Transcript
Page 1: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

ExploringComputationalThinkingConcepts,Practices,andDispositionsinK-12ComputerScienceandEngineering

By

AmandaM.Bell

Thesis

SubmittedtotheFacultyofthe

GraduateSchoolofVanderbiltUniversity

inpartialfulfillmentoftherequirements

forthedegreeof

MASTEROFSCIENCE

in

Learning,Teaching,andDiversity

May31,2018

Nashville,Tennessee

Approved:

MelissaS.Gresalfi,Ph.D.

DouglasB.Clark,Ph.D.

CoreyE.Brady,Ph.D.

Page 2: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

ii

TABLEOFCONTENTS

Page

Introduction................................................................................................................................................................1ComputationalThinkinginSociety..............................................................................................................2CTvs.CSvs.Programming...............................................................................................................................4ContextsofFocus:ComputerScienceandEngineering......................................................................6

TheoreticalFramework.........................................................................................................................................8LiteratureSearch...................................................................................................................................................14ComputationalThinkinginComputerScience.........................................................................................15Concepts................................................................................................................................................................15Practices................................................................................................................................................................16Dispositions.........................................................................................................................................................20LearningCTConceptsandPracticesinK-12ComputerScience.................................................22CTIdentityDevelopmentandDispositionsinK-12ComputerScience....................................26

ComputationalThinkinginEngineering.....................................................................................................31Concepts................................................................................................................................................................32Practices................................................................................................................................................................32Dispositions.........................................................................................................................................................36LearningCTPracticesinK-12Engineering...........................................................................................37CTIdentityDevelopmentandDispositionsinK-12Engineering................................................39

Discussion.................................................................................................................................................................41Conclusion................................................................................................................................................................44REFERENCES...........................................................................................................................................................45

Page 3: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

1

Introduction

Increasingly,educatorsandpolicymakersvaluecomputerscience(CS)educationfor

itsabilitytopreparestudentsforthegrowingnumberofjobsincomputingfieldsandfor

itspotentialtoequiplearnerswithproblem-solvingskillsandtechnologicalknowledge.

WhilethetraditionalmethodoflearningCSthroughprogrammingteachesstudentsabout

programminglanguagesandalgorithms,studentsshouldalsohaveaccesstotheconcepts

andpracticescomputerscientistsusetosolveproblems,referredtoascomputational

thinking(CT).CTempowerslearnerstouseprogrammingasatooltogenerateinnovative

solutionstoproblems,tobecomethoughtfultechnologyusersintheireverydaylives,to

applylogicalthinkingtoavarietyofsituations,andtoprepareforjobsusingtechnology

acrossavarietyoffields.

NewinitiativesinCSeducationcallfortheintegrationofCTintoK-12schools.

PresidentObama’sComputerScienceforAllinitiativearticulatedtheneedtoexposeall

studentsto“computationalthinkingskillsthatarerelevanttomanydisciplinesand

careers”(Smith,2016).CTwasoneofthefivemainconceptualstrandsinthe2011K-12CS

standardsdevelopedbytheComputerScienceTeachersAssociation(CSTA).NowCSTA,

alongwiththeAssociationforComputingMachinery(ACM),areupdatingtheCSstandards

andintegratingCTthroughouttheconceptsandpractices(CSTA&ACM,2016).Atthesame

time,CSTAandtheInternationalSocietyofTechnologyinEducation(ISTE)createda

toolkittohelpteachersandschoolleadersadvocateforanddevelopaCTcurriculum(ISTE

&CSTA,2011).Theseinitiativesdemonstrateeducators’andpolicymakers’focusonCTas

animportantpartofCSeducationforallstudents.

TakingCTlearningastepfurther,manyresearchersarebeginningtoexplorethe

integrationofCTwithSTEM(science,technology,engineering,andmathematics)fieldsand

otherdisciplines.TheNextGenerationScienceStandards(NGSS)alsoincludeexamplesof

CTintheirscienceandengineeringpracticesforgradesK-12(NGSS,2013).By

incorporatingCTintoexistingschoolsubjects,researchershopetoaddressseveralfactors

thathinder“CTforall”efforts:(1)allstudentswouldbeexposedtoCTifitispartoftheir

coresubjectsratherthananelectivecomputingcourse;(2)itwouldsavetimetoteachCT

duringanexistingsubjectratherthanaddingacoursetobusyschoolschedules;(3)itmay

Page 4: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

2

beeasiertotrainteachersifCTisincorporatedaspartofwhattheyalreadydo;and(4)not

allschoolshaveaccesstoadvancedtechnologytosupportCSclasses(Hornetal.,2014;Hu,

2011;Sneider,Stephenson,Schafer,&Flick,2014;Weintropetal.,2016;Wilensky,Brady,

&Horn,2014).Infact,astudyexaminingschool-wideintegrationofcomputingatthe

elementarylevelfoundthatclassroomteacherscouldonlyteachcomputingbyintegrating

itintotheircontentareasbecausethepre-existingcurriculumwastootime-consumingto

introducecomputingonitsown(Israeletal.,2015).

DespitetheseinitiativesinK-12education,researchersstilldonothaveastrong

consensusaboutwhatCTisandhowitisappliedindifferentcontexts.Abetter

understandingofhowpeopleuseCTinavarietyoffieldsisnecessarytomeaningfully

integrateCTacrossschoolsubjects(Grover&Pea,2018).Furthermore,inordertoengage

allstudentsinCT,notjustthosepredisposedtocomputing,researchersneedto

understandhowstudentscanlegitimatelyparticipateinaCTlearningcommunitythrough

richlyvariedexperiences.Therefore,myquestionsinthispaperare:whatdoesCTlook

likeindifferentcontexts,andhowdolearnersengageinCTinthesedifferentK-12

learningcommunities?Inthesectiontitled“ContextsofFocus”below,IdiscusswhyI

chosetoexploreCTinthecontextofcomputerscienceandengineeringinthispaper.My

goalistoexpandideasofwhatitmeanstobeacompetentcomputationalthinkerby

identifyingelementsofCTfromCSthendiscussinghowpeopleuseCTskillsinother

disciplinesoutsideCS.

ComputationalThinkinginSociety

Computersarenolongeraspecializedtoolbutarepervasiveinoursociety.

Therefore,“theabilitytoextendthepowerofhumanthoughtwithcomputersandother

digitaltoolshasbecomeanessentialpartofoureverydaylivesandwork”(Barr,Harrison,

&Conery,2011,p.23).ComputerscientistsemployCTskillstoaskquestionsandsolve

problemsacrossdisciplinesusingcomputers.AtaworkshoporganizedbytheNational

ResearchCouncilin2009todiscussthescopeandnatureofCT,attendeesarguedthatCTis

“comparableinimportanceandsignificancetothemathematical,linguistic,andlogical

reasoningthatsocietytodayagreesshouldbetaughttoallchildren”(NationalResearch

Council,2010,p.3).

Page 5: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

3

Thisemphasisontheimportanceofcomputinginoursocietyisnotnew.For

decades,therehavebeenappealsforwidespreadintegrationofcomputingskillsintoall

levelsandtypesofeducation(Weintropetal.,2016).In1962,Perlis,thefirstrecipientof

theACMTuringAward,claimedthatallundergraduatesshouldlearnprogramming

(Guzdial,2008).Papert(1980)laterarguedforintroducingaliteracyofcomputingto

children,andheusedCTtodescribetheabilityofcomputingtoempowerideas(Papert,

1996).diSessa(2000)calledforanewformofcomputationalliteracythatchangestheway

weallcommunicate,learn,andlivewithtechnology.Morerecently,therehasbeena

resurgenceininterestinCTfromtheperspectiveof21stcenturyskillspreparingstudents

forajobmarketthatincreasinglyinvolvestechnologycreationanduse(Grover&Pea,

2013;Wing,2006).

However,participationincomputingfieldsremainslowintheU.S.By2024,there

couldbeapredicted1.1millionjobsincomputingfields(NationalCenterforWomenand

InformationTechnology,2017),butlessthan17,000peoplegraduatedwithcomputer

scienceorprogrammingdegreesin2015,includingfewerthan3,000women(Snyder,

2016).Exposingstudentstocomputersciencebeforetheyentercollegeisessentialfor

increasingthenumberandvarietyofcomputingmajors,asstudentsare8timesmorelikely

tomajorincomputerscienceaftertakinganAPCScourseinhighschool(Mattern,Shaw,&

Ewing,2011).Furthermore,jobsincomputingtendtobeintellectuallyrewardingandhigh

paying;themedianannualwagewasover$80,000in2015,muchhigherthantheoverall

medianannualwageforalljobsof$36,000(BureauofLaborStatistics,2017).Butthevast

majorityofthosejobsareheldbymen.Theproportionofwomenincomputingjobshas

actuallydecreasedsince1990,downto25%in2015(NCWIT,2017).Just7%ofworkersin

computingin2014identifiedasBlackand7%asHispanic(Beckhusen,2016).Thehigh

wagesofcomputingjobshighlightsthevalueoursocietyplacesonthatwork,butthe

diversityofparticipationinthosejobsislimited.“Ifthepopulationofpeoplecreating

softwareismorecloselymatchedtothepopulationusingsoftware,thesoftwaredesigned

andreleasedwillprobablybettermatchusersneeds”(Kelleher&Pausch,2005,p.131).

Computerscientistsandengineersdesigntoolsthatareintegraltolivesacrosstheworld,

soitmakeslittlesensethatthevastmajorityofthosedesignersonlyrepresentonetypeof

Page 6: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

4

person.Thechallengewefacetodayisbothtoincreaseengagementintechnological

creationandtoensurethefieldisrepresentativeofourdiversepopulation.

StereotypesofwhatCSjobsentailandtheimageofloner,nerdy,maleprogrammers

stillperpetuateandunderminediversityincomputingfields.Stereotypesoftenserveas

gatekeepersforwomeninparticular,hinderinglearning(Cheryan,Master,&Meltzoff,

2015)anddecreasingsenseofbelonging(Master,Cheryan,&Meltzoff,2016).K-12schools

playanimportantroleinintroducingavarietyofstudentstoCSandpotentiallychanging

theirperceptionsofwhatCSisandwhocanparticipateinit.

CTvs.CSvs.Programming

ThelinesbetweenCT,CS,andprogrammingcansometimesbeblurredin

educationalcontexts.ThebestarticulationoftheinterconnectionsamongthethreeIhave

foundisablogpostwrittenbysoftwareengineer,author,andstartupco-founderYevgeniy

Brikman.Ratherthanlearningprogramming,Brikman(2014)articulatestheimportanceof

learningtothink.First,programmingisjustwhatitsoundslike:writingcode,whetheron

paperoronthecomputer.Programminginvolvesspeakingaparticularlanguagetoa

computertogetthecomputertodosomething.Itcouldinvolvecreatingapieceof

software,anapp,awebsite,oritcouldbeassimpleasusingacomputertocalculatea

multiplicationproblem.Programmingisatooltohelpsolveaproblemorperforma

computation.Itisacommontoolusedbycomputerscientists,butprogrammingdoesnot

definewhatcomputerscienceis.Thebrainisalsoatoolforcomputation;itcanthink

logically,solveproblems,andruncalculations.

Computerscience,ontheotherhand,isabroaddisciplinethatincludessoftware

engineering,algorithmdesign,problemsolving,computationaltheory,artificial

intelligence,informationtheory,logic,andmore.Everydisciplineinvolvesparticularways

ofthinking,andpartoflearningtoparticipateinafieldinvolveslearningthosewaysto

think.Forinstance,physicsgivesusaparticularwayofthinkingaboutthephysicalworld

throughcalculusandintermsofmatter,motion,andforces.Chemistrygivesusawayof

thinkingaboutmatterintermsofstructure,properties,andreactions.Computational

thinkingreferstothewaysofthinkingcomputerscientistsuse.TheideaofCTisto

articulatehowcomputerscientiststhinkandsolveproblemssootherscanlearntothinkin

Page 7: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

5

asimilarway.Programmingisjustonetoolforexercisingthatwayofthinking,inthesame

waychemistsperformexperimentsusingtesttubes(Brikman,2014).

Whilechemistrymayinvolveitsownwayofthinkingabouttheworld,theskills

chemists’usealsoleakintootherfieldsofstudy,likephysics,biology,medicine,and

engineering.Forinstance,biochemistryisahybridfieldthattakestheabilitytothinkabout

chemicalprocessesandappliesittolivingcreatures.AccordingtotheUKBiochemical

Society,thiscross-applicationhascontributedsignificantadvancesintheareasofhealth,

disease,technology,andmore(BiochemicalSociety,2017),demonstratingthatapplying

disciplinarythinkingskillsacrosscontextscreatesinnovativesolutionsandtechnological

advances.Inmuchthesameway,theabilitytothinklogicallyandcomputationallycanleak

outsidetheCSfieldandhelpsolveproblemsinotherendeavors.Regardlessofthesubject

matter,theconstantincreaseintechnologyacrossdifferentculturesstrengthensthecall

foranunderstandingofhowpeopleuseCTtothinkwithandsolveproblemsthrough

technology.

Computerliteracyisanothertermpeopleusearoundcomputingprofessions,butit

oftencanrefertotheknowledgeofspecificprograms,likeWordorAdobePhotoshop,and

componentsofcomputers,likeusingamouseandkeyboard.Someresearchersusethe

termcomputationalliteracy,whichisclosertoCTbutnotexactlythesame.Whilereading

andwritingarefundamentaltoeducation,diSessa(2000)arguesthatcomputational

literacyisalsocrucialtocreatingknowledgeablepeople.Inmuchthesamewaythe

inventionoftheprintingpresschangedmainstreamliteracy,theproliferationofcomputers

changesourcurrentstructuresofliteracyandwhatitmeanstobealiterateperson.

Computationalliteracyisa“materialintelligence”thatismediatedbymaterialssuchas

symbolsandrepresentations,itinvolvesthewayswethinkinthepresenceofthose

materials,anditisasocialendeavor,developingwithotherindividualsacrosstimeand

space(diSessa,2000).Thefirstpillarofcomputationalliteracy--materials--issimilarto

thenotionofprogrammingasatoolandprogramminglanguagesasaninscriptionor

symbolsystemofacomputer-basedliteracy.Thesecondpillar--mentalprocesses--

includesthewaysinwhichpeoplethinkandsolveproblemswithcomputersand

programmingtools,whichcapturestheessenceofCT.Thethirdpillar--socialaspects--

goesbeyondthecollaborativeprocessescentraltoCTtodescribethewaysinwhich

Page 8: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

6

knowledgebuildsoverlongperiodsoftimeandwiththehelpofmanydifferentpeople.

Therefore,computationalliteracyincludesCTbuthasthemoreambitiousgoalof

fundamentallychangingmoderneducation,whichgoesbeyondthescopeofthispaper.

However,educatorsareincreasinglyfocusedonteachingCTratherthanjust

programming.WhereaslearningtoprogramgivesstudentstoolsforexercisingCT,learning

howtothinklikeacomputerscientisthelpsstudentsadapttoconstantlychanging

technologicalinnovationsandcomputingproblems.Whileresearchersarestillworkingto

buildaclearoperationaldefinitionofCT(Grover&Pea,2013),manyagreewiththeideaof

CTas“solvingproblems,designingsystems,andunderstandinghumanbehavior,by

drawingontheconceptsfundamentaltocomputerscience”(Wing,2006,p.33).CTisaway

ofthinkingthatallowspeopletocreatealgorithmsorsolutionstoproblemsinsuchaway

thattheycanbecarriedoutbyacomputationalagent,whetherthatisacomputerora

human(Brennan&Resnick,2012).Computationalparticipationisanothertermusedto

emphasizethesocialandcreativepracticesatthecoreofwhatcomputerscientistsdo

(Kafai,2016).ComputationalparticipationisalsoaformofdiSessa’s(2000)thirdpillar,

withitsfocusonthesocialaspectsofcomputing.Ultimately,asstudentslearnCT,they

developwaysofparticipatingincommunitiesoflearnersandcomputationalthinkers

(NationalResearchCouncil,2010).

ContextsofFocus:ComputerScienceandEngineering

WithinitiativeslikeCSforAllandtheinclusionofCTincomputing,science,and

engineeringeducationstandards,educatorsneedwaystogetallstudents,notjustthose

predisposedtocomputers,engagedinCTskills.Manypublicandprivatefundingagencies

supportSTEMandSTEAM(integratingartsintoSTEMsubjects)projects,highlightingthe

public’sinterestinengagingstudentsinmultidisciplinaryexperiencesthatfocusonnotjust

computingbutalsointegratingthoseskillsacrossscience,mathematics,engineering,and

thearts(Feldman,2015;Handelsman&Smith,2016;Jagodzinski,2016).Researchaimedat

betterunderstandinghowthesesubjectsintersectisessentialforcreatinglearning

environmentsthattrulyembodyinterdisciplinarymindsetsandallowstudentstoapply

problemsolvingstrategiesacrossdisciplines.WhileCTiscloselytiedtotheT(Technology)

inSTEAMthroughitsrootsincomputing,inthispaper,Iseektoimproveunderstandingsof

Page 9: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

7

CTwhileadvancingitsintegrationwithotherdisciplinesbyexploringconnectionstoother

STEAMsubjects,namely,engineering.

ToexploreapplicationsofCTintechnology,Ifocusoncomputerprogrammingasa

toolforengaginginCTskills.ProgrammingisacommoneducationaltoolforCT.Itprovides

manyproblem-solvingactivitiesandempowersstudentstolearnthroughcreatingtheir

ownartifactsthatcanbesharedwithothers(Papert,1980).Inotherwords,programming

canintroducestudentstothetoolsusedbyprofessionalcomputerscientists,butitcanalso

empowerstudentstouseCTskillstosolveavarietyofcomputationalproblems.Designers,

researchers,andeducatorshavedevelopednumeroustoolsforlearningprogramming,

bothwithandwithoutcomputers.

Ichosetoexploreengineering(theEinSTEAM)astheseconddisciplinarycontext

fordefiningCTforseveralreasons.Giventherecentincreaseinengineeringeducationin

U.S.classrooms(Catterall,2013;NationalAcademyofEngineeringandNationalResearch

Council,2009;Robelen,2013),itisimportanttounderstandhowengineeringconnectsto

otherschoolsubjects,includingCS.Engineeringcanimprovestudentlearninginother

STEAMcontextsbyconnectingdisciplinaryconceptsandpracticestoreal-worldproblems

(Catterall,2013;NAE&NRC,2009).Atthesametime,engineering“canprovideawayto

integratetheSTEMdisciplinesmeaningfully”(Mooreetal.,2014,p.2)byapplyingskills

frommathematics,science,andCStocreatesolutionstoproblems.Thus,engineeringmay

beapowerfulcontextforlearningandapplyingCTconceptsandpractices.Onebranchof

engineering,softwareengineering,ispartofthecomputersciencefieldandinvolves

significantprogrammingwork.Butbeyondsoftwareengineering,recentNGSSstandards

illustratedconnectionsbetweenCTandbroaderengineeringpractices(NGSS,2013).CT

andCSeducationhaverootsinconstructionism,whichemphasizeslearningthroughthe

design,buildinganddiscoverypracticesatthecoreofengineering(Lucas,Hanson,Claxton,

&CentreforRealWorldLearning,2014;Papert,1980).ItthenfollowsthatCTwouldhave

deepconnectionstoengineeringprocesses,makingtheengineeringfieldastrong

candidateforexploringwhatCTisandhowitoverlapswithdifferentdisciplines.

Page 10: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

8

TheoreticalFramework

BylookingathowCTisre-contextualizedinCSandengineering,Iseekto

understandhowstudentscanengageinCTinrichandmeaningfulways.Bothstudentswho

likeprogrammingandthosewithinterestsoutsidecomputingshouldbeabletoparticipate

inthepracticesofCTandtakeonlegitimaterolesintheCTlearningcommunity.Iam

curiousabouthowstudentscanparticipateinCTinrichandmeaningfulwaysandhow

participationrelatestostudents’interestsin,experienceswith,andbeliefsabout

computing.Therefore,inthenextsections,Idrawonperspectivesofsituatedlearningand

legitimateperipheralparticipation(Lave&Wenger,1991)tounderstandwhatitmeansto

beacomputationalthinkerindifferentcontexts.

Historically,researchineducationfocusedonunderstandingtheknowledge

studentsacquireandhowtheylearnit.Thedevelopmentofsituativetheories

demonstratesthatknowledgeandpracticesaretiedtogether,andtheactivitiespeople

engageinarecentraltoandmakeuptheknowledgebeingdeveloped(Cobb&Bowers,

1999).Insituativeperspectives,learninginvolvesachangeinparticipationwithasetof

resourcesoractivitiesinadditiontochangesinwaysofthinking(Gresalfi,Martin,Hand,&

Greeno,2009;Hand&Gresalfi,2015;Lave&Wenger,1991;Nasir&Cooks,2009).Essential

tothisframeworkistheideathatproductivelearninghappensthroughlegitimate

peripheralparticipation(LPP),thatis,whenpeoplehaveaccesstothecorepracticesofa

communityofpractitionersandopportunitiestoparticipatemorefullyovertime(Lave&

Wenger,1991).LPPaskswhatkindsofsocialsituationsprovideacontextforlearning,

ratherthanwhatcognitiveprocessestakeplaceintheindividual.LPPdescribes

engagementinsocialpracticeasdistributedamongco-participantsinalearningcontext,

withafocusonparticipationinthesocialworld.Inthisway,learningoccursthrough

interactionsincommunitiesofpracticebothinsideandoutsidetheformalclassroom.

Communitiesofpractice(CoP)aregroupsofpeopleengaginginasimilarcraftor

profession(Lave&Wenger,1991;Wenger,2010).Throughsharinginformationand

experiences,memberslearnfromeachotheranddeveloptheiridentitiesinrelationtoa

broadercommunity.PeopleinaCoPareactivepractitioners,asopposedtoacommunityof

interestthatinvolvespeoplewithasharedinterestwithoutdependenceonexpertiseor

Page 11: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

9

practice(Wenger,2010).CoPsinvolverelationsamongpeople,activities,andtheworld

acrosstimeandspace.Differentcommunitiesoverlapwithoneanother,andpeopleare

membersofmultiplecommunitiesatatime.

Duringthelearningprocess,thecommunityitselfchanges.Itisnotjustthenovice

wholearns,buttheexpertandtheskillitselfalsochangeinsomeway.LPPmoveslearners

towardfullerparticipationinacommunity.Peoplestartbyparticipatingintasksthatare

meaningfulandproductivetothecommunitybuthaveminimalrisk.Throughthiswork,

novicesslowlybecomefamiliarwiththelanguages,tasks,andpracticesofacommunity.As

theycontinuetoparticipateovertime,theytakeonmoreaspectsandresponsibilities,and

theirparticipationbecomesmorecentraltothefunctioningofthecommunity.The

legitimateperipheralnatureimpliesthatlearnerscanchangeperspectivesinthe

communityaspartoflearninganddevelopingidentities,andthereisnosinglecoretothe

community.Therearedifferentwaysofbeingfullparticipants.

AsanexampleoflearningthroughLPP,wecanthinkaboutthetrajectoryofa

doctoralstudent.Firstyeargraduatestudentsworkingasresearchassistantsmaystartby

readingpaperswrittenbytheiradvisorsandcorrectingtyposorfillinginmissing

referencesinthebibliography.Thisworkisnecessaryandimportant,whichallowsthe

newcomertocontributetotheacademiccommunityeveninaperipheralway,butitisnot

toocostlyifmistakesaremade.Overtime,thegraduatestudentmaycontributetowriting

apaperwithanadvisor,collectdatawitharesearchteam,theneventuallyconducttheir

ownresearchandpublishtheirownpapers.Intheirfirstyearofstudy,astudentmaynot

feellikeanimportantmemberofthecommunity,butoveryearsofbecomingafuller

participant,theymaydevelopacloserrelationshipandsenseofbelongingwiththe

academiccommunity.Inthisway,thegraduatestudentsarelearning,changingtheirforms

ofparticipationandroleswithinthecommunity,andconstructingidentitiesinrelationto

thecommunityofacademicpractitionersintheirfield.Itmaynotalwaysfeellikeitto

graduatestudents,butaslongastheyhaveaccesstoexpertmentorsandauthentic

practices,theyareslowlytransformingtheiridentitiesandlearningtobecomereal

researchersandfullmembersofthefield.Thus,learninginvolvesbecomingamemberofa

communityandresultsinachangeinrelationshipwithrespecttoacommunity.A

Page 12: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

10

newcomer’s“changingknowledge,skill,anddiscoursearepartofadevelopingidentity”

(Lave&Wenger,1991,p.122).

Manyscholarspointtoissuesofidentityascriticaltolearningandengagement(e.g.

Boaler&Greeno,2000;Hand&Gresalfi,2015;Holland,Lachicotte,Skinner,&Cain,1998;

Wenger,1998).Inmathematicseducation,researchershavearguedfortheimportanceof

understandinghowstudentsdevelopviewsofthemselvesasmembersinthedisciplineand

ascapableoflearninganddoingmathematics(Martin,2000;Nasir,2002;Nasir&de

Royston,2013).Howlearnersviewthemselvesaffectshowtheyengageinlearning

contexts,andtheirengagementisshapedbytheopportunitiesaffordedforparticipation

(Nasir&deRoyston,2013).

InLPP,identityandlearningareinextricablytiedtochangesinparticipationwith

resourcesandactivitiesinaparticularsocialcontext(Greeno&Gresalfi,2008;Hand&

Gresalfi,2015;Lave&Wenger,1991;Nasir&Cooks,2009).Inotherwords,bothlearning

andidentityaretheresultofparticipationincommunitiesofpractice(Wenger,1998).

Identitiesformthroughparticipation,andlearninginvolvesbecomingalegitimate

participantandmemberofthecommunity(Lave&Wenger,1991).Learninginvolvesa

shiftinparticipationwithartifactsorresources,whilethewaysinwhichresourcesare

usedandparticipationoccursdependonthelearner’sidentity(Nasir&Cooks,2009;

Gresalfietal.,2009).Learninginvolveschangesinwaysofactinginrelationtothenorms

andresourcesofacommunity,andatthesametime,identityaffectswhatpeoplelearn,

howtheyengage,andwhattheychoosetopursue(Bishop,2012).

Identities“playafundamentalroleinenhancing(ordetractingfrom)ourattitudes,

dispositions,emotionaldevelopment,andgeneralsenseofself”(Bishop,2012,pp.34–35).

Ratherthanasingle,staticsenseofself,identityisamixtureofchangingrepresentations

negotiatedbasedonhowpeopleviewthemselves,howtheyarepositionedbyothers,their

engagementwithnorms,practices,culturaltools,pastexperiences,waysofparticipating,

feelingsandbeliefs,andtheparticularsocialcontext(Bishop,2012;Gee,2000;Hand&

Gresalfi,2015;Hollandetal.,1998;Wenger,1998).Anyindividualhasmanyidentities

acrosscommunitiesthatarenegotiatedandinformeachother(Hollandetal.,1998).

Individualscancontroltheiridentitiesinsomewaysbuttheyarelimitedbyrelationsof

structureandpowerinthebroadercontextofparticipation(Brickhouse&Potter,2001).A

Page 13: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

11

studentmayclaimanidentitybuttheirinteractionswithothersmayadjustthestrengthor

formofthatidentityasitisenactedovertimeandspace.

CSlearningcontexts,suchastheclassroomorinformalclub,areparticular

communitiesofpracticewherelearningoccursthroughchangesinparticipationinrelation

tothenormsandpracticesofthecommunity.Atthesametime,identitiesdevelop

accordingto“whostudentsare,whotheycanbe,andwhotheywanttobe,assanctioned

bythenormsoftheclassroom”(Tan,CalabreseBarton,Kang,&O’Neill,2013,p.1145).

Identityinvolveshowpeopleseethemselvesinrelationtothecommunity,butalsohow

othersseethemandhowtheyareallowedtoparticipateandcontributetothecommunity.

Bothindividualandsharedidentitiesarecontinuouslynegotiatedthroughinteractionwith

othersandthroughengaginginthepracticesofacommunity. Students’engagement,

persistence,andgoalsmediatebothidentityandlearning(Nasir&Cooks,2009).

Nasir&Hand(2008)usetheterm“practice-linkedidentities”torefertothisnotion

ofidentityasasenseofselftiedtoactivity.These“aretheidentitiesthatpeoplecometo

takeon,construct,andembracethatarelinkedtoparticipationinparticularsocialand

culturalpractices”(p.147).Thisviewofidentityistiedtothenotionofengagement.

Variouspracticesafforddifferenttypesofengagement,whichsupportpractice-linked

identitydevelopmentindifferentways.Forinstance,whenanindividualfeelsaclose

connectionbetweentheirdevelopingsenseofselfandthepracticesofacommunity,the

individualismorelikelytobeengagedandtoparticipateintensely(Nasir&Hand,2008).

Hence,somesettingssupportengagementforparticularindividualsbetterthanothersdo.

Atthesametime,someactivitiesmayaffordmorewaysofparticipatingthanothers,

allowingstudentstoengageindifferentways.Thisinturnsupportsstudentstosee

themselvesascapableofparticipatinginthosepracticesanddevelopingaproductivesense

ofselfinrelationtotheparticularcommunity.

Asworkonidentityconstructionreveals,membershipinacommunityismediated

bythepossibleformsofparticipationpeoplehaveaccessto,includingphysicalandsocial

tools.Learnersmusthaveopportunitiestousethetoolsandparticipateintheactivitiesofa

communitytodevelopunderstandingandasenseofbelonging.Forinstance,ifnovicescan

directlyobserveexpertpractice,thentheyhaveabetterunderstandingoftheorganization

ofthecommunityandwheretheirworkfitsin.Butifnewcomershavelittleaccesstothe

Page 14: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

12

toolsandbroadercommunity,theycanstagnateinthesameroleovermanyyearsand

neverachievefullerparticipation(Lave&Wenger,1991).Thus,accesstoresourcesand

opportunitiestolearnareessential.Therefore,wemustfirstunderstandwhatthe

community’stoolsandactivitiesarebeforewecandesignforlearning.Inthecaseof

integratingCTintoK-12schools,researchersmustfirstidentifythecentralcharacteristics

oftheprofessionalcomputingcommunity,includingthedomainofknowledge,the

practicesoractivities,andthewaysofapproachingactivitywithinthecommunity.

IntheLPPframework,changesinparticipationoccurinthreedifferentways.First,

thetoolsorresourcespeopleleveragetosolveproblemschangeastheydevelopnew

knowledgeandbetterunderstandings.Insteadoftools,Iusethetermconceptsinthis

papertoreflectthelanguagemostresearchersusetoclassifywhatpeoplelearnwhenthey

engageinCT(e.g.Barr&Stephenson,2011;Brennan&Resnick,2012;Weintropetal.,

2016).Learningalsoinvolvesengagingindisciplinarypractices.Thatis,learnersmakeuse

ofthecoreactivitiesorprocessesusedbythecommunity.Finally,overtime,learners

developidentitiestowardsthedisciplinarycommunity.Theactivitieschildrenexperience

informalandinformallearningcontextshelpformtheiridentitiesinrelationtodifferent

disciplines,whichaffectsthewaysinwhichstudentsusetheirknowledgeandapproach

newproblems(Boaler,2002).Boaler(2002)callsthistypeofidentitya“disciplinary

relationship.”Theseidentitiesdescriberelationshipstoothers,waysofbeing,orviewsof

oneselfinrelationtothediscipline.Inthispaper,Iusethetermdispositionstoconnectthis

typeofdisciplinaryidentitywithworkonproductivedispositions.Researchonproductive

dispositionsclaimsthatstudentsneedtodevelopthinkingskillsalongwiththeappropriate

dispositionstousethoseskills(Gresalfi&Cobb,2006;McLeod,1992;Schoenfeld,1992).

Makinguseofknowledgedependsonthepracticesstudentshaveengagedinandwhether

theyhaveaproductiverelationshipordispositiontowardsthediscipline(Boaler,2002).

MyuseofthetermdispositionalsocorrespondswithBrennanandResnick’s(2012)focus

ondispositionsintheirassessmentsofCTskills.

Asmentionedbriefly,thisframeworkofconcepts,practices,anddispositions

correspondswithhowmanyresearchersnowtalkaboutCTineducationalcontexts(Barr&

Stephenson,2011;Brennan&Resnick,2012;Shute,Sun,&Asbell-Clarke,2017;Weintrop

etal.,2016).CTconceptsarenotionsorideasusedastoolsintheconstructionof

Page 15: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

13

algorithmsandproblemsolutions.CTpracticesincludeprocessesofconstructing

algorithmsorsolutions.Whileconceptsdescribeknowledgeandunderstandings,practices

describehowpeopleparticipateanduseconceptswhilecreatingsolutionprocesses.Atthe

sametime,learners’dispositionstowardsCTaffecttheirengagementandwaysof

participatinginactivitiesinvolvingCT.Learnersneednotonlytheskillsandknowledgeof

acommunitybutalsotheinclinationtorecognizewhenskillsareusefulandthewillingness

tousethem(Halpern,1999).BrennanandResnick(2012)refertotheseunderstandingsof

oneselfandrelationshipswiththedisciplineofCTas“perspectives.”However,inthispaper

Iusethemorefamiliarterm“dispositions”asitconnectstoworkonproductive

engagementandproductivedisciplinaryrelationshipsinthebroaderfieldofeducation.

Iusethesecategoriesofconcepts,practices,anddispositionstodescribewhatit

meanstoknowandparticipateinCTindifferentcontexts.Inotherwords,participatingin

CTinvolvesusingoneormoreoftheCTpractices,andknowingCTinvolvesunderstanding

CTconceptsorbeingabletodescribeandengageinCTpractices.Atthesametime,CT

dispositionsaffectwhetherpeoplecanproductivelyengageinthosepracticesanddevelop

understandingsofCTconcepts.

Inthispaper,IdrawontheframeworkofLPPwiththegoalofbroadeningideasof

whatitmeanstobecompetentorlegitimatecomputationalthinkers.First,Idescribethe

waysinwhichresearchersdefineCTinCScontexts,andthenIlooktoengineeringtosee

howpeopleinthefieldlegitimatelyuseCTpracticeswhendesigningsolutionstoproblems.

ByhighlightingtheoverlapsbetweenCTandotherdisciplines,Iillustratehowpeoplecan

legitimatelyengageinCTandactascompetentcomputationalthinkersoutsidethe

traditionalboundariesofcomputing.WhileIseparatelearningandidentityinthesections

belowonCTinengineeringandCStobetterstructureandclarifytheliteraturereview,

learningandidentityareintricatelytiedtogetherinLPP.Theyinfluenceoneanother,and

bothchangeasaconsequenceofparticipation.

Page 16: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

14

LiteratureSearch

IfirstwantedtolookathowresearchersandpolicymakerscharacterizeCTandCT

learninginCSandinengineering.FortheCTinCStrack,Istartedwithhighlycitedanchor

readings,includingWing(2006;2008)andGrover&Pea(2013),andIcollectedarticles

basedontheircitationsaswellasarticlescitingthem.Icontinuedlookingatthose

subsequentarticles’citationstofindfurtherwork.MuchofwhatIfound,especiallyfor

empiricalwork,camefromconferenceproceedings.IthensearchedforCTeducation

standards,andIlookedfornationalCSstandardswithCTembeddedinthem.

ForCTinengineering,therewerenoanchorpaperstobasethesearchon,andI

foundadearthofworkonlearningengineeringinK-12ingeneral.Therefore,Iextended

mysearchbeyondCTspecificallytoarticlesthattalkaboutgeneralengineeringpractices.I

alsosearchedfornationalengineeringeducationstandardsthatincorporateCTandfocus

ondesign,sincedesigniswheretheoverlapwithCTappliesacrossengineeringfields.

IdidnotfindmanypapersintheCSorCTfieldsthattalkedaboutidentityintheway

Iconceptualizeithere.Instead,Ifoundpaperslookingatbeliefs,motivation,andinterest,

soIincludethoseconstructsinmyliteraturereviewonCTidentitybelow.Ontheother

hand,thereisasignificantamountofliteratureaboutidentityinengineeringfields.

However,almostalltheworkfocusesonadults(collegestudentsandprofessionals)and

primarilyaroundbeliefandidentification,whichisdifferentfromtheconceptualization

basedonparticipationthatIuseinthispaper.Iusetheexistingliteraturetohighlight

potentialfindingsrelatedtoCTidentityfromworkonbeliefs,interest,andmotivationinCS

andengineering,andIpointtoopportunitiesforfurtherexploration.

Page 17: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

15

ComputationalThinkinginComputerScience

Followingtheideathatlearningtoprogramalsohelpspeoplelearnhowtothink,

thissectionaimstoidentifysomeoftheconceptsandpracticesinvolvedinlearningto

thinkcomputationallythroughcomputerprogramming.CTandprogrammingaredeeply

intertwinedhere,aseffortstodefineCThavestartedbylookingattheskillsprogrammers

usetosolveproblemsandformulatesolutions.Inthiscontext,“solution”referstothe

processofcomingtoananswerratherthantheansweritself.Whilealgorithmsor

programsarenotanswersontheirown,theyaresolutionsthatcanbecarriedoutbya

computationalagenttoproduceananswertoaquestionorproblem.

Concepts

Inessence,“analgorithmisanabstractionofastep-by-stepprocedurefortaking

inputandproducingsomedesiredoutput”(Wing,2008,p.3718).SinceCThelpssolve

problemsbycreatingalgorithms,abstractionisatitscore(Wing,2006;2008).Abstraction

involvesdecidingwhattopayattentiontoandwhattoignoreinrepresentingand

processingdata(Weintropetal.,2016).Forexample,whenyouwanttoprintsomething

fromyourcomputer,youonlyneedtoworryaboutfindingthe“print”button;youdonot

needtothinkaboutorunderstandthemechanicsbehindhowaprinterworks,howdatais

senttotheprinter,etc.Inessence,muchoftheprintingprocessisina“blackbox”that

userscanignore;youneedonlyseethe“print”buttononyourcomputerscreen.Therefore,

“theprintcommandisanabstractionthatshowstheuseronlywhatheorsheneedstosee”

(NationalResearchCouncil,2004,p.16).

WhileabstractioniscentraltoCT,itisstillabroadconceptanddoesnothelp

educatorsunderstandhowtoimplementCTandwhattopayattentionto.Some

researchershavesuggestedthatCTissimilartonotionsofproceduralthinkingdeveloped

bySeymourPapert(NationalResearchCouncil,2010).Proceduralthinkinginvolves

thinkinginandaboutproceduresforperformingactions.Thesecouldbeeverydayactions

likegivingsomeonedirectionsormorecomplextaskslikedevelopingprogramming

algorithms.Proceduralthinkinghelpspeoplebreakdowncomplextasksintosmaller

componentsanddebugerrorsinthesolutionprocesses(Papert,1980).

Page 18: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

16

UsingScratch,ablock-basedprogramminglanguagedevelopedbasedonprinciples

fromPapert’sLogolanguage,BrennanandResnick(2012)specifiedtheconnections

betweenCTandproceduralthinking.Specifically,CTconceptsthatprogrammersuseto

thinkprocedurallyandcreatealgorithmsinclude:(i)creatingandfollowingsequencesof

instructions;(ii)parallelinstructions(executingmultiplesetsofinstructionsatthesame

time);(iii)usingandorganizingdata;(iv)operatingondata;and(v)elementsofcontrol

flowlikeloopingsetsofinstructions,conditionals(ifthisistruethendothis),andevents

(whenthishappensthendothis)(Brennan&Resnick,2012;CSTA,2017;Grover&Pea,

2013).AnanalysisofprogrammerswithyearsofexperienceintheScratchonline

community(https://scratch.mit.edu)showedthattheymakeuseofawidevarietyof

Scratchblocksthatinvolvealloftheconceptslistedabove(Brennan&Resnick,2012).

Furthermore,Bersandcolleagues(2014)demonstratedthatchildrenasyoungasfourcan

engageintheseCTconcepts,likesequencinginstructionsandcontrolflow,through

tangibleprogrammingactivities.Thus,evennoviceprogrammerscanlegitimately

participateintheCTcommunitybyaccessingthesecoreconceptsthroughCSeducation.

Practices

Beyondunderstandingprogrammingconcepts,CTisultimatelyawayofthinking

thatdescribes“processesofconstruction”(Brennan&Resnick,2012,p.6)usedtosolve

problems.Solvingproblemsusingproceduralthinkingfromprogramminginvolvesactively

developing,representing,testing,anddebuggingproceduresoralgorithms(Papert,1980).

TheseproceduralthinkingpracticesmapontosimilarCTpractices.First,developing

proceduresoralgorithmsinCTinvolvesthepracticeofbeingincrementalanditerative

(Brennan&Resnick,2012;CSTA,2017;Grover&Pea,2018;Shute,Sun,&Asbell-Clarke,

2017).Forexample,designinganalgorithmisnotaconsecutiveprocessbutinvolves

adaptingplansandgoingthroughcyclesofbrainstormingandcreating.Evenexperienced

programmersarelikelytomakeerrorswhentheyfirstwritenewprocedures,sorevisionis

expectedandnotanindicationofsomeone’slackofprogrammingability.Instead,both

noviceandexpertprogrammerscodealittlebit,tryitout,andadjustitormoveforward

basedonwhattheyfindandthenewideastheygenerate(Brennan&Resnick,2012).

Hence,theprocessinvolvesiteratingonsolutionideas.

Page 19: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

17

Anotherpracticemanyprogrammersusewhendevelopingproceduresinvolves

reusingorremixingsolutionsfromothers(Brennan&Resnick,2012;CSTA,2017.

“Remixing”involvesstartingwithaproceduresomeoneelsehaswrittenandchangingitin

somewaytoachieveanewgoal.Newtechnologiesallowprogrammerstoeasilyexchange

ideas,accesseachother’swork,andengageinreusingandremixingpractices.Stack

Overflow(http://stackoverflow.com/)isjustoneexampleofapopularonlinecommunity

whereprogrammersofalllevelshelpeachothersolveproblemsandsharesamplesofcode.

Scratchalsohasitsownonlinecommunity(https://scratch.mit.edu/)forprogrammersto

view,commenton,andremixeachother’sprojects.Thesecommunitiesgivelearners

accesstotheknowledge,skills,andworkofmoreexperiencedmembersofthecommunity.

Newcomersandoldtimerscanexchangethoughts,andnewcomerscandevelopan

understandingofthekindsofparticipationtheyaremovingtowardsastheyseeexamples

ofoldtimers’workandthekindsofinteractionsthatareconsideredlegitimateinthelarger

communityofpractitioners.Hence,theseresourcessupportlearningandprogression

towardfullerparticipationintheprogrammingandCTcommunity(Lave&Wenger,1991).

Duringtheiterativedevelopmentprocess,programmerstestanddebugtorefine

theirsolutions(Papert,1980).“Debugging”isaprocessoffindingandfixingerrors(Berset

al.,2014;Brennan&Resnick,2012;CSTA,2017;Grover&Pea,2013;2018;Shute,Sun,

Asbell-Clarke,2017).Debuggingstartsbyrecognizingthatsomethingisnotworkingas

expected,theninvolveschoosingtocontinueworkingtowardstheoriginalgoalorchanging

thedesiredgoal.Iftheprogrammerdecidestofixtheproblem,theywilldevelop

conjecturesaboutwhatcausedtheproblem,thenfinallyattempttosolvetheproblem.This

four-stepdebuggingprocedurecanevenbeusedbykindergarten-agedchildren(Bersetal.,

2014),showingthatthiscorepracticeisaccessibletonovicecomputationalthinkers.

Alongwithdevelopingsolutions,representingproceduresorsolutionssotheycan

becarriedoutbyacomputationalagentisacorepartofCT.Inprogramming,the

computationalagentisusuallyamechanicalcomputer.Programmersuseseveralrelated

skillsinthisprocess.Oneskillinvolvesreworkingproblemssotheycanbesolvedbya

computer(ISTE&CSTA,2011;Wing,2006).Evenafterdevelopinganideathatsolvesa

problem,proceduresmustbespecific,clear,andwritteninaparticularwaydependingon

theprogramminglanguageandcomputationalagent.Inmanycases,efficiencyofsolutions

Page 20: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

18

isanimportantconsideration.Thepracticeofworkingtowardsefficientsolutionsinvolves

addressingconstraintssuchastimeittakesasolutiontocompute,thespacetheprogram

takestorunandstore,andeventhesimplicityofinstructionssotheycanbereusedand

understoodbyothers(Barr,Harrison,&Conery,2011;Grover&Pea,2013;Wing,2008).

ThesecoreCTpracticesfundamentallydependonthecomputationalagentbeingusedto

carryoutthesolution,soprogrammersmustconsiderandusetheminvariouswaysacross

programmingcontexts.Thus,partoflearningtoparticipateintheprogramming

communityinvolvesdevelopingtheabilitytoadaptpracticesofdesignindifferent

situations.Thisisespeciallytrueaslearnersgainexpertiseandmovebeyondasingle

programminglanguageorenvironment.

Becauseexpertprogrammersmustadapttomanydifferentenvironments,

especiallytokeepupwiththechangingtechnologiesandlanguagesusedtocreate

programs,itishelpfuliftheirsolutionscantransferacrossavarietyofproblems.Hence,

someresearchersnowidentifythepracticeofgeneralizingasolutionintoaproblem

solvingprocessasanimportantpartofCT(Barr,Harrison,&Conery,2011;Hu,2011;

Shute,Sun,Asbell-Clarke,2017).Insteadofaspecificsolutionthatonlyappliestoa

particularcomputationalagentorprogramminglanguage,thesegeneralprocessesareless

formalandspecificsotheycanbeadaptedtodifferentenvironments.Forinstance,overthe

years,programmershavedevelopedgeneralalgorithmsforsortinglistsofnumbers.

Programmerslearnthesealgorithmsandexplainhowtheyworkusingpseudo-code,

imagesanddiagrams,orparagraphsoftext.Withthatgeneralunderstandingofthe

algorithmsforsortingnumbers,programmerscanthenconsidertheenvironmentand

constraintstheyhave,choosewhichalgorithmismostappropriate,andcodeitinthe

specificprogramminglanguagetheyneed.Fornovicesthen,itdoesnotmakesenseto

memorizetheproceduresforsortingnumbersinmanydifferentlanguages.Instead,

learnersshoulddevelopknowledgeofgeneralsortingalgorithmsandengageinthe

practiceofreformulatingandspecifyingthosealgorithmsacrosscontexts.

Thispracticeofgeneralizingsolutionsrelatestotheideaofmodularizingcode.In

modularizing,programmersbreaktheproblemdownintosimplertasksandgrouplinesof

codeaccordingtothefunctionstheyperform(CSTA,2017).Thesegroupsareoftencalled

“functions”or“methods”inobject-orientedprogramming.Asanexampleofmodularization

Page 21: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

19

inanoviceprogrammingcontext,theScratchlearningenvironmentallowslearnersto

engageinthispracticeofmodularizationbycreatingseparatestacksofcodethatrunin

responsetoaneventthatoccursinthelargerprogram.Forinstance,BrennanandResnick

(2012)illustratehowalearnerintheScratchcommunityusesmodularizationtosplither

codeintothreestacks.Thefirststackcontrolsanobject’smovement,thesecondstack

control’sitsvisualappearance,andthethirdstackcontrolsothereventsthatoccurin

responsetotheobject,likeresettingalevelinthegamewhentheobjectcollideswith

something.Inthisexample,thelearneralsousestheconceptofparallelproceduresasall

threeofherstacksaresettostartwhentheyreceivethesameeventcommand.

Modularizationisatypeofabstractioninwhichprogrammersbuildsomething

complicatedbycombiningsmallerpartstogether(Brennan&Resnick,2012;CSTA,2017).

Thepracticeofrepresentingandusingdataalsodrawsonabstraction(Barr,Harrison,&

Conery,2011;CSTA,2017;Grover&Pea,2013;Hu,2011;NRC,2010;Wing,2006;ISTE&

CSTA,2011;Shute,Sun,&Asbell-Clarke,2017).“Allinformationstoredandprocessedbya

computingdeviceisreferredtoasdata…Asstudentsusesoftwaretocompletetasksona

computingdevice,theywillbemanipulatingdata”(CSTA,2017,p.2).Twoways

programmerscommonlyworkwithdifferentrepresentationsofdataisbyusingdifferent

datatypesandstructures,likearraysandlists,andbytransformingdatatomakeitmore

usable(CSTA,2017).Whilenewcomersdonottypicallystartoutbylearningdata

structures,childrencanworkwithdataintheformofvariables.Forinstance,inScratch,

learnerscanexplicitlyusevariablestostoreinformationandperformcalculations.

Variablescanstoredataintheformofnumbersortext.Scratchuserscanalsochooseto

displaythedataindifferentways,usingasimplebarshowingthevalueofthevariable,

havingcharacterssaythevalueofavariable,orbychangingavisualorauditoryoutputin

responsetoadatavalue.Inthisway,novicescanparticipateinalegitimatebutperipheral

formofthedatausepracticeuntiltheydevelopfullerunderstandingsofdatain

computationalcontexts.

ThissectiondiscussedseveralCTpracticesfromprogramming,namely:being

incrementalanditerative,reusingorremixingsolutionsfromothers,testingand

debugging,representingproceduressotheycanbecarriedoutbyacomputationalagent,

generalizingasolutionintoaproblemsolvingprocess,modularizing,andrepresenting

Page 22: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

20

data.ThenextsectiondivesintothedispositionsCTresearchersarebeginningtorecognize

fromstudyingprogramming.

Dispositions

CTdispositionsaffectlearners’viewsofthemselves,theirwaysofparticipating,

theirattitudestowardstechnology,andtheirperspectivesonCT.Productivedispositions

helplearnersengageandmakeprogressintheirlearningastheyshifttowardsfuller

participationinthecommunity.Drawingonprogrammingandcomputerscienceata

meetingtodevelopanoperationaldefinitionofCT,researchersandeducatorscalled

attentiontoseveralrelevantdispositions.Thesedispositionsincludedealingwith

complexity,persistingondifficultproblems,dealingwithambiguityandopen-ended

problems,andcollaboratingwithothersonasharedgoal(Barr,Harrison,&Conery,2011;

Barr&Stephenson,2011;ISTE&CSTA,2011).BrennanandResnick(2012)usedexamples

fromprogramminginScratchtodescribetwoadditionalCTdispositions:using

computationforself-expressionandquestioningtheworldaboutandwithtechnologies.

First,itisnotclearexactlywhatthedifferencesarebetweenthedispositionslabeled

asdealingwithcomplexity,dealingwithopen-endedproblems,andpersistingondifficult

problems.Theyallseemtooverlap,andtheyareallmentionedtogetherseveraltimesin

theCSTAK-12ComputerScienceStandards(CSTA,2013).Theyallinvolvecharacteristics

likepatience,adaptability,acceptingchallenges,andabilitytotinkerortrythingsout

(CSTA,2013).Theydescriberecognizedwaysofapproachingproblemsandcharacteristics

ofsuccessfulproblemsolversfromotherfields,includingmetacognitiveskillsandbeliefs

(Lester,1994;Mayer,1998).Therefore,thesethreeCTdispositionscanbecombinedto

describeproductivecharacteristicsforapproachingopen-endedandcomplexproblemsin

programming(CSTA,2013).Moreresearchisneededtounderstandwhatthese

dispositionsentail,howtheyaffectlearningandengagement,andhowtofosterthem

productivelyineducationalprogrammingenvironments.

Thenextdispositionhighlightstheimportanceofcollaborationinprogrammingand

CT.CollaborationoccursinbothK-12classrooms,suchasthroughpairprogrammingand

groupprojects,andintheworkplace,alsoinpairprogrammingandthroughdivisionsof

labor(Grover&Pea,2018).Ineducationalcontexts,collaborationgivesstudentsaccessto

Page 23: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

21

othersinthecommunityasaresourceforlearningthroughaskingquestions,observing

practices,anddevelopingabroadoverviewofotherrolesandwaysofparticipatinginCT

(Lave&Wenger,1991).Foryounglearners,theseconnectionscanoccurwhencreating

projectsbothwithothersandforothers(Brennan&Resnick,2012).Forinstance,

collaboratingwithothersallowsnoviceprogrammerstoaskquestionsoftheirpeers,reuse

others’code,andcreatelastingpartnerships.Bycreatingprojectsforotherstouse,

learnersmustengageinnewskillsandconceptsinvolvedinunderstandingtheiraudience,

definingtheirgoals,anddisseminatingtheirwork.Asanotherexample,theScratchonline

communitysupportssimilarcollaborationsamongparticipantsofalllevels(Brennan&

Resnick,2012;Resnicketal.,2009).Inordertocollaborateintheseways,participants

mustbeabletogiveeachotherfeedback,makeuseoffeedbackintheirwork,understand

differentperspectives,andcreatebothsocialandworkingrelationshipswithother

membersoftheprogrammingcommunity(CSTA,2013;2017).Thesedispositionshelp

learnerstakeonnewrolesastheyproductivelyengagewithotherprogrammersand

computationalthinkers.

Whilelearningtoprogram,studentsshouldalsodevelopadispositiontowards

expressingideaswithtechnology.Ratherthanjustconsumingexistingtechnologies,like

browsingtheInternetortextingfriends,programmerscanactuallycreateandadapt

technologiestosolveproblemsinnewways(CSTA,2017;Grover&Pea,2018).For

programmers,“computationissomethingtheycanusefordesignandself-expression.A

computationalthinkerseescomputationasamedium”forcreativityandexploration

(Brennan&Resnick,2012,p.10).Experiencedprogrammerswithwell-developed

knowledgeandskillscancreatemanydifferenttypesofprojectsdependingontheir

interests,professionalwork,andconfidenceintheirabilities.Butevennovicescanexpress

themselvesthroughprogramminginScratchbycreatingsimplestoriesandbyimporting

theirowncontentlikemusic,images,andvoicerecordings(Resnicketal.,2009).

Finally,programmershavetheabilitytoaskquestionsabouttechnologyandwith

technology.Ratherthantakingtechnologyforgranted,programmerscanusecomputation

tomakesenseofhowtechnologieswork,theirlimitations,andhowtoimprovethemin

responsetoreal-worldsituations(Brennan&Resnick,2012).Fornovices,thiscanstartout

asadispositiontowardswonderinghowthingswork.Oritcandevelopovertimeas

Page 24: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

22

programmersrealizetheirabilitiestoadapttechnologiesfortheirownandothers’needs.

Questioningempowerscomputationalthinkerstomodifytechnologies,considerthe

affordancesandconstraintsofexistingtools,anddiscusstheimpactsoftechnologyonthe

world(CSTA,2013;2017).

LearningCTConceptsandPracticesinK-12ComputerScience

Inthispaper,Iamconceptualizinglearningasachangeinparticipationina

communityofpracticethatoccursthroughinteractionswiththetools,practices,and

participantsinacommunity.ButthatconceptualizationisnothowresearchersinCS

alwaystalkaboutlearning.EarlyideasofCTcamefromsuggestionsthatwhilelearningto

programcomputers,studentsalsolearnpowerfulthinkingskillsapplicabletobroader

problems(Papert,1980;Nickerson,1983).Inthe1980s,manyresearchersinterestedin

programmingeducationclaimedtoalsoengagechildreningeneralproblem-solvingskills,

supportedbyqualitativeanalysesandcasestudies(e.g.Gorman,Jr.&Bourne,Jr.,1983;

Papert,1980;Soloway,1986;Yelland,1995).However,quantitativestudiesonthe

cognitiveeffectsoflearningprogramminglanguages,includingproblemsolving,creativity,

logicalreasoning,andmore,showedmixedresults(Gorman,Jr.&Bourne,Jr.,1983;

Kalelioglu&Gülbahar,2014;Pea,1983;Pea&Kurland,1984;Pea,Kurland,&Hawkins,

1985;Swan,1989).Mostofthechangestostudents’thinkingskillsappearedwhenthe

skillswereassessedinaneartransfertaskorwerecloselyrelatedtothespecific

programminglanguagestudentslearned(Clements&Gullo,1984;Mayer,Dyck,&Vilberg,

1986;MidianKurland,Pea,Clement,&Mawby,1986).Thisisnotsurprisingfroma

situativeperspectiveinwhichknowledgeandunderstandingarefundamentallytiedtothe

contextandpracticesinwhichpeopleparticipate.Furthermore,muchofthisworkstudied

theeffectsoflearningaspecificprogramminglanguage,andresultssuggestthatgeneral

problemsolvingandthinkingpracticesmaynotspontaneouslyarisefromlearninga

programminglanguageonitsown(Pea,1983).Thisfindingconfirmsworkinmathematics

educationthatspecifiesthatskills(inthiscase,beingabletouseaparticularprogramming

language)andpractices(inthiscase,CTpractices)arenotthesamething(Greeno,1991).

Incontrast,recentworkonCTfavorsinstructionongeneralthinkingskillsinthe

contextofprogrammingorotherdisciplinesinordertodevelopcomputationalthinkers

Page 25: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

23

whocansolveproblemsindifferentcontexts.Inotherwords,CTemphasizesthe

importanceoflearningpracticeswhilesolvingproblemsindifferentenvironmentsrather

thanlearningaprogramminglanguageandhopingthepracticesarise.Inthissense,theact

ofprogrammingisausefultoolforsupportingengagementinCT(Grover&Pea,2013).

Programmingaffordsopportunitiesforchildrentothinkabouttheirownthinkingbecause

they“mustmakeprocessesexplicitinordertoteachthecomputerhowtoperformagiven

task”(Cejka,Rogers,&Portsmore,2006,p.712).Forexample,researchoncreatingdigital

gamesthroughprogrammingdemonstratedpositiveeffectsonmotivation,creativity,

problemsolving,andcriticalthinking(e.g.CarolynYang&Chang,2013).

Thevalueoflearningprogramming,beyondpreparingadiverseworkforcein

computing,comesfromempoweringchildrentocreatetheirownsolutionsanduseCT

skillstosolvepersonallymeaningfulproblems.Thissoundspromisingintheory,butwhat

dostudentsactuallylearnbyengaginginCTthroughprogramming?Andwhatdoweknow

aboutstudents’identitydevelopmentinrelationtoCTwhenengagedinthecontextof

programming?MuchoftheworkonCThasfocusedondesigninglearningenvironmentsto

supportCTconceptsandpractices.Thispaperaskshowthesedesignscansupportthe

apprenticeshipofpeopleintotheCTcommunityusingLPP.

Studiesofeducationalprogrammingenvironmentshaveshownthatevenyoung

newcomerstotheCTcommunitycanengageinCTpractices.Tangibleprogramming

environments,whichusephysical(ratherthandigital)blockstocode,haveshownpromise

forpreschoolandkindergarten-agedchildren.Theseenvironmentsallowlearnerstoeasily

createafunctioningprojectwithlittleintroductiontime(Bers,2010;Horn&Jacob,2007;

Kelleher&Pausch,2005;Wang,Wang,&Liu,2014;Wyeth&Purchase,2002).

Programminglanguageswithsimplesyntacticalstructuresgivenewcomersimmediate

accesstolegitimateconceptsandskills(Resnicketal.,2009),creatingaspaceforlearning

throughLPP.

Forexample,5-9yearoldchildrenusingT-Maze,amaze-buildingandpuzzle-

solvingprogrammingenvironmentusingphysicalblocks,wereabletousetheCTpractices

ofabstraction,automation,andproblemdecomposition(Wang,Wang,&Liu,2014).

Childrenunderstoodtherelationshipbetweenphysicalblocksofcodeandvirtualsquares

inthemazeonthescreen,aformofabstractinginformation.Fromevidenceinstudents’

Page 26: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

24

talk,researchersconcludedthatstudentsrealizedthecomputerautomatedtheirprograms

inthevirtualspacebyexecutingtheinstructionstheycreatedusingthephysicalblocks.In

termsofconcepts,studentslearnedtocreatesequentialinstructions,andresearcherslater

introducedtheconceptofloopstochildren.Additionally,therewassomeevidenceof

problemdecomposition,suchaswhenastudentseparatedthemazeproblemintotwosub-

problems:movingforwardandturning.Whiletangibleprogrammingispromisingfor

introducingCTtoyoungchildren,itisnotclearhowlearnerswhostartwithtangible

programmingmovetowardsbecomingfullerparticipantsinthecommunityovertime.We

needtoconsiderhowtoconnectCTskillsacrossdifferenteducationaltoolssostudentscan

buildontheirCTlearningastheyusemoreadvancedprogrammingenvironments,like

professionaltext-basedlanguages.

Studieswithmiddleschoolstudentsusingvisualprogrammingtools(digitalblock-

basedenvironments)havealsodemonstratedsomesuccessfulCTlearning.Forexample,

StorytellingAliceisamixtureofblock-basedandtext-basedprogrammingthatallows

learnerstocreatedetailedstoriesandgames.Asearlyasfifthgrade,studentsusing

StorytellingAlicecanapplytheCTconceptsofloops,conditionals,sequencesof

instructions,variables,anddatatypes(Kelleher&Pausch,2007).Evenwithintwohoursof

usingthetoolinonestudy,allstudentswereabletocreateaworkingsequentialprogram,

andsomeusedloopsandvariables(Kelleher&Pausch,2007).

OtherresearchonScratch,ablock-basedprogrammingtool,hasshownthat

learnersofallagesandexperiencelevelscanengageinalmostalloftheCTconceptsand

practicesdiscussedabove(Brennan&Resnick,2012).UsingtheScratchonlinecommunity

(https://scratch.mit.edu/),novicescandevelopabroadpictureofwhatthecommunity

doesandwheretheirlearningmighttakethemastheyparticipatemorefullythroughLPP.

Thesedifferentrolesandopportunitiestoengageleaveopenquestionsabouthowthe

variationsaffectstudentlearning.InwhatwaysdolearnersuseCTindifferentroleswithin

theprogrammingcommunity(e.g.peoplewhoremixworkmightlearndifferentconcepts

andskillsthanthosewhoalwaysmaketheirownprojects)?Onestudylookedatamountof

participationintheScratchonlinecommunityandfoundnocorrelationbetweenlevelof

involvement(includingamixtureofdownloadingprojects,commenting,remixing,and

friendingotherusers)andtypesofCTconceptsusedintheusers’projects(Fields,Giang,&

Page 27: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

25

Kafai,2014).Notmuch,ifany,workhasbeendoneonacloserleveltounderstandthe

relationshipbetweendifferentwaysofparticipatinginthecommunityandstudents’CT

learning.

Remixingalsoplaysaroleinlearning.Throughremixingothers’projects,

newcomersareexposedtodifferentwaysofsolvingproblemsandcanseestrategiesused

byold-timersinthecommunity.Learnerscanalsopracticetheirownskillsinalow-stakes

environmentbystartingwithprojectsthatalreadyworkandbuildingoffthemtoaddnew

code.InScratch,theremixedprojectsareautomaticallysavedinanewfile,soanychanges

donotaffecttheoriginalcreator’swork,whichlowersthepressurefornewcomersto

produceaccurateandefficientwork.Notsurprisingly,themorelearnersremixothers’code

inScratch,themoreCTconceptstheyuseintheirownprojects(Dasguptaetal.,2016).

Atthesametime,astudyofover5,000usersintheScratchonlinecommunityfound

thatlengthofmembershipintheprogrammingcommunitydoesnotalwayspredictthe

amountofprogrammingconceptsused(Fields,Giang,&Kafai,2014).Inotherwords,some

peoplewithlessthanoneyearofexperiencewithScratchusedjustasmanyCTconcepts,

likeloops,conditionals,variables,andBooleans,asold-timerswithyearsofexperiencein

Scratch.However,mostgirlsinthestudyremainedatthebeginnerlevelinScratch,only

usingsimpleloopsintheirprojects,whilemoreboyscreatedprojectsusingseveral

differentCTconcepts.

Tosummarize,workonlearningCTinprogrammingcontextsdemonstratesthat

childrenasyoungasfivecanlearnCTconcepts,andvisualprogrammingtoolsworkwellto

introduceCTconceptstonewcomersinmiddleschoolgradesandabove.Visualtoolsallow

newcomerstoquicklyparticipateinlegitimatewaysbycreatingnewprojectswithout

memorizingcomplicatedsyntax.Onlinecommunities,likeScratch,supportavarietyof

typesofparticipation.Withinthosecommunities,learnerscanparticipateontheperiphery

byremixingexistingprojects,ortheycanengageinotherlegitimatetypesofparticipation

bycommenting,sharing,and“friending”otherusers.Regardlessofthelevelof

participation,learnersinScratchusemanyCTconcepts.Infact,Scratchhasbeenshownto

supportavarietyoflearnerstoparticipateinCTconcepts,practices,anddispositions.

Thestudiesreviewedabove,focusingonlearningCTthroughCS,includeamixture

ofin-schoolandout-of-schoolcontexts.However,thein-schoolstudiesdonotexplainhow

Page 28: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

26

theactivitieswereintegratedintotheclassroomsystem.ToimplementCTinstructionin

waysthatencouragediversityandmeaningfullearning,weneedabetterunderstandingof

theroleoftheteacher,theintegrationofCTactivitiesintothedisciplineoftheoverall

course,andclassroomnorms.Additionally,mostofthisworkonCTlearninghasfocusedon

CTconceptsratherthanpracticesordispositions.Thenextsectiondiscussessome

connectionstoCTdispositionsandidentitydevelopment,butmoreresearchneedsto

explorehowlearnersparticipateinCTpracticesandhowtheirparticipationchangesover

timeastheybecomefullermembersofthecommunity(or,inmanycases,chooseto

distancethemselvesfromtheCScommunity).

FromresearchonlearningCTthroughprogramming,weseethattherearedifferent

wayslearnerscanlegitimatelyengageinCTpracticesanduseCTconcepts.Therearemany

rolesforcomputationalthinkerswithintheprogrammingcommunity,includingcreating

algorithms,debuggingprojects,andmanagingothers’work.Thesevariationsinrolesand

waysofparticipatingintheCTcommunityinvitequestionsaboutidentitydevelopment.

Forinstance,howdodifferenttypesofprogrammingprojectsaffectstudents’identity

developmentinrelationtoCT,especiallyinrelationtostudents’priorinterestsand

experiences?Somescholarshaveusedstorytellingtocapturegirls’interestsin

programming(e.g.Kelleher,2009;Pinkard,Erete,Martin,&McKineydeRoyston,2017),

butitisnotclearwhetherandhowthoseinitiallearningexperiencesleadtolong-term

identitydevelopmentandproductiverelationshipswithcomputing.Additionally,itisnot

clearhowparticipatingindifferentroleswhilelearningCTthroughprogrammingsupports

identityandpersistenceinthefield.Canwechangestudents’viewsofwhatcomputational

thinkersdoandbroadenparticipationincomputingbyexposingstudentstothevarietyof

meaningfulandlegitimatewaystoparticipate?Thisisanopenquestioninthefield.Maybe

someonewhodislikescreatingproceduresbutenjoystestingandlookingforerrorsin

others’workwillbesurprisedtolearnthatfindingerrorsstillinvolvesCTskills,andthen

learntorecognizethemselvesasacomputationalthinker.

CTIdentityDevelopmentandDispositionsinK-12ComputerScience

Iconceptualizeidentityinthispaperasthedevelopmentofdispositionsor

regularitiesinthewayspeopleparticipateinpracticesandtheirviewsofthosepractices

Page 29: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

27

andthemselvesinrelationtoacommunity.Todate,littleresearchhasfocusedonidentity

towardsCTasitisconceptualizedhere,butsomestudieshaveexploredstudents’interests

andmotivationsinCTlearningenvironments.Idrawontheliteratureoninterestand

motivationherebecauseitinfluencespeople’sviewsofthedisciplineandtheirviewsof

themselves,bothpartoftheframeworkofidentityfromLPP.Specifically,interestand

motivationhavebeenshowntoleadtomeaningfulengagementandincreasedpersistence,

whicharerelatedtofeelingsofcompetence,productivedisciplinaryrelationships,and

productivesenseofselfinrelationtothediscipline(Kaplan&Flum,2009;McCaslin,2009;

Potvin&Hasni,2014;Renninger,2009;Waterman,2004;Wigfield&Wagner,2005).

HavingareasonforlearningCTandasocialcontextforusingitareimportantfor

motivatingstudentsandaddressingsociologicalbarrierstolearning(Kelleher&Pausch,

2005).ByseeingCTasatoolforaccomplishingtheirowngoals,studentshaveagencyover

whattheycreateandhowtheyengagewithcomputersinandbeyondtheclassroom.The

goalistocreatepositiveexperiencesandtosupportstudentstofeelasenseofbelongingin

thecommunitybyexploringfactorsrelatedtoidentityanddispositions.

SeveraldesigncharacteristicsofCSlearningenvironmentshavebeenshownto

supportthedevelopmentofproductiveelementsofidentity,includingcommunities,

mentorsandrolemodels,collaborativework,andprogrammingcontextslikestoriesor

games.First,asanexampleofcommunity,theScratchonlinecommunityisaplacewhere

peoplecanengageinCTinmanydifferentways.Itisacommunityoflearnersand

practitionersofalldifferentlevelsofexperience,makingitanimportantresourcefor

learningandidentitydevelopmentthroughLPP.Whenuserscreateprojects,postonline,

commentonothers’work,orremixexistingprojects,they’reengaginginaformof

apprenticeshiplearningbyparticipatinginthecommunityandinteractingwithother,

moreexperiencedpractitioners.MembersoftheScratchcommunitycantakeondifferent

rolesandparticipateindifferentways,dependingonwhattheyareinterestedinand

wheretheirpriorexperiencestakethem.Thesechoicesforparticipationgivestudents

someagencyovertheirownengagementandallowstudentstodefinetheirroleswhilestill

actingaslegitimatemembersofthecommunity.However,moreresearchisneededto

understandhowthesedifferentrolesaffectwhatstudentslearn.Someonewhospends

moretimecommentingonandcritiquingprojectswouldmostlikelydevelopdifferentskills

Page 30: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

28

andunderstandingsfromsomeonewhocreatesprojectsbutdoesn’tengagein

commenting.ItseemslikelythatK-12educatorswouldwantstudentstoexploreallthe

rolestosupportthedevelopmentofdifferentconceptsandpractices,butitisalso

importantthateducatorsvaluestudents’interestsandpreferencesforparticipationso

studentscanparticipateinlegitimaterolesinthelearningcommunity.

HighlightingthesocialnatureofcomputinginenvironmentslikeScratch,withits

onlinecommunity,cancreatepositive,gender-inclusiveeducationalexperiencesfor

newcomers(Mark,1992;Resnicketal.,2009).Eveninteractionswithfictionalcharacters

cansupportpositivedisciplinaryrelationships.Forinstance,inDigitalYouthDivas,

researchersdesignedcharacterstoimitateactualmiddleschoolgirlswithavarietyof

interests,bodytypes,andstories(Pinkard,Erete,Martin,&McKineydeRoyston,2017).

Therelatablecharactersandsituationsofferideationalresourcestosupportgirls’

identificationwithCT.Researchersfoundthenarrativesmotivatedgirlstoworkon

projects,whilethecharactersprovidedacommunityofrelatable(butfictional)girls

interestedinSTEM,ignitingandconfirmingstudents’owninterestsinSTEMfields

(Pinkardetal.,2017).Thestudydidnotreportonparticipants’useofCTconceptsand

practices.Buttheresultsdidpointtoseveralfactorsrelatedtoidentityanddispositions,

includinggirls’increasedinterestsinworkingontheprojects,opportunitiestoexercise

agencyindesignchallenges,andchangesinviewsofthemselvesinrelationtoSTEM.

TeachingCTthroughprogrammingstories,dances,andgamesareotherpopular

waystoconnecttostudents’interestsandcreategender-inclusivelearningenvironments.

OnestudyusingthelanguageAlicetoprogramcharacterstoperformadanceshowed

increasedmotivationforsomegirlsintheclass,butit’snotclearwhattheylearnedabout

programmingorCT(Dailyetal.,2014).Otherresearchhasshownthatstorytellingisa

particularlyinterestingcontextforgirlslearningtoprogramandcanincreasethetimethey

spendpersistingonaprogrammingproject(Kelleher,2009;Kelleher&Pausch,2007).

ProgrammingstoriesalsoallowslearnerstodevelopproductiveCTdispositions.Students

canexpressthemselvesthroughtheirstories,developingadispositiontowardsusing

computationaltoolsforexpression.Studentscanalsousecomputationaltoolstoconnect

withothers,bysharingtheirstorieswithfriends,family,andtheirclassroompeers,to

developproductivedispositionsforcollaboration.

Page 31: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

29

Alongwithopportunitiestoshareprojects,theDigitalYouthDivasprogram

structuresin-personmentorshipandconversationswithpeersintothecurriculum

(Pinkardetal.,2017).Studentstalkinformallywhileworkingontheirprojects,butthey

alsoparticipateinstructuredcheck-inswithmentorsatthebeginningofeachlesson.

Mentorsshareculturalconnectionswithstudentsandencourageengagement,goalsetting,

andcommunication.Digitalmaterialsbuiltintothenarrativeenvironmentmediate

discussionsandrelationshipbuilding.Conversationswithmentorsandfictionalcharacters

intheonlinenarrativeencouragestudentstoreflectontheirSTEMexperiencesandracial

andsocialissuesrelatedtoSTEM.Researcherspointtoapotentiallinkbetweentheseon-

andofflineconversationswithasenseofconnectionandpositiveengagementwithina

classroomSTEMlearningcommunity(Pinkardetal.,2017).Futureresearchshouldexplore

theroleofthispersonalmentorshipinCTforK-12students.Howcanteachersincorporate

mentorsintotheirclassrooms?Itmightbedifficultforsometeachers,particularlythosein

ruralcommunities,tohaveaccesstomentorsandrolemodelswithprofessionalexperience

inCT.Inthoseinstances,mentors’closesocialandculturalconnectionswithstudents

wouldbeparticularlyimportant.Virtualmentorshipsorevenpenpalsmightbeawayof

supportingstudentswhodon’thaveaccesstoin-personrolemodels.Howlongdo

mentorshipexperiencesneedtolast,andhowcantheybeimplementedinwaysthattruly

affectstudents’viewsofthemselvesandinterestsinpersistinginCT?

Besidesmentorship,pairprogrammingisanothercommonin-personcollaborative

programmingtask,buildingtheCTdispositionforcollaborationandcommunication.Pair

programminginvolvestwopeopleworkingatacomputeratthesametime.Oneperson

actsasthe“driver”bytypingatthecomputerwhiletheotheractsasthe“navigator”by

observingandcritiquingthedriver.Bothparticipantscollaborateonsolvingproblemsand

oftenswitchroles(Williamsetal.,2002).Whilemakingprogrammingamorecollaborative

experience,pairprogrammingalsogivesauthoritytostudentsastheysolvetheirown

problems.Thistypeofinteractionallowsstudentstolearnfromdifferencesineachother’s

knowledgeandexperiences.Ratherthanaskinganexpertfortheanswer,studentscan

workwiththeirpeerstosolveaproblemorsearchforanswersfromothersources,like

onlineforums.Botharevaluableskillsinprofessionalcomputationalwork,soitlegitimizes

students’rolesascomputationalproblemsolvers.Pairprogramminginclassroomsettings

Page 32: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

30

apprenticesstudentsintotheactofpairprogrammingthatalsooccursinprofessional

settings.Byworkingtogethertodevelopsolutions,studentscanseethemselvesascapable

ofparticipatingintheCTcommunity.Thisisincontrastwithexpectingananswerfroman

expertTA,whichpositionsstudentsaslesscompetentandlessqualifiedtoparticipate

legitimatelyinthecommunityofpractitioners.Mostpairprogrammingresearchfocuseson

college-levelcourses,buthowsuccessfulisitformiddleorhighschoolstudents?

Intentionallypairingstudentswithdifferentkindsofknowledgeorexperiencesin

programmingmighthelpthemcollaborateandlearnfromeachother,butwhathappensin

anintroductorycoursewhenstudentshavenopriorcomputingexperience?Whatisthe

roleoftheinstructorinsupportingproductivecollaborations,andwhatshouldthe

instructordowhenstudentsstruggle?Theseareallimportantquestionstothinkaboutif

pairprogrammingisgoingtosupportavarietyoflearnersinK-12settings.

Non-stereotypicalapproachestoprogramminginstruction,likethestorytellingand

danceexampleshere,canpotentiallyreducegenderdisparitiesincomputationalsubjects

bysparkinggirls’interests.TheDigitalYouthDivasprogramalsodemonstratedthevalue

ofrolemodels,whetherrealorfictional,forinterestandpersonalidentityconstruction

(Pinkardetal.,2017).Additionally,arecentstudyfoundthatevenreducingstereotypical

objectsincomputingclassrooms(e.g.replacingStarWarsposters,electronicparts,and

techmagazineswithart,plants,andgeneralmagazines)canincreasegirls’senseof

belongingandinterestinahighschoolcomputingcoursewithoutloweringboys’existing

interests(Master,Cheryan,&Meltzoff,2016).Non-stereotypicallearningenvironments,

activities,androlemodels–alldesignedtominimizeandchallengestereotypes-affect

students’senseofbelonginginCTcontexts(Cheryan,Master,&Meltzoff,2015).

Muchofthisworkfocusesonmotivationandinterest,particularlyforgirls,butitis

notclearhowthesedifferentapproachesaffectlong-termidentitydevelopmentand

persistenceinCT.Thereisalsoalackofresearchonmarginalizedracialgroupsin

computing.Futureworkshouldconsidertheintersectionofrace,gender,andother

institutionalfactorsthatinfluencestudents’experiencesandidentitiesbothinsideand

outsidetheclassroom.Totrulybreakawayfromstereotypicalviewsofcomputational

thinkers,researchersneedtolookevenbeyondprogrammingtoseehowlearnerscan

engageinCTinothercontexts.

Page 33: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

31

ComputationalThinkinginEngineering

AccordingtotheRoyalAcademyofEngineering,engineeringcoversmanydifferent

industries,frombuildingstofoodtomedicine,anditinvolvesmakingthingsworkand

designingsolutionstomeettheneedsofsociety(Brophy,Klein,Portsmore,&Rogers,2008;

RoyalAcademyofEngineering,2017).SomeresearchersseeCTasawayofthinkingthat

createsabridgebetweencomputerscienceandengineering(NRC,2010).CT“inherently

drawsonengineering,giventhat[computerscientists]buildsystemsthatinteractwiththe

realworld”(Wing,2006,p.35).Computationalthinkingandengineeringbothinvolve

solvingproblemsandmakingthings(Wing,2008),butengineeringisinherently

constrainedbythephysicalworldinwaysthatCTisnot(Shute,Sun,Asbell-Clarke,2017;

Wing,2010).Engineeringdesignthinking“focusesonproductspecificationandthe

requirementsimposedbyboththehumanandtheenvironment—i.e.,practicalproblems.

CTisnotalwayslimitedbyphysicalconstraints,enablingpeopletosolvetheoreticalaswell

aspracticalproblems”(Shute,Sun,Asbell-Clarke,2017,p.8).Thisdistinctionismeantto

highlighttheideathatpeoplecanthinkcomputationallyaboutproblemsinimaginative

wayswithoutbeingtiedtorulesofthephysicalworld,whileengineersultimatelyaimto

implementtheirideasinthephysicalworldsotheirworkcannotbeseparatedfromthose

constraints.However,whenpeopleuseCTtocreateproceduresforacomputationalagent

tocarryout,whetherthatagentisamechanicalcomputerorthehumanbrain,theymust

considerthecapabilitiesoftheagent.Asanexampleofsomeoneconsideringthe

limitationsandcapabilitiesofacomputationalagent,aprogrammerusingScratchcould

notmakeawordprocessingsoftwareorawebsite,buttheycouldmakeastoryorgame.If

animportantpartofCTisconsideringandtestingsolutionswithacomputationalagent,

thenitdoesoverlapwithengineeringinitsconsiderationofthephysicalanddigitalworld.

Educatorsandpolicymakersarestartingtorecognizetheseconnectionsbetween

designinginCTandengineering.TheNGSSnowincludeaCTprogressionwithintheirK-12

engineeringstandards(NGSS,2013).Additionally,researchalreadyshowsthatengaging

studentsindesignisusefulforlearning.Design-basedactivitiescanhelplearnersdevelop

deepconceptualunderstandingsandinquiryskills(Crismond,2001;Kimmeletal.,2006;

Kolodneretal.,2003;Roth,1995;Sadler,Barab,&Scott,2007).Tobetterunderstandthe

Page 34: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

32

roleofCTindesign,thenextsectiondrawsonLPPtoexplorehowengineersuseCT

concepts,practices,anddispositionsintheirwork.Thediscussionalsomentionssome

waysinwhichlearnerscanaccessthoseskillsthroughengineeringeducation.

Concepts

InspecifyingtheconceptsfromCT,researcherslookedtoprogramminginsteadof

thebroadfieldofcomputersciencewithitsmanydifferentdomainsofknowledge.

Similarly,itisdifficulttolistthespecificconceptsinvolvedinengineeringbecauseit

encompassesmanydifferentsub-fieldswiththeirowncoreconcepts.Engineersuse

conceptsfromacrossSTEMdisciplines,withprogrammingincludedasoneoftheareas

someengineersmaydrawon(Brophy,Klein,Portsmore,&Rogers,2008;RoyalAcademyof

Engineering,2017).Inparticular,softwareengineeringinvolvescomputerprogrammingin

thedevelopmentandmaintenanceofcomputersoftware.Thus,softwareengineersusethe

CTconceptsfromprogrammingdescribedabove,butbeinganexpertengineermayinvolve

knowingmanyotherSTEMconceptsoutsidethescopeofCT.

However,engineersdouseCTconceptsrelatedtodatacollection,organization,and

representation.Whentestingdifferentdesigns,engineerscollectdatatodeterminethebest

optionthatmeetstheconstraintsoftheproblem(NRC,2012).Bothengineersand

computerscientistsusetechnologytocollectandinterpretdata.Theymustunderstand

howtocollectthedata,howtousetheappropriatetools,howtoappropriatelyorganizethe

data,andhowtointerprettheresults.

SincethispaperfocusesonhowpeopleuseCTindifferentdisciplines,itisoutside

thescopeofthisworktospendtimedescribingalltheotherconceptsusedbyengineers.

Instead,therestofthissectionlooksatbroaderprocessesofdesignandproblemsolving

usedacrossengineeringfieldstogenerateanoverviewofCTpracticesanddispositionsin

thecontextofgeneralengineeringskills,particularlythosespecifiedinlearningstandards

andcurricula.

Practices

CentraltotheworkofengineersistheEngineeringDesignProcess(Haik,

Sivaloganathan,&Shahin,2015).Thisistheiterativeprocessengineersusetodesign

Page 35: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

33

artifactsbasedonspecificneedsorgoals(NASA’sBest,2016).Itisacyclicalprocessthat

includesidentifyingaproblemoraskingaquestion,imaginingasolution,designinga

prototype,testingthedesigns,andimprovingthesolution(EiE,2017a;NASA’sBest,2016;

NGSS,2013).OneCTpracticefromprogramminginvolvesgeneralizingsolutionsintoa

problemsolvingprocessthatcanbeappliedtoavarietyofproblems(Barr,Harrison,&

Conery,2011;Hu,2011),whichiswhattheEngineeringDesignProcessalreadyis.Itisa

wayofsolvingproblemsthatengineerscandrawoninanysituation.Ultimately,CTisalso

aboutdesigningsolutionstoproblems,andeachoftheseelementsoftheEngineering

DesignProcessoverlapwithotherCTpracticesusedincreatingcomputerprograms.

First,engineersstartbyidentifyingaproblemorquestiontheywanttoaddress.In

bothprofessionalandeducationalenvironments,theproblemmaybedefinedbythe

engineerormaybeassignedbyanotherperson,likeamanager,funder,orteacher.Inany

case,theengineermustworktounderstandtheconstraintsofthesituationandlearnabout

howothershaveapproachedsimilarproblems(EiE,2017a).Theremaybelimitationsin

thematerialsthatcanbeused,thenumberofprototypesthatcanbetested,andthe

timeframeforcompletingtheproject.Thegoalinthisphaseistoaskquestionsofaclient

andaboutpriorapproachestosimilarproblemstounderstandtheprobleminasmuch

detailaspossible(NASA’sBest,2016).Thesamecanbetrueaboutsolvingprogramming

problemsusingCT,althoughthereareusuallyfewerphysicalconstraintstoconsider

(Shute,Sun,Asbell-Clarke,2017).Bothnoviceandexpertprogrammersmustidentifya

problemanddefinetheirgoalsatthebeginningofthecomputationalproblem-solving

process.Inprogramming,someofthisworkmayinvolvereworkingtheproblemintoone

thatcanbesolvedbyacomputer(ISTE&CSTA,2011;Wing,2006),whileinengineering,it

mayinvolvereworkingtheproblemintoonethatcanbesolvedwiththeavailable

materialsandwithincurrenttechnologicalcapabilities.

Thesecondandthirdpartsofthedesignprocessinvolveimaginingasolutionand

implementingthesolutionbycreatingamodelorprototype.Thesearetheprocessesof

buildingsomethinginengineeringorwritingaprocedureinprogramming.Whilecreating

designs,bothprogrammersandengineershavetoconsidertheefficiencyoftheirsolutions,

apracticemanylabelaspartofCT(Barr,Harrison,&Conery,2011;Grover&Pea,2013;

Wing,2008).Engineershavetoconsiderlimitationsonmaterials,cost,andtimetoboth

Page 36: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

34

buildandworkefficiently.AnotherCTpracticebothengineersandprogrammersusein

designisreusingothers’work(Brennan&Resnick,2012).Todevelopideas,engineerscan

drawonpreviousattemptstosolvethesameproblemorexistingsolutionsfromrelated

problems.Toengageinthispractice,engineeringstudentscangivefeedbackandsuggest

ideastotheirpeers,andtheycaninvestigaterelateddesignscreatedbymoreexperienced

engineers.Forinstance,inabridge-designtask,studentsdonothavetostartfromscratch

butcanlooktoreal-worldbridgesforideasaboutmaterials,functionality,andstrength.

ThefinaltwoelementsoftheEngineeringDesignProcessaretestingandrefining

designs.Engineersmayrelyonmodelsorsimulationswhentestingdesigns.Bothtypesof

abstractionsarealsoconsideredpartofCT(Grover&Pea,2013;Hu,2011;NRC,2010;

Wing,2006;ISTE&CSTA,2011).Additionally,engineersmayworkwithdata

representationstoorganizetheoutcomesoftheirtrials,anotherpracticeinCT(Barr,

Harrison,&Conery,2011;Grover&Pea,2013;Hu,2011;NRC,2010).Butthecentral

componentoftestingandrefininginengineering,likeinCT,isthedebuggingprocess(Bers

etal.,2014;Brennan&Resnick,2012;Grover&Pea,2013).Engineersdebugtheir

prototypesbyfindingandfixingerrorsandpreparingthemforfurthertesting.This

practicedrivestheiterativenatureofthedesignprocess.Debuggingalsooffers

opportunitiesforproductivestruggleandfailure,whichhaveshowntohelpstudents

developmetacognitiveskillsandperformbetteronotheropen-endedproblemsolving

tasks(Bullmaster-day,2015;Hung,Chen,&Lim,2009;Kapur,2008).Specifically,“the

stepsoftestingandimproving,whichrequiredebugging,areparticularlyimportantin

establishingalearningenvironmentwherefailure--ratherthanimmediatesuccess--is

expectedandseenasnecessaryforlearning.WiththeEngineeringDesignProcess,children

arenotexpectedto‘getitright’thefirsttime”(Bersetal.,2014,p.149).Debuggingallows

studentstogetthingswrongbutstilllegitimatelyparticipateinCTandengineering.Infact,

testingsolutionsgivesstudentsaspacetotinkerbybuildingthingsonthefringesof

professionalengineeringwhilealsoapprenticingintoacorepracticeoftheengineeringand

CTcommunities.Inotherwords,theprocessesoftestingandrefiningallowlearnersto

participatebothlegitimatelyandperipherallyinCTandengineeringdisciplines(Lave&

Wenger,1991).

Page 37: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

35

Engineersengageinthepracticeofreusingandremixingothers’workwhen

troubleshootingorreverseengineeringexistingdesigns.“Troubleshootingandreverse

engineeringrequireinvestigatingsomeoneelse’sdesignstoeitherrepairit,replicateit,or

refineit”(Brophyetal.,2008,p.375).Engineeringstudentsengaginginthisprocessshould

evaluatethequalityofanexistingproductbyanalyzingtheoriginaldesigner’sintentions

andconstraints.

ToexposelearnerstothepracticesoftheEngineeringDesignProcess,curriculaare

usuallycreatedtomovestudentssystematicallythroughallphasesoftheprocess(EiE,

2017a).However,professionalengineersmayworkwithinacoupleofthephases,andthen

passtheirworkontootherengineerstocontinuetheprocess.Thus,theworkbecomes

morespecializedasengineerstakeondifferentroleswithinthecommunity.Thephases

themselvesareflexibleandcanbecompletedindifferentordersandinmultipleways.

WhenconsideringconnectionsbetweenengineeringandCT,engineersindifferentroles

willusedifferentCTpracticesintheirworkdependingonhowtheyusetheEngineering

DesignProcess.Inotherwords,itmakessensethatengineeringstudentsmayusesomeCT

practicesbutnotothers.Educatorswanttoexposenovicestoallthecorepracticesusedby

theengineeringcommunity,buttheyshouldalsoconsiderthedifferentwaysof

legitimatelyactingasanengineer.Studentscanstillbecompetentcomputationalthinkers

eveniftheydonotmakeuseofalltheCTpracticesintheirwork.Ifastudentdoesnotlike

thedebuggingortestingprocess,theyshouldnotbediscouragedfrombeinganengineeror

computationalthinker.Instead,educatorsshoulddemonstratethatthereareotherwaysof

legitimatelyparticipating.Studentscouldspecializeindefiningproblemsorcreating

solutionsandstillhaveimportantrolesascomputationalthinkersintheengineering(or

programming)communities.

Evenyoungchildrencanengageinplanning,making,andevaluatingtheirsolutions

indesign-basedengineeringactivities(Fleer,1999;2000).InFleer’sstudy,preschool

childrenweregivenanopen-endedtasktodesignahomeforamythicalcreaturethe

teacherimaginedlivinginhergarden.Youngchildrenoftenbegintheseactivitieswithan

unspecifieddesigngoalthatemergesastheybuildthings(Brophyetal.,2008;Johnsey,

1995).Bysecondgradehowever,studentswhohavebeenengagingindesignprocessesfor

severalyearsareabletoplantheirdesignsbyconsideringmaterialsandconstraintsofthe

Page 38: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

36

task(Roden,1999).Thisworkdemonstratesthatitisreasonablefornovicestoengagein

makingandtestingpracticesfirst,since“thenaturalcycleofiterativedesignplaces

studentsinacontinuouscycleoftestandevaluation”(Brophyetal.,2008,p.373).After

gainingsomeexperiencewiththedesigncycle,thenlearnerscanpracticeplanningtheir

designsandspecifyingtheirgoalsaheadoftime.Contentknowledgealsoseemstoaffect

thenumberofiterationsofthedesigncycle.Expertshavemorepriorknowledgeand

experiencestodrawonwhenplanningtheirdesigns,sotheyaremorelikelythannovices

tocomeupwithanaccurateplanthefirsttime(Roth,1996;Wineburg,1991).However,

likewithdebuggingprograms,evenexpertsareexpectedtofinderrorsandmakechanges

throughcyclesofdesign.

Dispositions

OneofthedispositionsBrennanandResnick(2012)identifiedasimportantto

learningCTinprogrammingistheabilitytodealwithopen-endedproblems.Similarly,

designingsolutionstoopen-endedproblemsiscentraltotheworkofengineering.“Design

andtroubleshootingrepresentthetypesofill-structured,oropen-ended,problemson

whichengineersenjoyspendingintellectualenergy”(Brophyetal.,2008,p.371).

Engineersservingdifferentrolesinthedesigncyclehavetorespondtoopen-ended

problemsindifferentways.Somemayfocusonplanningandbrainstormingsolutions,

whileothersmayfocusontestinganddebuggingsolutions.Likecomputerscientists,

engineersmustwelcomeopen-endedproblemsasachallengeandpersistinsolvingthem.

Butthisraisesaquestionabouttransferability.Ifstudentsdevelopthedispositionto

persistonengineeringproblems,willtheyalsopersistonopen-endedproblemsinCSand

otherdisciplines?Thedispositionmaystartoutascontext-specific,butasitbecomespart

oflearners’identitiesovertime,theymaybeabletousesimilarapproachestoproblemsin

differentcontexts.Longitudinalstudiesareneededtoinvestigatetheconstructionof

dispositionsoveryearsoflearningandidentitydevelopment.

QuestioningisanotherCTdispositionfromprogrammingthatoverlapswiththe

coreofengineering.Thegoalofengineeringistoaddresssocialneedsandsolveproblems

throughdesign.Ratherthantakingexistingtoolsandtechnologiesasgiven,engineersask

howtheycanimproveandre-conceptualizethosetoolstosolvenewproblemsand

Page 39: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

37

improvesolutionstooldproblems(NGSS,2013).Theyalsousetechnologiesaspartofthe

designprocess,tomodelsituationsandtestsolutions.Thus,engineersaskquestionsboth

aboutandwithtechnologies.Moreresearchisneededtounderstandwhetherandhow

studentslearningCSandengineeringdevelopthesequestioningmindsets.Isita

dispositionthatallstudentsdevelopwhentheyseetheycancreatenewthingswith

technology,oraresomestudentsmoreapttolookattechnologyinthiswaythanothers

are?Itseemslikethelatterismorelikely,sincethedispositionalignswithmasculineforms

ofcompetenceandstereotypesofmakersthatenjoytakingthingsaparttoseehowthey

work.However,thisbroaderviewofquestioninginCTinvolvesaskingnotonlyhow

technologiesworkbutalsowhatnewtechnologieswecancreate.

StereotypesinbothengineeringandCSincludevisionsoflonelyindividualsworking

ontheirowntosolveproblems.EarlierIdescribedhowtheabilityandwillingnessto

collaboratewithothersisactuallyanimportantmindsetofcomputationalthinkersinCS,

andthesamecanbesaidinengineering.LearningtocollaboratewithothersisbuiltintoK-

12engineeringeducationstandardsandcurricula(EiE,2017b;NRC,2012;NGSS,2013).

Collaborationandcommunicationwithothersarealsoconsideredengineering“habitsof

mind”orattitudesassociatedwithengineering(NAE&NRC,2009).Multipleengineers

oftenworkonthesameproblembydesigningandtestingdifferentideas,then

collaboratingtochoosethemostpromisingsolution(NRC,2012).Engineersmustlearnto

evaluateandcompareeachother’sideasandformulateargumentsbasedondataand

testing.Theyalsoneedtocommunicatetheirideasclearlysotheirsolutionscanbe

understoodbyoutsideclientsaswellasengineersservingotherrolesinthedesignprocess

(NRC,2012).

LearningCTPracticesinK-12Engineering

LearningengineeringinK-12anditsintegrationwithotherSTEMdisciplinesis

understudied(Mooreetal.,2014;Rogers,Wendell,&Foster,2010),includingtheideaof

learningCTthroughengineering.K-12engineeringeducationisstillquitenewandnot

widelyimplementedintheU.S.(NAE&NRC,2009).Inthecurriculathathavebeen

developedforK-12engineering,thecontentcentersondesign(NAE&NRC,2009).

Likewise,theprevioussectionoutliningtheconnectionsbetweenCTandengineering

Page 40: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

38

demonstratesthatmostoftheoverlapsoccurintheengineeringdesignprocess.Sowhatdo

weknowaboutlearningtheengineeringdesignprocessinK-12?Weknowverylittleabout

it,actually.Researchinengineeringeducationtendstofocusonthepresentationof

educationaltoolsorcurricula,oronidentitydevelopment.Veryfewengineeringeducation

studieshavefocusedonstudents’understandingsofconceptsandpractices.Researchers

suggestthatengineeringlearningoccursbestwhenstudentshaveextendedtimetodesign

anditerateonprojects(Rogers,Wendell,&Foster,2010)andwhentools(e.g.software,

computationaltools)aremeaningfullyintegratedintoproblem-solvingactivities(NAE&

NRC,2009).However,thereislittleempiricalevidencetobackthoseclaims.

TheideaoflearningCTthroughengineeringisagapintheliteratureandan

importantspaceforfutureexploration.Thesmallamountofresearchthatexistsoccursin

thecontextofe-textiles,andthatworkisframedaslearningCTthroughcraftratherthan

engineering(Kafaietal.,2010;2013;2014;Kafai,Searle,Martinez,&Brayboy,2014;Fields,

Searle,&Kafai,2016;Luietal.,2016;Rodeetal.,2015;Searle,Fields,Lui,&Kafai,2014).I

touchontheliteraturebrieflyherebecauseitisaformofengineering;engineersuse

scienceconceptstodesignsolutionstoproblems,ande-textilesprojectsdrawoncircuitry

andmaterialsscienceconceptsthroughdesign.

E-textilesallowmakerstoincorporateelectronichardware(e.g.lights,sensors,

microcomputers,andbuzzers)intofabricdesigns.Onestudyusinge-textileswithhigh

schoolstudentsshowedthatstudentsusedseveralCTconceptsandpracticesintheirwork,

includingsequences,conditionals,loops,variables,remixing,anddebugging(Kafaietal.,

2014).However,studentsinthatstudyprogrammede-textileprojectsusingArduinocode.

Thus,theCTskillsstudents’employedlargelyoccurredinthecontextofprogramming,

withtheexceptionofdebugging,whichstudentsengagedinthroughoutthedesignprocess.

LittleisknownabouthowstudentsuseCTconceptsandpracticesinengineeringactivities

withoutcomputerprogrammingandhowstudents’participationchangesovertimeasthey

becomemembersoftheengineeringcommunity.Thus,anopenquestionis,howmight

studentsengageinCTinwaysthatarelegitimatetotheengineeringcommunityandthus

supportstudentstolearnthroughmeaningfulparticipation?

Page 41: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

39

CTIdentityDevelopmentandDispositionsinK-12Engineering

Whilefewstudiesofengineeringhavedeeplyconsideredlearning,morehave

focusedonstudents’identitiesinrelationtoengineering.Muchoftheworkonengineering-

relatedidentitieshasstudieduniversitylevelengineeringstudentsandtheirpersistencein

engineeringoccupations(e.g.McGee&Martin,2011;Meyersetal.,2012;Pierrakosetal.,

2009;Tate&Linn,2005),oronprofessionalidentitiesofworkingengineers(e.g.Anderson

etal.,2010;Hatmaker,2013;Jorgenson,2002).Onthecollegelevel,senseofbelongingand

recognitionaffectstudents’identificationwithengineering(Meyersetal.,2012).

Additionally,universitystudentswhopersistinengineeringmajorstendtohavemore

knowledgeoftheprofession,greaterexposuretoengineering(e.g.throughfamilymembers

orfriends),andsomeproductiverelationshipswithengineeringfacultyandpeers

(Pierrakosetal.,2009).Persistenceisalsoinfluencedbytheintersectionofacademicand

socialidentities,illustratedinstudiesfocusingontherolesofgenderandracein

engineeringprograms(Tate&Linn,2005).Althoughthisresearchonuniversityand

professionalengineersisahelpfulstartingpointinresponsetopipelineissues,researchers

needabetterunderstandingofhowK-12engineeringeducationaffectsstudents’viewsof

engineering,developmentofproductivedispositions,andsenseofselfinrelationto

engineering.

Asanexampleofhowdesignactivitiescanaffecthighschoolstudents’viewsand

identities,workonlearningCTwithe-textilesinhighschoolclassroomsdemonstratesthat

alternativewaysofapproachingCTcanchangestudents’perceptionsofcomputingand

theirviewsofthemselvesinrelationtocomputing(Kafaietal.,2013).Aftermaking

projectsusingprogrammablee-textilesmaterials,highschoolstudentssawCSasmore

relevanttotheirlives,gainedconfidenceintheirprogrammingskills,anddevelopedbetter

understandingsofwhatthecomputingfieldinvolves(Kafaietal.,2014).Furthermore,e-

textilesactivitieshavebeenshowntoengageallstudents,regardlessofraceorgender,in

CT(Kafaietal.,2013;2014).Whilethisworkconnectstoengineeringdesignprocesses,it

stillexplicitlyengagesstudentsinCTthroughcomputerprogramming.Questionsremain

abouthowstudentsuseCTinengineeringcontextswithoutprogramming,andhowother

engineeringactivitiesaffectstudents’perceptionsofCTandtechnologyfields.

Page 42: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

40

Otherstudiesinhighschoolanduniversityengineeringhavedrawnexplicitlyon

LPPtostudyaspectsofidentitydevelopment.InonestudyusingLPPasaframeworkto

lookatuniversityengineeringstudents’engagementinindustrialvocationwork,Jawitz,

Case,andAhmed(2005)foundthatopportunitiestoparticipatelegitimatelyinmeaningful

activityinfluencedstudents’senseofbelongingandviewsofthemselvesinrelationto

engineering.Notsurprisingly,thementoringorsupervisingengineerssignificantly

influencedaccesstomeaningfulactivities,andtheyaffectedeachstudent’ssenseofselfby

advocatingfororagainstthestudent’sroleasalegitimateparticipant.Inanotherstudy

lookingatmentorshipinahighschoolcontext,researchersdemonstratedthat

communitiesofpracticeareessentialforsupportingpersistenceinscienceandengineering

fieldsthroughmentorshipandrolemodels(Aschbacher,Li,&Roth,2010).Alongwith

outsidementors,K-12teachershavesignificantinfluenceoverstudents’identity

developmentandlearningintheirrolesasmentorsandsupervisors.Thus,itisimperative

thatresearcherstakeintoaccounttheroleoftheteacherinfacilitatinglegitimate

participationforalllearnerstodevelopproductiveidentitiesascomputationalthinkers.

Whilementorsclearlyinfluencelearningandidentity,moreresearchisneededto

understandhowtoimplementmentorshipcommunitiesthatsupportproductive

engagementandsenseofbelongingforstudentsevenbeforetheyreachhighschool.In

general,fewstudieshavefocusedonlearningandidentitydevelopmentinengineering

withelementaryandmiddleschoolstudents(Capobianco,Diefes-Dux,Mena,&Weller,

2011),whichisnotsurprisinggiventhelackofemphasisonformalengineeringinstruction

foryoungchildren.

Page 43: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

41

Discussion

Thegoalofthispaperwastodevelopabetterunderstandingoftheconcepts,

practices,anddispositionsinvolvedinCTandhowpeoplecanlearnitbylookingathowCT

isdefinedinCSthenexploringtheoverlapswithanothercontext,namelyengineering.I

choseengineeringbecauseofitstiestootherSTEMcontentareasandtheabilityto

practicallyapplySTEMcontent,includingCS,throughengineeringdesignproblems,along

withthefactthatCTisbeginningtoappearinK-12engineeringeducationstandards.

EngineeringoffersanopportunitytounderstandhowpeopleuseCTinconnectionwith

otherSTEMdisciplinesthatdonotnecessarilyinvolvemechanicalcomputersorcomputer

programming.

FrommyreviewofliteraturedefiningCTinCScontexts,IidentifiedcommonCT

concepts,practices,anddispositionsthatoverlapwithCS.ThenIexploredhowthose

elementsofCToverlapwiththeliteratureondesignprocessesinengineering.First,CT

conceptsthatoverlapwithbothCSandengineeringinclude:datacollection,organization,

andrepresentation(manyotherconceptsfromCSandprogrammingaretraditionally

includedinCTbutdonotnecessarilyoverlapwithdifferentengineeringfields).Second,CT

practicesthatoverlapwithbothCSandengineeringinclude:(i)generalizingsolutionsinto

aproblemsolvingprocess,(ii)reworkingtheproblemsoitcanbesolvedbya

computationalagent,(iii)consideringefficiencyandperformanceconstraints,(iv)reusing

orremixingothers’work,(v)creatingandusingabstractions,and(vi)debuggingand

testingsolutions.Finally,CTdispositionsthatoverlapwithbothCSandengineering

include:(i)dealingwithopen-endedproblems,(ii)questioningaboutandwith

computationaltools,and(iii)collaboratingandcommunicatingwithothers.

MuchoftheoverlapbetweenCTasitisdefinedinCSanditsapplicationin

engineeringcanbeseenintheengineeringdesignprocess.Sothisbegsthequestion,isCT

reallyjustdesignthinkingorproblemsolving?Theanswertothisquestionisnot

completelyclearfromthecurrentliteratureonCT.Withoutaclear,agreed-uponvisionof

whatwewantstudentstolearnaboutCT,it’shardtoarticulatewhatthosedifferences

reallyare.Therecentintroductionoftheterm“computationalmaking”(Rodeetal.,2015),

withtiestomakerspacesandthemakermovement,shiftsCTevenmoreinthedirectionof

Page 44: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

42

designandcreation.Giventheconcepts,practices,anddispositionsexploredhere,itseems

likeCTmightbeaspecificformofproblemsolvingordesign,withsomespecificconcepts

thatcomefromCSandprogramming.ItcouldbethatCTaddslogicalthinkinganddatause

conceptstotraditionaldesignpracticesanddispositions.Inotherwords,CTseemstobe

aboutlogicalthinking(manyoftheconceptsfromCS)plusdesignpractices.CTmay

potentiallybeausefulcombinationofconcepts,practices,anddispositionsthatprepares

studentsforjobsacrossfieldsinvolvingdesignandproblemsolving.Buttheseandrelated

claimsaboutCT’sabilitytoempowerchildrentosolveproblems(e.g.ISTE&CSTA,2011;

Papert,1980;Wing,2006)arehighlytheoreticalatthispoint,untilmoreworkcanbedone

todefineCTinuseanddistinguishitfromotherformsofthinking.

Ingeneral,moreresearchonCTlearningandidentitydevelopmentinK-12contexts

isneeded.MostresearchonCTinK-12hasoccurredininformaleducationsettings(Lye&

Koh,2014).GiventherecentdevelopmentofCTinK-12educationalstandards,suchasin

theCSTAandISTEComputerScienceStandardsandintheNextGenerationScience

Standards,CTisclearlybecomingpartofformalK-12educationforall,notjustanelement

ofselectafter-schoolactivities.Thus,researchersneedtounderstandhowtodesignforin-

schoollearningenvironmentsandtoproductivelyincorporateCTintoclassrooms.

TherehasbeensomeempiricalworkonlearningCTinprogrammingorCScontexts,

butvirtuallynothinginK-12engineering.ResearchinCSdemonstratesthatyoungchildren

canlearnCTconceptsusingvisualandblock-basedprogrammingtools,andonline

communitiesofpracticesupportdifferentformsoflegitimateparticipationandroles

withinthecommunity.StudiesusingScratchinparticularhavedemonstratedthatstudents

inavarietyofgradelevelscanengageinalmostalltheCTconcepts,practices,and

dispositionslistedinthispaper.However,wedon’tknowmuchabouthowtheselearning

toolsareintegratedintoK-12classroomsystemsandhowclassroomscansupport

engagementinmeaningfulactivitiesthatcontinuetolegitimizestudents’rolesin

communitiesthatuseCT.Inthecaseofengineering,educatorsarejustbeginningto

incorporateengineeringinK-12classroomsacrosstheU.S.,sotherearefewempirical

studiesonlearningengineeringinK-12classrooms,letalonelearningCTthrough

engineering.ThereisworkonlearningCTwithe-textiles,butthosestudiesareframedas

CTinthecontextofcraftratherthanengineering.Additionally,thatworklooksatCT

Page 45: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

43

learningthroughprogramminginArduino,soitisstillunclearhoworwhatstudentslearn

aboutCTinengineering(orevencraft)contextsthatdonotinvolveprogramming

mechanicalcomputers.

Whenitcomestoidentitydevelopment,relevantliteratureinbothCSand

engineeringhighlightsthefactthatCTeducation“isnotjustamatterofquantitybutalso

oneofqualityofengagement”(Fields,Giang,&Kafai,2014,p.8).Researchershave

contextualizedproblemsinnarratives,dance,andgamestomotivatestudentsto

participateinCT.Somestudieshavedemonstratedstudents’productiveengagementinCT

dispositionswhenprogrammingstoriesorgames,includingexpressingideas,collaborating

andcommunicatingwithothers,andaskingquestionswithcomputationaltools.However,

itisnotclearhowframingCTthroughthesecontextsaffectslong-termpersistence,beliefs

aboutCT,andstudents’viewsofthemselvesinrelationtoCT.

MentorshipalsoplaysasignificantroleinidentitydevelopmentthroughLPPinboth

CSandengineeringcontexts.Mentorsshapestudents’viewsaboutwhatCTis,whocan

participateinit,andwhethertheyhaveaccesstolegitimateroleswithinthecommunity.

Giventheimportantroleteachersplayasmentorsandsupervisors,weneedmoreresearch

tounderstandhowteacherscanimplementandbepartofsuccessfulmentorship

communitiesinK-12settingstosupportmeaningfulparticipationforallstudents,notjust

thosealreadyrepresentedbythemajorityofCSandengineeringprofessionals.

WhilethispaperillustratesthatCToverlapswithdesignprocessesindisciplines

otherthanCS,engineeringisstillamale-dominatedprofession.Only14%ofengineersin

2016identifiedasfemale(TheEconomicsDaily,2017).Totrulyexpandnotionsof

competenceandparticipationinCTforstudentswhodonotalreadymatchwiththe

stereotypesintechnologyfields,thisworkneedstoconnectCTwithcontextsthatare

dominatedbyothergroupsofpeople.Therefore,IplantoexploreCTintraditionally

femininecontextsofcraftinfuturework.

Page 46: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

44

Conclusion

ResearchintoCTinSTEMandevenhumanitiesinK-12contextsisjustbeginningto

emerge.Thisisanimportantareaforfutureworkthathasthepotentialtoexpandaccessto

CTlearningopportunities.ItwillalsohelprefinethedefinitionofCTandimprove

understandingsofwhatCTlookslikeindifferentcontexts.ThewayDeannaKuhn

describedscientificthinkinghelpsexplainhowresearchersmightexpandtheroleofCTin

K-12educationandourlives.Kuhnexplained,

Scientificthinkingtendstobecompartmentalized,viewedasrelevantandaccessibleonlytothenarrowsegmentofthepopulationwhopursuescientificcareers.Ifscienceeducationistobesuccessful,itisessentialtocounterthisviewandestablishtheplacethatscientificthinkinghasinthelivesofallstudents.Atypicalapproachtothisobjectivehasbeentotrytoconnectthecontentofsciencetophenomenafamiliarinstudents’everydaylives.Anultimatelymorepowerfulapproachmaybetoconnecttheprocessofsciencetothinkingprocessesthatfigureinordinarypeople’slives(1993,p.333).

Byconnectingscientificprocessestothethinkingprocessesinoureverydaylives,it

highlightstherelevanceofscientificthinking,pointstotheneedtoengageinthepracticeof

thinkingtoenhancethequalityofthinking,andmakessocialdialogueaplacetoexternalize

thinkingstrategies(Kuhn,1993).Inthisviewofthinkingprocesses,itisokay,andeven

ideal,thatCToverlapswithotherprocesses,includingdesignthinking,problemsolving,

criticalthinking,systemsthinking,andalgorithmicthinking,becauseitconnectstheways

inwhichcomputerscientiststhinktootherthinkingprocessespeopleuseinavarietyof

contexts.AfocusonthinkingprocessesdemandsworkonthenatureandroleofCTin

contextsoutsideofcomputing,withavarietyoflearners,andineverydayprocesses.Itis

stillunclearwhattheroleofcomputersinengaginginCTreallyis,andwhetherpeoplecan

legitimatelypracticeCTwithoutmechanicalcomputers(Weintropetal.,2016).Thiswork

connectingCTtoothercontextswilladvancethefieldtowardsaricherunderstandingof

theconceptsandpracticescollectedunderCT,manyofwhicharenotyetclearlydefined,

andthepracticalutilityofCTasaconstructwithinK-12education.

Page 47: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

45

REFERENCES

Anderson,K.J.B.,Courter,S.S.,McGlamery,T.,Nathans-Kelly,T.M.,&Nicometo,C.G.(2010).Understandingengineeringworkandidentity:across-caseanalysisofengineerswithinsixfirms.EngineeringStudies,2(3),153-174.

Aschbacher,P.R.,Li,E.,&Roth,E.J.(2010).Isscienceme?Highschoolstudents’identities,participationandaspirationsinscience,engineering,andmedicine.JournalofResearchinScienceTeaching,47(5),564–582.

Barr,B.D.,Harrison,J.,&Conery,L.(2011).ComputationalThinking :ADigitalAge.Learning&LeadingwithTechnology,5191(March/April),20–23.

Barr,V.,&Stephenson,C.(2011).BringingcomputationalthinkingtoK-12.ACMInroads,2(1),111–122.

Beckhusen,J.(2016).OccupationsinInformationTechnology:AmericanCommunitySurveyReports(Vol.1980).Washington,D.C.:U.S.CensusBureau.

Bers,M.U.(2010).TheTangibleKroboticsprogram:Appliedcomputationalthinkingforyoungchildren.EarlyChildhoodResearchandPractice,12(2),1–20.

Bers,M.U.,Flannery,L.,Kazakoff,E.R.,&Sullivan,A.(2014).Computationalthinkingandtinkering:Explorationofanearlychildhoodroboticscurriculum.ComputersandEducation,72,145–157.

BiochemicalSociety(2017).Whatisbiochemistry?Retrievedfromhttp://www.biochemistry.org/?TabId=456.

Bishop,J.P.(2012).“She’sAlwaysBeentheSmartOne.I’veAlwaysBeentheDumbOne”:IdentitiesintheMathematicsClassroom.JournalforResearchinMathematicsEducation,43(1),34–74.

Boaler,J.(2002).Thedevelopmentofdisciplinaryrelationships:knowledge,practice,andidentityinmathematicsclassrooms.FortheLearningofMathematics,22(1),42–47.

Boaler,J.,&Greeno,J.G.(2000).Identity,agency,andknowinginmathematicsworlds.Multipleperspectivesonmathematicsteachingandlearning,171-200.

Brennan,K.,&Resnick,M.(2012).Newframeworksforstudyingandassessingthedevelopmentofcomputationalthinking.InannualAERAmeeting,Vancouver,BC,Canada(pp.1–25).

Brickhouse,N.W.,&Potter,J.T.(2001).YoungWomen’sScientificIdentityFormationinanUrbanContext.JournalofResearchinScienceTeaching,38(8),965–980.

Page 48: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

46

Brikman,Y.(2014).Don’tlearntocode.Learntothink.[Blogpost].Retrievedfromhttps://www.ybrikman.com/writing/2014/05/19/dont-learn-to-code-learn-to-think/.

Brophy,S.,Klein,S.,Portsmore,M.,&Rogers,C.(2008).AdvancingEngineeringEducationinP-12Classrooms.JournalofEngineeringEducation,(July),369–387.

Bullmaster-Day,M.L.(2015).ProductiveStruggleforDeeperLearning.TriumphLearning.

BureauofLaborStatistics(2017).Computerandinformationtechnologyoccupations.Retrievedfromhttps://www.bls.gov/ooh/computer-and-information-technology/home.htm.

Capobianco,B.M.,Diefes-Dux,H.A.,Mena,I.,&Weller,J.(2011).WhatisanEngineer?ImplicationsofElementarySchoolStudentConceptionsforEngineeringEducation.JournalofEngineeringEducation,100(2),304–328.

CarolynYang,Y.T.,&Chang,C.H.(2013).Empoweringstudentsthroughdigitalgameauthorship:Enhancingconcentration,criticalthinking,andacademicachievement.ComputersandEducation,68,334–344.

Catterall,J.(2013).GettingrealabouttheEinSTEAM.TheSTEAMJournal,1(1),Article6.

Cejka,E.,Rogers,C.,&Portsmore,M.(2006).KindergartenRobotics:UsingRoboticstoMotivateMath,Science,andEngineeringLiteracyinElementarySchool.InternationalJournalofEngineeringEducation,22(4),711–722.

Cheryan,S.,Master,A.,&Meltzoff,A.N.(2015).Culturalstereotypesasgatekeepers:Increasinggirls’interestincomputerscienceandengineeringbydiversifyingstereotypes.FrontiersinPsychology,6(FEB),1–8.

Clements,D.H.,&Gullo,D.F.(1984).EffectsofComputerProgrammingonYoungChildren’sCognition.JournalofEducationalPsychology,76(6),1051–1058.

Cobb,P.,&Bowers,J.(1999).Cognitiveandsituatedlearningperspectivesintheoryandpractice.Educationalresearcher,28(2),4-15.

Crismond,D.(2001).Learningandusingscienceideaswhendoinginvestigate-and-redesigntasks:Astudyofnaive,novice,andexpertdesignersdoingconstrainedandscaffoldeddesignwork.JournalofResearchinScienceTeaching,38(7),791–820.

CSTA.(2013).CSTAK-12ComputerScienceStandards:MappedtoCommonCoreStateStandardsforMathematicalPractice.Retrievedfromhttp://www.csta.acm.org/Curriculum/sub/CurrFiles/CSTA_Standards_Mapped_to_CommonCoreStandards.pdf

Page 49: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

47

CSTA.(2017).CSTAK-12ComputerScienceStandards.Retrievedfromhttp://www.csteachers.org/page/standards

CSTA&ACM(2016).InterimCSTAK-12computersciencestandards.NewYork,NY:CSTA&ACM.Retrievedfromhttps://c.ymcdn.com/sites/www.csteachers.org/resource/resmgr/Docs/Standards/2016StandardsRevision/INTERIM_StandardsFINAL_07222.pdf.

Daily,S.B.,Leonard,A.E.,Jörg,S.,Babu,S.,&Gundersen,K.(2014).DancingAlice:Exploringembodiedpedagogicalstrategiesforlearningcomputationalthinking.InProceedingsofthe45thACMtechnicalsymposiumonComputerscienceeducation-SIGCSE’14(pp.91–96).Atlanta,GA:ACM.

Dasgupta,S.,Hale,W.,Monroy-Hernandez,A.,&Hill,B.M.(2016).RemixingasaPathwaytoComputationalThinking.InCSCW(pp.1438–1449).SanFrancisco,CA.

diSessa,A.(2000).ChangingMinds:Computers,Learning,andLiteracy.Cambridge,MA:MITPress.

EiE(EngineeringisElementary)(2017a).Theengineeringdesignprocess.Retrievedfromhttps://www.eie.org/overview/engineering-design-process.

EiE(EngineeringisElementary)(2017b).Trajectoriesforpreschool-middleschoolengineeringactivities.Retrievedfromhttps://eie.org/overview/engineering-trajectories.

Feldman,A.(2015).STEAMrising:WhyweneedtoputtheartsintoSTEMeducation.Slate.Retrievedfromhttp://www.slate.com/articles/technology/future_tense/2015/06/steam_vs_stem_why_we_need_to_put_the_arts_into_stem_education.html.

Fields,D.A.,Giang,M.,&Kafai,Y.(2014).Programminginthewild.InProceedingsofthe9thWorkshopinPrimaryandSecondaryComputingEducationon-WiPSCE’14(pp.2–11).Berlin,Germany.

Fields,D.A.,Searle,K.A.,&Kafai,Y.B.(2016).DeconstructionKitsforLearning:Students’CollaborativeDebuggingofElectronicTextileDesigns.InFabLearn(pp.82–85).Stanford,CA.

Fleer,M.(1999).Children’salternativeviews:Alternativetowhat?InternationalJournalofScienceEducation,21(2),119–35.

Fleer,M.(2000).Workingtechnologically:Investigationsintohowyoungchildrendesignandmakeduringtechnologyeducation.InternationalJournalofTechnologyandDesignEducation,10(1),43–59.

Page 50: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

48

Gee,J.P.(2000).Chapter3:Identityasananalyticlensforresearchineducation.Reviewofresearchineducation,25(1),99-125.

Gorman,H.,&Bourne,L.E.(1983).LearningtothinkbylearningLOGO:Rulelearninginthird-gradecomputerprogrammers.BulletinofthePsychonomicSociety,21(3),165–167.

Greeno,J.G.(1991).Numbersenseassituatedknowinginaconceptualdomain.JournalforResearchinMathematicsEducation,22(3),170–218.

Greeno,J.G.,&Gresalfi,M.S.(2008).Opportunitiestolearninpracticeandidentity.InP.A.Moss,D.C.Pullin,J.P.Gee,E.H.Haertel,&L.J.Young(Eds.),Assessment,Equity,andOpportunitytoLearn.NewYork:CambridgeUniversityPress.

Gresalfi,M.S.,&Cobb,P.(2006).Cultivatingstudents’discipline-specificdispositionsasacriticalgoalforpedagogyandequity.Pedagogies,1(1),49–57.

Gresalfi,M.,Martin,T.,Hand,V.,&Greeno,J.(2009).Constructingcompetence:ananalysisofstudentparticipationintheactivitysystemsofmathematicsclassrooms.EducationStudiesinMathematics,70(1),49–70.

Grover,S.,&Pea,R.(2013).ComputationalThinkinginK-12:AReviewoftheStateoftheField.EducationalResearcher,42(1),38–43.

Grover,S.,&Pea,R.(2018).ComputationalThinking:Acompetencywhosetimehascome.InS.Sentance,E.Barendsen,&C.Schulte(Eds.),ComputerScienceEducation:PerspectivesonTeachingandLearning.London:Bloomsbury.

Guzdial,M.(2008).Education:Pavingthewayforcomputationalthinking.CommunicationsoftheACM,51(8),25–27.

Haik,Y.,Sivaloganathan,S.,andShahin,T.M.(2015).EngineeringDesignProcess(3rdEd.).Boston,MA:CengageLearning.

Halpern,D.F.(1999).Teachingforcriticalthinking:Helpingcollegestudentsdeveloptheskillsanddispositionsofacriticalthinker.Newdirectionsforteachingandlearning,1999(80),69-74.

Hand,V.,&Gresalfi,M.(2015).TheJointAccomplishmentofIdentity.EducationalPsychologist,50(3),190–203.

Handelsman,J.andSmith,M.(2016,February11).STEMforall[Blogpost].TheWhiteHouseBlog.Retrievedfromhttps://obamawhitehouse.archives.gov/blog/2016/02/11/stem-all.

Hatmaker,D.M.(2013).Engineeringidentity:Genderandprofessionalidentitynegotiationamongwomenengineers.Gender,Work&Organization,20(4),382-396.

Page 51: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

49

Holland,D.,Lachicotte,W.,Skinner,D.,&Cain,C.(1998).Identityandagencyinculturalworlds.History.Cambridge,MA:HarvardUniversityPress.

Horn,M.S.,Brady,C.,Hjorth,A.,Wagh,A.,&Wilensky,U.(2014,June).Frogpond:Acodefirstlearningenvironmentonevolutionandnaturalselection.InProceedingsofthe2014conferenceonInteractiondesignandchildren(pp.357-360).ACM.

Horn,M.S.,&Jacob,R.J.K.(2007).DesigningTangibleProgrammingLanguagesforClassroomUse.InProceedingsofthe1stInternationalConferenceonTangibleandEmbeddedInteraction(pp.159-162).ACM.

Hu,C.(2011).Computationalthinking–Whatitmightmeanandwhatwemightdoaboutit.ITiCSE’11:Proceedingsofthe16thAnnualJointConferenceonInnovationandTechnologyinComputerScienceEducation(pp.223–227).

Hung,D.,Chen,V.,&Lim,S.H.(2009).Unpackingthehiddenefficaciesoflearninginproductivefailure.LearningInquiry,3(1),1–19.

Israel,M.,Pearson,J.N.,Tapia,T.,Wherfel,Q.M.,&Reese,G.(2015).Supportingalllearnersinschool-widecomputationalthinking:Across-casequalitativeanalysis.ComputersandEducation,82(March),263–279.

ISTE,&CSTA.(2011).OperationalDefinitionofComputationalThinking.Retrievedfromhttps://c.ymcdn.com/sites/www.csteachers.org/resource/resmgr/CompThinkingFlyer.pdf.

Jagodzinski,A.(2016,June30).STEAMontherise:Thegrowingimportanceofartseducation[Blogpost].ArtForce.Retrievedfromhttp://artforce.org/steam-on-the-rise/.

Jawitz,J.,Case,J.,&Ahmed,N.(2005).Smilenicely,makethetea-ButwillIeverbetakenseriously?Engineeringstudents’experiencesofvacationwork.InternationalJournalofEngineeringEducation,21(1),134–138.

Johnsey,R.(1995).Theplaceoftheprocessskillmakingindesignandtechnology:Lessonsfromresearchintothewayprimarychildrendesignandmake.InProceedingsoftheIDATER95:InternationalConferenceonDesignandTechnologyEducationalResearchandCurriculumDevelopment,Loughborough,UK.

Jorgenson,J.(2002).Engineeringselves:Negotiatinggenderandidentityintechnicalwork.ManagementCommunicationQuarterly,15(3),350-380.

Kafai,Y.B.(2016).FromcomputationalthinkingtocomputationalparticipationinK–12education.CommunicationsoftheACM,59(8),26–27.

Page 52: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

50

Kafai,Y.B.,Lee,E.,Searle,K.,&Fields,D.(2014).Acrafts-orientedapproachtocomputinginhighschool:Introducingcomputationalconcepts,practices,andperspectiveswithelectronictextiles.ACMTransactionsonComputingEducation,14(1),1–20.

Kafai,Y.B.,Peppler,K.A.,Burke,Q.,Moore,M.,&Glosson,D.(2010).Fröbelʼsforgottengift:Textileconstructionkitsaspathwaysintoplay,designandcomputation.InInteractionDesignandChildren,Barcelona,Spain.

Kafai,Y.B.,Searle,K.,Martinez,C.,&Brayboy,B.(2014).EthnocomputingwithElectronicTextiles:CulturallyResponsiveOpenDesigntoBroadenParticipationinComputinginAmericanIndianYouthandCommunities.InSIGCSE/14,Atlanta,GA.

Kafai,Y.B.,Searle,K.,Fields,D.A.,Kafai,Y.,Searle,K.,Fields,D.,&Lui,D.(2013).Cupcakecushions,ScoobyDooshirts,andsoftboomboxes:E-textilesinhighschooltopromotecomputationalconcepts.InSIGCSE’13(pp.311–316),Denver,CO.

Kalelioǧlu,F.,&Gülbahar,Y.(2014).TheeffectsofteachingprogrammingviaScratchonproblemsolvingskills:Adiscussionfromlearners’perspective.InformaticsinEducation,13(1),33–50.

Kaplan,A.,&Flum,H.(2009).Motivationandidentity:Therelationsofactionanddevelopmentineducationalcontexts–Anintroductiontothespecialissue.EducationalPsychologist,44(2),73-77.

Kapur,M.(2008).Productivefailure.CognitionandInstruction,26(3),379–424.

Kelleher,C.(2009).Barrierstoprogrammingengagement.AdvancesinGenderandEducation,1,5–10.

Kelleher,C.,&Pausch,R.(2005).Loweringthebarrierstoprogramming:Ataxonomyofprogrammingenvironmentsandlanguagesfornoviceprogrammers.ACMComputingSurveys,37(2),83–137.

Kelleher,C.,&Pausch,R.(2007).Usingstorytellingtomotivateprogramming.CommunicationsoftheACM,50(7),58.

Kimmel,H.,Carpinelli,J.,Alexander,L.B.,andRockland,R.(2006).Bringingengineeringintok-12schools:Aproblemlookingforsolutions?InProceedingsoftheAmericanSocietyforEngineeringEducationAnnualConferenceandExposition,Chicago,IL.

Kolodner,J.L.,Camp,P.J.,Crismond,D.,Fasse,B.,Gray,J.,Holbrook,J.,Puntambekar,S.,andRyan,M.(2003).Problem-basedlearningmeetscase-basedreasoninginthemiddle-schoolscienceclassroom:Puttinglearningbydesign™intopractice.JournaloftheLearningSciences,12(4),495–547.

Page 53: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

51

Kuhn,D.(1993).ScienceasArgument :ImplicationsforTeachingandLearningScientificThinking.ScienceEducation,77(3),319–337.

Lave,J.,&Wenger,E.(1991).Situatedlearning:Legitimateperipheralparticipation.Cambridge,U.K.:Cambridgeuniversitypress.

Lester,F.K.(1994).Musingsaboutmathematicalproblem-solvingresearch:1970-1994.Journalforresearchinmathematicseducation,25(6),660-675.

Lucas,B.,Hanson,J.,Claxton,G.,andCentreforReal-WorldLearning(2014).Thinkinglikeanengineer:Implicationsfortheeducationsystem.UK:RoyalAcademyofEngineering.

Lui,D.,Litts,B.K.,Widman,S.,Walker,J.T.,&Kafai,Y.B.(2016).CollaborativeMakerActivitiesintheClassroom:CaseStudiesofHighSchoolStudentPairs’InteractionsinDesigningElectronicTextiles.InFabLearn(pp.74–77),Stanford,CA.

Lye,S.Y.,&Koh,J.H.L.(2014).Reviewonteachingandlearningofcomputationalthinkingthroughprogramming:WhatisnextforK-12 ?ComputersinHumanBehavior,41,51–61.

Mark,J.(1992).Beyondequalaccess:Genderequityinlearningwithcomputers.Women’sEducationalEquityActPublishingCenterDigest,1-2-7.

Martin,D.B.(2000).MathematicsSuccessandFailureamongAfrican-AmericanYouth:TheRolesofSociohistoricalContext,CommunityForces,SchoolInfluence,andIndividualAgency.Mahwah,NJ:LawrenceErlbaumAssociates.

Master,A.,Cheryan,S.,&Meltzoff,A.N.(2016).Computingwhethershebelongs:Stereotypesunderminegirls’interestandsenseofbelongingincomputerscience.JournalofEducationalPsychology,108(3),424–437.

Mattern,K.D.,Shaw,E.J.,&Ewing,M.(2011).AdvancedPlacement®ExamParticipation:IsAP®ExamParticipationandPerformanceRelatedtoChoiceofCollegeMajor?ResearchReportNo.2011-6.CollegeBoard.

Mayer,R.E.(1998).Cognitive,metacognitive,andmotivationalaspectsofproblemsolving.InstructionalScience,26,49–63.

Mayer,R.E.,Dyck,J.L.,&Vilberg,W.(1986).Learningtoprogramandlearningtothink:what’stheconnection?CommunicationsoftheACM,29(7),605–610.

McCaslin,M.(2009).Co-RegulationofStudentMotivationandEmergentIdentity.EducationalPsychologist,44(2),137–146.

McGee,E.O.,&Martin,D.B.(2011).‘‘YouWouldNotBelieveWhatIHavetoGoThroughtoProveMyIntellectualValue!"StereotypeManagementamongAcademicallySuccessful

Page 54: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

52

BlackMathematicsandEngineeringStudents.AmericanEducationalResearchJournal,48(6),1347–1389.

McLeod,D.B.(1992).Researchonaffectinmathematicseducation:Areconceptualization.InD.A.Grouws(Ed.),Handbookofresearchonmathematicsteachingandlearning(pp.575-596).Macmillan.

Meyers,K.L.,Ohland,M.W.,Pawley,A.L.,Silliman,S.E.,&Smith,K.A.(2012).Factorsrelatingtoengineeringidentity.GlobalJournalofEngineeringEducation,14(1),119–131.

MidianKurland,D.,Pea,R.D.,Clement,C.,Mawby,R.,&Mawby,R.A.(1986).Astudyofthedevelopmentofprogrammingabilityandthinkingskillsinhighschoolstudents.JournalofEducationalComputingResearch,2(4),429–458.

Moore,T.J.,Glancy,A.W.,Tank,K.M.,Kersten,J.A.,&Smith,K.A.(2014).AFrameworkforQualityK-12EngineeringEducation:ResearchandDevelopment.JournalofPre-CollegeEngineeringEducation,4(1),Article2.

NASA’sBEST(2016).Theengineeringdesignprocess.NASA.Retrievedfromwww.nasa.gov/foreducators.

Nasir,N.I.S.(2002).Identity,goals,andlearning:Mathematicsinculturalpractice.Mathematicalthinkingandlearning,4(2-3),213-247.

Nasir,N.I.S.,&Cooks,J.(2009).Becomingahurdler:Howlearningsettingsaffordidentities.Anthropology&EducationQuarterly,40(1),41-61.

Nasir,N.S.,&deRoyston,M.M.(2013).Power,identity,andmathematicalpracticesoutsideandinsideschool.JournalforResearchinMathematicsEducation,44(1),264–287.

Nasir,N.S.,&Hand,V.(2008).Fromthecourttotheclassroom:Opportunitiesforengagement,learning,andidentityinbasketballandclassroommathematics.JournaloftheLearningSciences,17(2),143–179.

NationalAcademyofEngineering(NAE)andNationalResearchCouncil(NRC).(2009).EngineeringinK-12Education:UnderstandingtheStatusandImprovingtheProspects.Washington,D.C.:TheNationalAcademiesPress.

NationalCenterforWomenandInformationTechnology(NCWIT).(2017).BytheNumbers.Retrievedfromhttps://www.ncwit.org/resources/numbers.

NationalResearchCouncil(NRC).(2004).ComputerScience:ReflectionsontheField,ReflectionsFromtheField.Washington,D.C.:TheNationalAcademiesPress.

NationalResearchCouncil(NRC).(2010).ReportofaWorkshopontheScopeandNatureofComputationalThinking.Washington,D.C.:TheNationalAcademiesPress.

Page 55: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

53

NationalResearchCouncil(NRC).(2012).AframeworkforK-12scienceeducation:Practices,crosscuttingconcepts,andcoreideas.Washington,D.C.:TheNationalAcademiesPress.

NGSS.(2013).ScienceandEngineeringPractices.Washington,D.C.:TheNationalAcademiesPress.

Nickerson,R.S.(1983).Computerprogrammingasavehicleforteachingthinkingskills.Thinking:TheJournalofPhilosophyforChildren,4(3/4),42-48.

Papert,S.(1980).Mindstorms:Children,computers,andpowerfulideas.NewYork,NY:BasicBooks.

Papert,S.(1996).AnExplorationintheSpaceofMathematicsEducations.InternationalJournalofComputersforMathematicalLearning,1(1),95–123.

Pea,R.D.(1983).LogoProgrammingandProblemSolving.InAmericanEducationalResearchSymposium(pp.2–10),Montreal,Canada.

Pea,R.D.,&Kurland,D.M.(1984).Onthecognitiveeffectsoflearningcomputerprogramming.NewIdeasinPsychology,2(2),137–168.

Pea,R.D.,Kurland,D.M.,&Hawkins,J.(1985).LogoandtheDevelopmentofThinkingSkills.InM.Chen&W.Paisley(Eds.),ChildrenandMicrocomputers:ResearchontheNewestMedium(pp.193–317).Sage.

Pierrakos,O.,Beam,T.K.,Constantz,J.,Johri,A.,&Anderson,R.(2009).OntheDevelopmentofaProfessionalIdentity:EngineeringPersistersVsEngineeringSwitchers.In39thASEE/IEEEFrontiersinEducationConference(pp.1–6),SanAntonio,TX.

Pinkard,N.,Erete,S.,Martin,C.K.,&McKinneydeRoyston,M.(2017).DigitalYouthDivas:ExploringNarrative-DrivenCurriculumtoSparkMiddleSchoolGirls’InterestinComputationalActivities.JournaloftheLearningSciences,26(3),477-516.

Potvin,P.,&Hasni,A.(2014).Interest,motivationandattitudetowardsscienceandtechnologyatK-12levels:asystematicreviewof12yearsofeducationalresearch.StudiesinScienceEducation,50(1),85–129.

Renninger,K.A.(2009).InterestandIdentityDevelopmentinInstruction:AnInductiveModel.EducationalPsychologist,44(2),105–118.

Resnick,M.,Maloney,J.,Monroy-Hernández,A.,Rusk,N.,Eastmond,E.,Brennan,K.,…Kafai,Y.(2009).Scratch:ProgrammingforAll.CommunicationsoftheACM,52,60–67.

Robelen,E.W.(2013).K-12BolstersTiestoEngineering.EducationWeek,32(26),1-18.

Page 56: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

54

Rode,J.A.,Weibert,A.,Marshall,A.,Aal,K.,VonRekowski,T.,ElMimoni,H.,&Booker,J.(2015).FromComputationalThinkingtoComputationalMaking.InUbiComp(pp.239–250),Osaka,Japan.

Roden,C.(1999).Howchildren’sproblemsolvingstrategiesdevelopatkeystage1.TheJournalofDesignandTechnologyEducation,4(1),21–27.

Rogers,C.B.,Wendell,K.,&Foster,J.(2010).AReviewoftheNAEReport,EngineeringinK-12Education.JournalofEngineeringEducation,(April),179–181.

Roth,W.M.(1995).From“wigglystructures”to“unshakytowers”:Problemframing,solutionfinding,andnegotiationofcoursesofactionsduringacivilengineeringunitforelementarystudents.ResearchinScienceEducation,25(4),365–381.

Roth,W.M.(1996).Knowledgediffusioninagrade4–5classroomduringaunitoncivilengineering:Ananalysisofaclassroomcommunityintermsofitschangingresourcesandpractices.CognitionandInstruction,14(2),179–220.

RoyalAcademyofEngineering(2017).Whatisengineering?Retrievedfromhttp://www.raeng.org.uk/education/what-is-engineering.

Sadler,T.,Barab,S.,andScott,B.(2007).Whatdostudentsgainbyengaginginsocioscientificinquiry?ResearchinScienceEducation,37(4),371–91.

Schoenfeld,A.H.(1992).Learningtothinkmathematically:Problemsolving,metacognition,andsensemakinginmathematics.InD.Grouws(Ed.),HandbookforResearchonMathematicsTeachingandLearning(pp.334–370).NewYork,NY:Macmillan.

Searle,K.A.,Fields,D.A.,Lui,D.A.,&Kafai,Y.B.(2014).Diversifyinghighschoolstudents’viewsaboutcomputingwithelectronictextiles.InICER(pp.75–82),Glasgow,UK.

Shute,V.J.,Sun,C.,&Asbell-Clarke,J.(2017).Demystifyingcomputationalthinking.EducationalResearchReview,22,142-158.

Smith,M.(2016,January30).Computerscienceforall[Blogpost].TheWhiteHouseBlog.Retrievedfromhttps://obamawhitehouse.archives.gov/blog/2016/01/30/computer-science-all.

Sneider,C.,Stephenson,C.,Schafer,B.,&Flick,L.(2014).Computationalthinkinginhighschoolscienceclassrooms.TheScienceTeacher,81(5),53-59.

Snyder,T.D.(2016).DigestofEducationStatistics:2015.NationalCenterforEducationStatistics.

Soloway,E.(1986).Learningtoprogram=learningtoconstructmechanismsandexplanations.CommunicationsoftheACM,29(9),850–858.

Page 57: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

55

Swan,K.(1989).Programmingobjectstothinkwith:Logoandtheteachingandlearningofproblemsolving.InAnnualMeetingoftheAmericanEducationalResearchAssociation,SanFrancisco,CA.

Tan,E.,CalabreseBarton,A.,Kang,H.,&O’Neill,T.(2013).DesiringacareerinSTEM-relatedfields:Howmiddleschoolgirlsarticulateandnegotiateidentities-in-practiceinscience.JournalofResearchinScienceTeaching,50(10),1143–1179.

Tate,E.D.,&Linn,M.C.(2005).HowDoesIdentityShapetheExperiencesofWomenofColorEngineeringStudents?JournalofScienceEducationandTechnology,14(5/6),483–493.

TheEconomicsDaily(2017).Womeninarchitectureandengineeringoccupationsin2016.BureauofLaborStatistics.Retrievedfromhttps://www.bls.gov/opub/ted/2017/women-in-architecture-and-engineering-occupations-in-2016.htm.

Wang,D.,Wang,T.,&Liu,Z.(2014).Atangibleprogrammingtoolforchildrentocultivatecomputationalthinking.TheScientificWorldJournal,2014.

Waterman,A.S.(2004).FindingSomeonetoBe:StudiesontheRoleofIntrinsicMotivationinIdentityFormation.Identity:AnInternationalJournalofTheoryandResearch,4(3),209–228.

Weintrop,D.,Beheshti,E.,Horn,M.,Orton,K.,Jona,K.,Trouille,L.,&Wilensky,U.(2016).DefiningComputationalThinkingforMathematicsandScienceClassrooms.JournalofScienceEducationandTechnology,25(1),127–147.

Wenger,E.(1998).Communitiesofpractice:Learning,meaning,andidentity.Cambridge,UK:CambridgeUniversityPress.

Wenger,E.(2010).Communitiesofpracticeandsociallearningsystems:Thecareerofaconcept.InC.Blackmore(Ed.),SocialLearningSystemsandCommunitiesofPractice(pp.179–198).London:Springer.

Wigfield,A.,&Wagner,A.L.(2005).Competence,motivation,andidentitydevelopmentduringadolescence.InA.J.Elliot&C.S.Dweck(Eds.),HandbookofCompetenceandMotivation(pp.222–239).NewYork:GuilfordPress.

Wilensky,U.,Brady,C.E.,&Horn,M.S.(2014).FosteringComputationalLiteracyinScienceClassrooms.CommunicationsoftheACM,57(8),24–28.

Wineburg,S.S.(1991).Historicalproblemsolving:Astudyofthecognitiveprocessesusedintheevaluationofdocumentaryandpictorialevidence.JournalofEducationalPsychology,83,73–87.

Page 58: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

56

Williams,L.,Wiebe,E.,Yang,K.,Ferzli,M.,&Miller,C.(2002).InSupportofPairProgrammingintheIntroductoryComputerScienceCourse.ComputerScienceEducation,12(3),197–212.

Wing,J.M.(2006).Computationalthinking.CommunicationsoftheACM,49(3),33–35.

Wing,J.M.(2008).Computationalthinkingandthinkingaboutcomputing.PhilosophicalTransactionstheRoyalSocietyofLondonA,366(1881),3717–3725.

Wyeth,P.,&Purchase,H.C.(2002).TangibleProgrammingElementsforYoungChildren.InCHI’02extendedabstractsonHumanfactorsincomputingsystems(pp.774–775).ACM.

Yelland,N.J.(1995).Encouragingyoungchildren’sthinkingskillswithLogo.ChildhoodEducation,71(3),152–155.


Top Related