Transcript

ANDSolutionGmbHKarl-Schmid-Strasse1481829Munich,Germany

Munich,28July2017Author:DiarmuidKelly,DirectorSalesInternational©byANDSolutionGmbH

Forfurtherinformationcontactinfo@and-solution.comJoinusatLinkedInandfollowVisitusatwww.and-solution.com

IntegratedRFcalculationsinAND24May2017

TheemergenceofDOCSIS3.1hasgivencablenetworksanewleaseoflife.

Usingexistingnetworkinfrastructurerelevantcomponentscanbeswappedoutextendingthedownstreamuptoapossible1.8GHzandtheupstreamto200MHz.ImprovedspectralefficiencyincomparisontothecurrentDOCSIS3.0standardalongwithincreasedavailablebandwidthwillenableoperatorstoofferasmuchas1Gigabit/s.Indeed,itisexpectedthateventuallyupto10Gigabit/swillbepossibleonthesameinfrastructurewithoutmakingfurtherphysicalchanges.

Theupgradeprojectswillneverthelesspresentconsiderableengineeringchallenges,which,ifnotproperlyexecuted,couldhaveseriousrepercussionsonnetworkperformanceaswellashavinganegativeimpacton“bitsperdollar”.Inaddition,theupgradetaskswillhavetobecarriedoutwithmilitaryprecisioncausingaslittledisruptiontoservicesaspossible.

ThisdocumentpresentsanoverviewoftheintegratedANDcalculationsforRF/DOCSIScablenetworks.Thesecalculationsallowyoutoeffectivelysimulateyournetworkprovidingyouameansofensuringoptimalperformanceofyourexistinginfrastructureaswellasprovidingyouwiththenecessaryengineeringsupportforfuturenetworkupgradeprojects,e.g.toDOCSIS3.1.

NotonlydoesANDconsiderthecompletenetworkspectrumforbothupstreamanddownstream,italsoconsiderstheend-to-endnetwork,i.e.fromtheheadendrighttoeachandeveryhome,regardlessofwhetherthisisasingle-familybuildingorpartofalargeapartmentcomplex.

Note:ANDprovidesveryprecisecalculationsofintermodulationproducts(2ndand3rdorder)causedbychannelsofnarrowbandwidth.Theseconsidernonlinearitiesofactivecompon-entssuchasamplifiers.Consequently,ANDcomprehendstherateofintermodulationswithineachchannelregardlessofitsbandwidth.

RecentlyimplementedadditionalRFcalculationimprovementshavebeenincludedinthispaper;thesewillbeavailablewiththeANDSystemSolutionreleasescheduledforAugust2017.

Page2/8

UnitsTocaterforthevarioussignallevelunitformatscommonlydeployedANDallowstheusertoselecteitherdBµV,dBmV,ordBm.Thiscanbedoneduringnormaloperations.

Figure1:SupportedunitlevelsinAND

Levelsareconvertedautomatically.

FrequencyroutingEachfrequencyisroutedseparatelymeaningthatthechannelrasterisknownateachpointinthenetwork.

Inthesinglesource/sourcesofeachchannelinputparameterscanbeenteredfor:

• Noise• RFlevel• Frequency• Modulationtype• Levelreduction

Inthenextrelease(E6/2017)ANDwillsupportindividualCNRlimitvaluesforeachchannelmodulationtypeasdifferentsignalusagerequiresdifferentcarriertonoiseratiolimits.Forexample,QAM64mightneeda27dbratiowhereasQAM256mightrequirea32.5dBratio.

UptonowtheANDuserhasonlybeenabletosetasinglelimitinthewarningsettings.Asaworkaround,theinputlevelsandnoiseratioshadtobeadaptedatthesignalsource.Withthenextrelease(E6/2017)thewarningsettingswillbeextendedallowingtheusertoenteranindividualCNRlimitforeachmodulationtype.Thiscanbeselectedonaperchannel-basisatthesignalsource.

Thenet-checkfunctionwillconsidertheselimitsforeachchannelindividually.

Page3/8

Attenuation

CableCableattenuationisenteredforselectedfrequencies.ANDusesthesevaluestocalculatetheattenuationforthefrequencyspectrumusingsquarerootinterpolation.Thisreturnsanattenuationcurveasshowninthediagrambelow.

Figure2:Attenuationcurveforcoaxialcable

ANDalsocalculatescableattenuationfordifferenttemperatureswhenconsideringAGCalterations.

PassiveComponentsAttenuationisenteredforselectedfrequencies.Usingthesevaluestheattenuationforindividualfrequenciesiscalculatedbylinearinterpolation.Thisreturnsanattenuationcurveasshowninthediagrambelow.

Figure3:Attenuationcurveforpassivecomponents

Page4/8

EqualizerTheequalizerisasocalledidealcomponent,neverthelessreal-worlddeviceshavebasicattenuationandthisisconsideredbyAND.

Figure4:Equalisersettings

TheUserentersthefollowingvalues:

• Basicattenuation• Nominalslope• Lowerfrequency• Turningpoint

e.g.10dBslopebetween85and1000MHz.

ANDassumesacombinationoflinearresponse(att(f)=af+b)andsquareroot-likeresponse(att(f)= bfa + ).Themixingratiocanbeenteredasaprojectsettingthatisappliedtoallequalisersofthecurrentproject.Bydefault,amixtureof25%linearand75%squareroot-likeisused.

Figure5:Comparisonofthefrequencyresponseofa10dbequaliserforratios0%,75%,100%

Itisalsopossibletoenterattenuationsforalistoffrequencieswhendeployingequalisersdesignedasstandalonecomponentswithfixedequalisation.Attenuationisthencalculatedbylinearinterpolationaswithotherpassives.

Page5/8

DownstreamLevelThedownstreamleveliscalculatedasfollowing:

“signalsourcelevelminusattenuationplusamplification”.

Figure6:Signalpathwithamplificationandattenuation

Attenuationiscalculatedforallfrequenciesofallsignalsources.Thisallowscalculationofeachfrequencyatanygivenpoint.Attenuationcanberegulatedusingadjustablecomponents.

AmplifiersareautomaticallyadjustedbyANDtoavaluespecifiedbytheplannerconsideringthereductionsetatsignalsourceforeachchannelsothattheinputattenuatorsandequaliserssetthesignalasflataspossibleandtherequiredslopeisgeneratedintheinterstage.Noise-reducingattenuationisalsotakenintoaccountintheinterstage.

Slopes(tilts)withinchannelsarealsocalculated;thisisparticularlyimportantforbroadbandOFDMchannels:

Figure7:ChannellistwithOFDMchannelsandtiltwithinthechannelbandwidth

Page6/8

UpstreamLevelThefollowingvaluesmustbedefinedforthecalculationoftheupstream:

• Receptionlevelsatthereceiverorthesignalsource,e.g.70dBµV• Levelrangeinwhichthecablemodemscansend,e.g.100-112dBµV.

Theupstreamlevelforanygivenpointafterthecablemodemiscalculatedasfollows:

“receivinglevel+attenuationofthecableandpassives”.

Attenuationiscalculatedforallreturnpathfrequenciesin1MHzsteps.Slopeofcablesandreturnpathequaliserareconsidered.Thereturnpathamplifiersettingsalsoconsidertheupstreamequaliser.

AsthefrequencybandinDOCSIS3.1ismorethanthreetimeslargerthanthatinDOCSIS3.0theinclusionofcableattenuationcalculationisofutmostsignificance.(Basically,thelongerthecablethegreatertheslope.)ThephysicalpropertiesofthecablearestoredinAND,makingitpossibletocalculateattenuationwithrespecttofrequency.

Figure8:Reversepathamplifiersettings

Theamplifiercanbeadjustedinordertocompensateforattenuationandslope.

Slopecausedbycableandpassives

Page7/8

AmplifierinputlevelsANDchecksthetargetlevelsattheamplifieroutput.InconjunctionwithCNRcalculationforeachstageamplifierscanbecheckedthattheyareoperatinginaccordancewithspecifiedthresholds.

Newadditionallimitsandchecksforamplifierinputarebeingintroducedinthenextrelease(E06/2017);thesearedescribedbelow.

NEW:DefaultlevelwindowinlibraryAdefaultlevelwindowwithminimalandmaximalvaluesfortheinputofeachamplifierstageisnowavailableinthelibraryeditor.Normallytheuserwillonlyenterthesevaluesfortheinputofthefirstamplifierstage.

NEW:AmplifierInputLevelCheckWheninputlimitvaluesaresetintheANDlibrarytheywillbeaddedtoanewlydrawnamplifier.Theamplifier-packagedialogueinANDwillbeextendedbythenewinputlevelmin/maxvalues.Theusercanedit/overwritethelibraryvalues.

Thewarningssettingsprovideacheckboxandatoleranceparameterallowingtheusertomakeaverificationconfigurationforthenet-checkfunction.

Assumingthefunctionhasbeenactivatedandanamplifierhasvalidmin/maxvaluessetthenawarningwillbeshownduringtheexecutionofthenet-checkfunctionifthecalculatedinputlevelfallsoutsidethepermittedlevelrange.

NEW:WarningifamplifiertargetvaluesarehigherthaninlibraryCheckboxesandtolerancesareincludedinthewarningsettingsallowingtheusertoactivatethelibrarylimitcheckwithinthenet-checkfunction.

Thiswillbecarriedoutfor:

• Inputlevel–iftheamplifierInputLevelwindowhasbeenincreasedbytheuser• Targetlevel–iftheamplifiertargetlevelhasbeenincreasedbytheuser

Awarningwillbeshowninacasewheretherearevalidvaluesinthelibraryandwheretheuserhasoverwrittentheseresultinginpossibleperformanceissues.

NEW:Checkonmax.amplifiersincascadeUsersmaywanttoverifyifthenumberofamplifiersincascadeexceedsapre-definedlimit.

Thewarningsettingswillgetacheckbox“checkonnumberofamplifiersincascade”andaneditablelimitforthenumberofpermittedamplifiers.Ifthefunctionisactivatedthenet-checkfunctionwillissueawarningfortheamplifiersinacascadewherethelimithasbeenexceeded.

Page8/8

NoiseTheCNRvalueisenteredforeachchannelofthesignalsource.

Degradationateachamplifierstageiscalculatedusingthefollowingformula:

10

−𝐶𝑁𝑅𝑜𝑢𝑡10

=10

−𝐶𝑁𝑅𝑖𝑛10

+10

−𝑍10

CNRout=CNRatoutput

CNRin=CNRatinput

Z=Pin[dBµV]-R[dB]-kTDf[dBµV] R=Noisenumberoftheamplifierstage

Pin=Levelatinputoftheamplifierstage k=Boltzmann-constant

T=Temperature,e.g.293K D=BandwidthofachannelinHz

Thedefaultvalueforthelogarithmicnoisefactoris10.Asthisisnoweditabletheusercanchangethisvalue,e.g.to11.Thisvaluewillthenbeconsideredinthenoisecalculation.

CNRiscalculatedforeachindividualchannelwhichcanbecomparedagainstthresholdvaluesinthewarningsettings.Thesevaluescanbespecifiedforbothdigitalandanaloguechannels;digitalchannel-onlynetworksarealsopossible.

Asstatedearlier,differentsignalusagerequiresdifferentcarriertonoiseratiolimits.

ANDwillallowtheusertoenteranindividualCNRlimitforeachmodulationtypeinthenextrelease(E6/2017).Thiscanbeselectedonaperchannel-basisatthesignalsource.

RemotePoweringElectricalpropertiesforremotesupplyarecateredforinthelibraryobject.Theohmicresistanceofthepowersupplycablesandthecurrentcausedbyactiveremotepoweredcomponentsarecalculatedasavoltagedrop.ANDcheckswhetherthenecessarysupplyisensuredforeachcomponentandalsoifthepowerunitisabletoprovidethenetworkwithenoughcurrent/power.Inaddition,ANDchecksthemaximumpermittedcurrentofcomponent(-ports)andifthereareshortcutsorcomponentsthatshouldn’tbesupplied.

Figure10:Powerunitdata

Figure9:Warningsettings(excerpt)


Top Related