i c a l l y associa ted with Li thost rot ion ,.

junceum colonies t h a t t h a t coalesced t o form th i cke t s (q.v. Ch 9).

Discussion The various types of Thalassinodes w a l l s and i n f i l l -

ings a re shown i n Fig. G-4. I n order t o fu r the r ascer ta in whether these

morphologically d i f fe ren t types of burrows belonged t o the ' same system,

a comparative study was made between burrar types (A, B , C ) and i n f i l l -

ings (1, 2, 3, 4, 5 , Fig. G-4). The resul ts , t abu la ted below, suggest

Fig. G-4 Thalassinoides burrows : w a l l t ypes , i n f i l l i n g s , p r e s e r v a t i o n .

Genera l ized i l l u s t r a t i o n s of s e v e r a l aspects of Thalassinoides burrows.

The common w a l l types ( a , b , c) and i n f i l l i n g sediments (1-4) described i n t e x t and used i n a

smal l comparative s t u d y a r e shown (q.v. Table G-5). I n f i l l i n g sediments were desc r ibed as be ing

pass ive ly deposi ted ( f i l l s 1, 4 ) , o r r e f l e c t i n g t h e dwelling a c t i v i t i e s o f t h e burrower ( f i l l s

2 , 3) , Empty ( s p a r r y c a l c i t e cement i n f i l l e d ) burrows were a l s o present ( 5 ) . Compaction and

d i s rup t ion by subsequent burrowing o f t e n makes it d i f f i c u l t t o recognize t h e o r i g i n a l burrow

system.

t h a t t he common i n f i l l i n g s Occur wi th equal frequency i n each d i f fe r -

en t type of burrow. The' presence of similar types of passive and man-

i pu l a t ed i n f i l l i n g s i n t h e th ree w a l l types confirms t h a t burrows A ,

B, C do indeed belong t o the same ichnotaxon.

Wall type

Table G-5

l n f i l l l i n g type

1 2 4 5

1 2 3 4 5

1 2

n = 1 7 specimens

Preservation ~ h a l a s s i n o i d e s burrows are seldom preserved i n t a c t ,

Very often they have collapsed o r been broken by subsequent generations

of burrowing (Figs , G-2; G-4). Plaquettes and t h i n sect ions seldom

revea l t he cha rac t e r i s t i c morphology of t h e burrow system, Some

~ h a l a s s i n o i d e s may only sl i@;htly resemble a bioturbated f ab r i c (e. g.

Fig. G-2c). ~ h a l a s s i n o i d e s burrows do, however, possess d i s t i nc t i ve

w a l l s t r uc tu r e s and contr ibute recognizable d e t r i t a l pa r t i c l e s . By

lea rn ing t o recognize these products, apar t from t h e burrow system

i t s e l f , the presence of Thalassinoides may be es tab l i shed elsewhere.

Comparison with previous repor t s Several elements of t he

Reservoir Mbr. Thalassinoides are comparable t o fea tures observed by

previous authors i n Recent and ancient burrows. Some of these have

already been re fe r red t o . I n addi t ion, Kennedy and McDougall (1969)

found t h a t Cretaceous age Ophiomorpha ( a genus in te rgrad ing wi th

~ h a l a s s i n o i d e s ) could be l i ned , meniscus back-f i l led , o r pel le t - l ined.

~ l t h o u g h mucous l i n i n s i d e n t i c a l t o those aescribed here have not . .

been reported previously, it i s we l l known t h a t many of the crustaceans

which produce tha lass ino id burrows rou t i ne ly l i n e p a r t s of t he ga l le ry

with mucus or a mucus-sediment mixture.

Bromley and Frey (1974) and F rey ' e t . a l . (1978)

have described i n d e t a i l t he morphological and s t r u c t u r a l va r ia t ion

i n t he in tergrading ichnogenera t h a t produce tha lass ino id burrows.

Bromley and Frey ( i b i d ) and Frey e t . al. ( i b i d ) s t a t e t h a t t h e var ia-

t i o n s wi thin a burrow system are a t t r i bu t ab l e t o behavioural adapta-

t i o n s by t h e dweller t o sediment consistency, environmental i n s t ab i l -

i t y , and burrow purpose (e.g. feeding, dwelling, brooding). '

continually-occupied elements of t h e system a re usua l ly well-maintained

and oversized, whereas feeding tunnels a r e more l i k e l y t o be eihemeral

and there fore suscept ible t o collapse. Their descr ipt ions of 'both

Recent and ancient tha lass ino id burrows suggests t h a t the var ia t ion

observed i n t h e Reservoir Mbr. Thalassinoides i s t o be expected i n such

I a multi-purpose burrow.

Originator of t h e burrow Thalassinoides burrows a r e camrnonly

a t t r i b u t e d t o a va r i e ty of decapod crustaceans (Brconley and Frey, i b i d ) .

These authors have reported t h a t t h e number of Thalassinoides-producing

organisms and t he range of environments which they may inhabi t i s much

wider than o r ig ina l l y thought. Burrows have been reported i n both f resh

water and marine environments, i n depths t o 700 m. Thus t he t r a d i t i o n a l

view of Thalassinoides as a r e l i a b l e c i r c a - l i t t o r a l ind ica tor has had

t o be abandoned (Frey e t . a l e , i b i d ) . Environmental i n t e rp re t a t i on based on Carboniferous Thalassinoides

i s fu r the r complicated because t h e range of decapods does not extend.

i n t o t he Lower Carboniferous (Glaessner 1969, p 434) . Morphologically

s imi l a r ~ o c a r i d shrimps a re common i n t he Midland Valley Carboniferous

and of a su i t ab l e size to have produced t h e Reservoir Mbr. Thalassinoides.

I f such an assumption is warrantable, then Eocarida should be added t o

t h e l i s t of Thalassinoides prbducers.

A va r i e ty of c r i t e r i a , including t h e presence of abundant algae,

and calcareous sponges, and t h e pos i t ion of t h e f ac i e s i n t h e sequence,

suggest t h a t t h e Reservoir Mbr. f a c i e s with Thalassinoides formed i n a

nearshore t o shallow offshore environment ( ~ h 9 ) . The previous repor ts

of a Palaeozoic ~ h a l a s s i n o i d e s ( r e f s . given) have a l s o been in te rpre ted

as occurring i n shallow water. Although it i s premature t o draw f i r m

conclusions, it appears t h a t Palaeozoic Thalassinoides burrows, l i k e

more modern counterparts , a r e most l i k e l y t o occur i n shallow marine

environments . Type 8 Agglutinated m i c r i t i c tube -

Description A cy l ind r i ca l tube, 3 rnm i n diameter, with an a x i a l

void 1 mm i n diameter. Tube f a i r l y s t r a i g h t , or ienta ted near v e r t i c a l

and curved at depth; seldom exceeding 1 cm t o t a l length. Tube wal ls

consis t of dense micr i t e agglut inat ing f i ne s k e l e t a l debr is . Preserved

i n f u l l - r e l i e f .

Type 9 Chondrites Von Sternberg 1833 - Figs. G 2 , 3-4, 3-5

~ e s c r i p t i o n A small form, 3 mm i n d iane te r , branching downward

at i r r egu l a r i n t e rva l s . Usually found d r a f t - f i l l e d with sediment

more argi l laceous than matrix. h e s e r v e d i n f u l l - r e l i e f .

Pa r t I1 THE COMPARATIVE STUDY

. . . . '

Fig. G-6 The t r a ce . f o s s i l composition of 71 specimens, l i s t e d

- i n s t r a t i g r a p h i c a l order and- grouped by l i thology. Light

s t i p l i n g shows t he two subs t ra te - re la ted t r a c e foss i l groupings.

Table. G-7 Estimated percentages of b io tu rba t ion . Percent ages

of each sample by t r a c e f o s s i l groups (A, B, C ) shown.

A = i n d i s t i n c t burrows; B = Zoophycus, segmented form, loose ly

back f i l l ed and cy l i nd r i ca l back f i l l ed forms , and P lano l i t e s ;

C = Chondrites, ~ h a l a s s i n o i d e s , and agglut inated tube.

Table G-7

Sample

LLs 1 LLs 2A

29 -1 13-3

LLs 5 132-Sg 5 5 7 3 9

5008 1 0 SeF

102-2 72 Se

Estimated % of b io tu rba t ion

Area - Lithology s m p l e

em2 I -

A r e a Area -

unbiot 'd A - B -

high-c arb b m P

APPENDIX H

BIOSTRATINOMY OF ANTIQUATONIA BANDS

The a t t i t u d e and a r t i c u l a t i o n r a t i o s of productoids i n t h e high-

carbonate biomi crospar i te f acies and t h e build-up i s shown. Genera

examined include Antiquatonia, Eomarginifera, Dictyoclostus , Pugilis , and Gigantoproductus (G. - i n f lanks only). The dens i ty was recorded

by counting t he number of s h e l l s with hinge widths greater than 1 cm

as they were exposed on at l e a s t f i ve 100 sq cm hor izon ta l surfaces.'

Beds are presented i n s t r a t i g r a p h i c a l order. I n t h e build-up, t he

number of centimetres above t h e base i s add i t iona l ly l i s t e d .

Table H - 1

a. high-carb bmsp

b. high-carb bmsp

c. build-up - 400

d. build-up - 200-300

e. build-up - 250

f . build-up - 225

g. build-up - 180

h, build-up - 180

i . build-up - 130

j . bui ld-up - 100

k. build-up - 100

1. build-up - 50

m. f l a n k beds

n. f l ank beds

o. f l a n k beds

p. f l ank beds

q. fltink beds

r. f l ank beds

8 . f l ank beds

Biostratinomic d a t a on Antiquatonia bands and s h e l l debris beds.

,'

Sample % % % % I % - size

A - D - &$j& 0-v - a E fl @ d D ad QA

Density

10/cm2

5 erosion su r face A

- i n f i l l crack i n surface A

20

75 40 2 1

- s h e l l debr i s beds

- s h e l l debr i s beds

- s h e l l debr i s beds

- s h e l l debr i s beds

APPENDIX I

ANALYSIS OF GEOPETAL STRUCTURES

I ~ n t r o d u c t i o n

Differences i n o r ien ta t ion between geopet a 1 i n f i l l i n g s i n primary ~ cav i t i e s and t h a t of bedding were used as a means of determing palaeo-

I slope. A t two l o c a l i t i e s , Galabraes Quarry (NS 986 699) and a t south

1 Quarry (NS 985 695) the o r ien ta t ion of geopetal s t r uc tu r e s d i f f e r ed

s i g n i f i c a n t l y from t h a t of t h e i r enclosing beds. The da ta from these

two exposures and t h e i r analysis i s summarized here. This work was

ca r r i ed out with t h e guidance of D r . R. F. Cheeney; a de t a i l ed explan-

a t i on of the methods and formulae employed here appear i n Cheeney

(manuscript) , t o which t he reader i s r e f e r r ed f o r a f u l l e r explanation.

Many of the s t a t i s t i c a l calculati'ons were executed wi th e i t h e r a

programmable calcula tor , o r us ing t he Edinburgh Regional Computing

Centre program BINGO. Thus t h e l e s s s i gn i f i c an t , intermediate pro-

cedural s t eps have been o m i t t e d .

Two types of geopetal s t r uc tu r e s were measured: a) sediment

i n f i l l i n g s i n the v i s ce r a l c av i t i e s of l a rge brachiopods ; b) infill-

ings i n t he lumen of cr inoid columnals.

Galabraes Quarry

1. Measurement - Twelve or ien ta t ion measurements were taken of geopetal s t r uc tu r e s

and t h e i r neares t bedding plane (Table 1-1, columns C , D ) , The first

geopetal s t r uc tu r e and i t s adjacent bedding plane were re-measured

a f t e r each measurement i n order t o e s t a b l i s h t h e accuracy with which

measurements could be made (Controls, Table 1-1).

2. Accuracy - Bedding con t ro l measurements were p l o t t e d as poles on a standard

s t e r e o g a p h i c project ion n e t and analysed as a Fisher d i s t r i bu t i on ,

as f ollCNs :

Table 1-1 Measurements of geopetal s t r uc tu r e s and bedding,

eastern face , Galabraes Quarry

Controls ( r ep l i ca t e s of 1)

Bedding Geopetals

A - B -

Measurements

Bedding Geopetals

. C - - D

08 : 024 1 09 : 224

The or ien ta t ion of bedding and geopetal s t r uc tu r e s i s spec i f i ed

by the angle of d ip ( 2 d i g i t s ) and dip d i r ec t i on ( 3 d i g i t s - clock-

wise i n degrees from magnetic nor th ) .

a. t he posit ion each pole was described with respect t o

nor th , e a s t , and down (Table 1-2, Xn, Xe, Xd).

b. d i r ec t i ona l cosines were determined i n order t o derive

the mean resu l tan t length R ; analagous t o t he Rayleigh t e s t

mean r e su l t an t employed i n t e s t i n g c i r c u l a r d i s t r i bu t i ons

a able 1-2).

c. the concentration parameter, k, of t h e da t a about R was

determined a able 1-2) and used t o ca l cu l a t e t h e angle d.

The angle d spec i f ies t he radius of a cone of confidence on

t h e stereographic project ion wi thin which t h e t r u e mean pole

t o bedding i s l i k e l y t o be found. I n t h i s case, s ignif icance

was sought a t t h e 0.1 p robabi l i ty l eve l .

d. t he bedding da ta were found t o be c lose ly ' clustered, with

a small 2.3' angle d, ind ica t ing t h a t e r r o r i n measurement was

not s i gn i f i c an t (Table 1-2).

3. Mean or ien ta t ion of bedding - The mean or ienta t ion of bedding w a s ca lcula ted by the same method

as t h a t used t o check measurement accuracy (see above). The 'data and

r e s u l t a n t f igures a re given i n Table 1-3, and shown p lo t ted i n Fig.

1-5, along with the cone of confidence. Data were found t o be c losely

c lus tered about a mean of 5.3 : 170; wi th an ap i ca l angle of 4.5'

(s ignif icance sought a t 0.1 s ign i f icance l e v e l ) .

4. ~ e t e r m i n a t i o n of mean geopetal s t r uc tu r e a t t i t u d e e

Geopetal s t r uc tu r e s appear i n quarry faces as apparent dips.

The chances t h a t t he d i r ec t i on of maximum geopetal d i p and t h e s t r i k e

of a quarry .face should coincide a r e very small. ~ h u s g e o p e t d s t ruc-

t u r e s must be p lo t ted as plunge d i rec t ions on a s tereographic projec-

t i o n and analyzed as a Binghm d i s t r i bu t i on .

The apparent d ips (plunges) of geopetal s t r uc tu r e s p lo t as a

Table 1-2 Accuracy meesurenent t e s t

Control measurements

of bedding

( r e p l i c a t e s of 1)

/n Ce + ) Cd = 0.9978 = mean r e su l t an t length R = +

I concentration parameter k = - = 454.5 1-R

- 1 loge ( 0 ) d = cone of confidence = cos ( I + k I ) = 2.3'

loge (a ) , = -4.61. @ 0.01 s ign i f icance leve l .

g i rd l e d i s t r i bu t i on whose center i s t he pole normal t o the plane of

maximum geopetal dip. This pole may be calcula ted from the g i rd le

d i s t r i b u t i o n i t s e l f . Such a d i s t r i b u t i o n i s considered t o have th ree

p r inc ip le axes zl, z2, zg 9 each of which has an associated pr inc ip le

value T , a measure of t he variance about a pa r t i cu l a r axis. The shor-

t e s t axis of t he d i s t r i bu t i on , designated f by convention, corresponds

t o t h e pole of the great c i r c l e on which t h e d i s t r i bu t i on l i e s . By

ca lcu la t ing f and es tab l i sh ing t h e r e l a t i onsh ip between f and t h e 1

mean pole of bedding, it i s poss ible t o deternine o r ig ina l palaeoslope.

m e p r inc ipa l axes and t h e associated p r inc ipa l values of geopetal

s t r uc tu r e s a re specif ied by t h e matrix T a able 1-4) , which i s obtained

b y pre-multiplying t he matrix of t h e d i r e c t i o n a l cosines ( D , Table 1-4)

by i t s transpose D' . The eigenvectors of a matrix such as D correspond

with t he p r inc ipa l axes of t h e o r i g i n a l d i s t r i bu t i on , while t he eigen-

values specify the lengths of t h e axes.

The eigenvectors were obtained by successive i t e r a t i o n s of an

eigenvector value f i r s t est imated from the p l o t of the d i s t r i bu t i on

(Table 1-4, B , C ) . Once t h e eigenvectors of and f 2 have been cal-

cula ted it i s possible t o ac tua l ly measure on a stereographic pro- 2

j ec t ion (measured as t h e d i rec t ion normal t o t h e p lo t t ed solut ions

fo r f1 and h ). The eigenvalues, T1, T2, Tg, 3 may be calcula ted by pre-

mul t ip ly ing t h e eigenvectors by t he matrix D. The calcula ted values

a r e shown on Table 1-4, E.

5 . ca lcu la t ion of the cone of confidence about f - 1

Table 1-4 l i s t s t h e formula f o r ca lcu la t ing the angle a, t he radius

of t he cone of confidence. Signif icance was sought at t he 0 .1 l eve l .

Values of t he angle b were chosen S O as t o f a c i l i t a t e p l o t t i n g t he cone.

The values obtained f o r a were then p lo t t ed i n t he p r inc ipa l plane of

5 and B These values and 5 are shown i n Fig. 1-5. 3' 1

Table 1-3 Mean o r ien ta t ion of bedding, Galabraes Quarry

Measurement, n 'n 'n I 'e - - 'e I Xd - - - ' d l ' .

R = .9920

k = 125

kt = 1488

d = cone of confidence , '4.5'

= matrix 'I

E . vectcr I- , measured ncrna: t c T1, e-iie t- -

- I 5 4 I I 801 I:ir I

Earinetes of einenvectors

X u Cn Xe Ce Xd cc

2.666 -7.516 -1.601

-1.766 -1.601 -1G.98E

- 1 . 0 ~ 2 -2. hL5 -11.031

- 1 . 7 7 ~

I -1.956 Z.559 I - 7 . u t =

OE

18

8'

7~

e2

TL

61

122

E. I ; e r a t i o ~ i - estimate : 'i

acceptel soiu- - t ion . t,. - C. estimated - vector of ::

eccep:ec s o h - ::on, r..

86

81

1b6

142

Table 1-4 cont 'd .

F. Crlc- lat im of cone of confidence - calculation of eagle e , at 0 .1 r igu i f i cmce l eve l -

I T 1 - ( z - 2 + 2 F i n vhicb n - 2 ), F - L.l 6 C.1 r i f i f . l e v e l ;

T2, T are l i s t e d above. 3

Vriuer of a a t specified rnble b (plotted on Fib. 1-5)

angle b lngle a angle b m & l e r

30' 15.1° 180° 13.6'

Fig. 1-5 Galabr aes Quarry.

A s t e r e o g r a p h i c p r o j e c t i o n showing: a ) o r i e n t a t i o n of geope ta l

s t r u c t u r e s p l o t t e d as plunge d i r e c t i o n s , forming a g i r d l e d i s t r i b u t i o n

a long a g r e a t c i r c l e ; b) poles of bedding c l u s t e r e d i n t h e middle;

c ) mean pole of bedding and i t s sur rounding cone of confidence ;

d ) t h e pole of t h e geope ta l s t r u c t u r e d i s t r i b u t i o n and i t s cone of

confidence. Note t h a t bo th t h e bedding end geope ta l d a t a a r e c l u s t e r e d .

The o r i g i n a l o r i e n t a t i o n of bedding has been r e s t o r e d by r o t a t i o n of

t h e geope ta l po le back t o h o r i z o n t a l about i t s s t r i k e .

Fig. 1-6 South Quarry

A s t e r e o g r a p h i c p r o j e c t i o n showing a p l o t of geope ta l s t r u c t u r e

p lunges , t h e o r i e n t a t i o n of bedding pole ( t aken from o r i e n t a t e d b lock )

and t h e r e s t o r e d o r i e n t a t i o n of bedding a f t e r r o t a t i o n about s t r i k e

of t h e g e o p e t a l s t r u c t u r e .

restored orientation

of bedding

'SOUTH QUARRY r;r .. .

a -

I structure plunge

%d.-. restor

orientation [ \, '\\ of bedding

\, t, 1

6. correct ion fo r t ec ton ic die - correct ion fo r t ec ton ic d ip was made by r o t a t i o n of t he geopetal

s t r uc tu r e back t o hor izon ta l about t h e s t r i k e of t he geopetal. The

o r i g i n a l o r ien ta t ion of bedding tr.as found t o be 1 6 : 081, as s h m i n ,

Fig. 1-5.

South Quarry

1. Measurements . - Data were taken from the f lank beds. The exposure i t s e l f does

not revea l a su f f i c i en t number of geopetal s t r uc tu r e s t o provide t he

necessary da t a fo r analysis . I n t h i s case a la rge (45 cm x 45 cm x

45 cm) block was careful ly o r ien ta ted i n t h e f i e l d , p r i o r t o removal

from the outcrop. The s lab was s e r i a l l y sect ioned v e r t i c a l l y i n sev-

e r a l d i rec t ions and t he geopetal o r ien ta t ion da t a was measured on t h e

s l a b surfaces. A s i n the previous study, only l a rge s h e l l i n f i l l i n g s

were measured. Bedding w a s ca re fu l ly measured and found t o be orien-

t a t e d a t 16 : 256, The geopetal o r i en t a t i on da t a a r e . l i s t e d i n Table

1-7.

2. ~ e t e r m i n a t i o n of mean geopetal s t r u c t u r e o r i en t a t i on - The same s t a t i s t i c a l analyses were applied t o these da t a as t o

those described above; i n t h i s case t h e ca lcu la t ions were performed

using BINGO. The r e s u l t s of these calcula t ions a r e shown i n Fig. 1-6,

p lo t t ed as f l t h e center of t h e great c i r c l e along which t h e geopetal

plunges a r e d i s t r ibu ted . Note again t h a t geopetal and bedding da t a

a r e c lus tered i n t o d i s t i n c t areas.

3. cor rec t ion fo r t e c ton i c d i p - The o r i g i n a l o r ien ta t ion of bedding was again determined by mov-

i ng t h e geopetal pole back t o hor izon ta l by ro t a t i on along i t s s t r i k e .

I n t h i s case t h e geopetal pole (zl) was found t o be 21 : 280. Rotation

back t o t h e hor izon ta l r e s t o r e d bedding t o an o r i g i n a l depos i t iona l

o r i e n t a t i o n of 10 : 144 ( ~ i g . 1-6).

Table 1-7 The or ien ta t ion of geopetal s t r uc tu r e s , South Quarry

o r ien ta t ions a re l i s t e d as dips (two f igures ) and d i p d i rec t ions

( t h r ee f igures , measured i n degrees from magnetic nor th) . They were

%&en from s e r i a l sect ions of a l a rge block i n a bed or ienta ted a t

1 6 ,: 256. Sample taken from flank beds, mid South Quhrry.

APPENDIX J

The or ien ta t ion of 88 c r ino id stems between 10-65 cm i n length

were measured fram the underside of a bedding surface occurring 260

. cm above t he base of t he build-up f ac i e s , i. e. t he quarry f l oo r at

t h e southern wal l of t he P e t e r s h i l l Reservoir. The bedding surface

was photographed with a 35 mm Leica o r ien ta ted on a t r i pod p a r a l l e l

t o t h e surface , approximately 170 cm away from it. This method was

employed because t he surface was inaccess ible by any other means.

The or ien ta t ion of cr inoid stems w a s then measured from 25 x 36

cm photographs of the bedding surface. Folluwing Schwarzacher (1963)

th ree types of or ienta t ions were p lo t ted : a) "v!' and "T!' o r ien ta t ions ,

in te rpre ted as res idua l or ienta t ions o r arrangements of stems t h a t

had come t o r e s t a f t e r r o l l i n g a sho r t d is tance; b ) s t r a i g h t stems i n

poss ible r o l l i n g or ienta t ions ; c) imbricate "t oppled" , . r a d i a l or cur-

v ing arrangements of stems l i k e l y t o represent a s ing l e crinoid.

Imbricate stems show a marked decreese i n stem diameter i n t h e di rec-

ti on of toppling . Results of t h i s study a re s h a m i n Figs. 11-9 ( t e x t ) , Table J-1,

Table J-2, Fig. 5-3 and Fig. J-4.

Table J-1 Azimuth Orientation of V and T stem arrangements

~. . . .. , ., -.

Data a r e l i s t e d as azimuths measured i n degrees from N. These data

a r e p lo t ted i n Fig, 11-9. They do not show a s t a t i s t i c a l l y signifi-

cant preferred orientat ion.

. > .. . !Table 5-2 'or ienta t ion, measured i n degrees from north of"

elongate c r ino id stems longer than 10 em.

n = 54 R = 0.799 ~ a y l e i g h t e s t mean r e s u l t a n t length

Stems show a s ign i f i c an t o r i en t a t i on a t 0.1 l eve l . Data a re sham

*lot ted i n Fig. 11-9.

Fig . J-3 Imbr ica te c r i n o i d s tem arrangements.

Stems s h w n here a r e an a d d i t i o n t o t hose shown i n Fig. 11-9

( t e x t ) . Each arrangement shown a t app rox ina t e ly 1110th o r i g i n a l

s i z e . They a r e desc r ibed as f o l l o w s : F) imbr i ca t e toppled arrange-

ment dec reas ing i n l eng th toward 345' ( arrow) ; G ) imbr i ca t e t opp led

a r r a y , no i n f e r r a b l e c u r r e n t d i r e c t i o n ; H) r a d i a l a r r a y , no i n f e r r -

a b l e c u r r e n t d i r e c t i o n ; 1) s l i g h t l y curved imbr i ca t e z r r a y ;

J ) i m b r i c a t e , toppled a r r a y , ( ? ) stems d e c r e a s i n g i n l eng th toward

210° ( a r r o w ) ; K) r a d i a l a r r a y , no i n f e r r a b l e d i r e c t i o n , stems reach

up t o 3 c m diameter .

COMBINED DATA ON ORIEKTATION OF

CRINOID STEMS + SMALL S C U

CROSS STRATIFICZTION

b *

N

small s c a l e cross s t r a t i f i c a t i o n

\ toppled crinoid s t ems

EEl major trend of elongate stems

direct ions of

I

Fig . J-4 Combined d a t a from d i f f e r e n t stem arrangements.

Superimposi t ion of va r ious types of o r i e n t a t i o n s sugges ts a

nor theas tward c u r r e n t , a l though t h e degree of p r e f e r r e d o r i e n t a t i o n

i s n o t pronounced. This sugges t s t h ~ t sten! eccumulations a r e poorly

s o r t e d and formed i n s i t u .

\ \ m h / ~ f o f 4. h

/ / &A mim L- Uktr

?Ze kmk

fhc Rcsewa;*

/

h;t of Bak ole &/Is, - - - -9- - / - /om kwalh Ph. Fm - - -' s&m /

\ /

I ~ m i i oT A. Fm. I - - -

TABLE C-7

SAMPLE

SSTS 320

120 5

120 4

TUFF 1200 +

WA~B'D 100

LSTS 557 A

D

E

Relative per cent ages of clay n inera l s

P E R C E N T A G E S . 2 ~ " '

Illit e/Smect it e Kaolinit e Chlori te Mica

*1 P = present. Presence indicated by h , k , 1's.