exploring computational thinking concepts, practices, and ... · way chemists perform experiments...

58
Exploring Computational Thinking Concepts, Practices, and Dispositions in K-12 Computer Science and Engineering By Amanda M. Bell Thesis Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Learning, Teaching, and Diversity May 31, 2018 Nashville, Tennessee Approved: Melissa S. Gresalfi, Ph.D. Douglas B. Clark, Ph.D. Corey E. Brady, Ph.D.

Upload: others

Post on 26-Mar-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

ExploringComputationalThinkingConcepts,Practices,andDispositionsinK-12ComputerScienceandEngineering

By

AmandaM.Bell

Thesis

SubmittedtotheFacultyofthe

GraduateSchoolofVanderbiltUniversity

inpartialfulfillmentoftherequirements

forthedegreeof

MASTEROFSCIENCE

in

Learning,Teaching,andDiversity

May31,2018

Nashville,Tennessee

Approved:

MelissaS.Gresalfi,Ph.D.

DouglasB.Clark,Ph.D.

CoreyE.Brady,Ph.D.

Page 2: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

ii

TABLEOFCONTENTS

Page

Introduction................................................................................................................................................................1ComputationalThinkinginSociety..............................................................................................................2CTvs.CSvs.Programming...............................................................................................................................4ContextsofFocus:ComputerScienceandEngineering......................................................................6

TheoreticalFramework.........................................................................................................................................8LiteratureSearch...................................................................................................................................................14ComputationalThinkinginComputerScience.........................................................................................15Concepts................................................................................................................................................................15Practices................................................................................................................................................................16Dispositions.........................................................................................................................................................20LearningCTConceptsandPracticesinK-12ComputerScience.................................................22CTIdentityDevelopmentandDispositionsinK-12ComputerScience....................................26

ComputationalThinkinginEngineering.....................................................................................................31Concepts................................................................................................................................................................32Practices................................................................................................................................................................32Dispositions.........................................................................................................................................................36LearningCTPracticesinK-12Engineering...........................................................................................37CTIdentityDevelopmentandDispositionsinK-12Engineering................................................39

Discussion.................................................................................................................................................................41Conclusion................................................................................................................................................................44REFERENCES...........................................................................................................................................................45

Page 3: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

1

Introduction

Increasingly,educatorsandpolicymakersvaluecomputerscience(CS)educationfor

itsabilitytopreparestudentsforthegrowingnumberofjobsincomputingfieldsandfor

itspotentialtoequiplearnerswithproblem-solvingskillsandtechnologicalknowledge.

WhilethetraditionalmethodoflearningCSthroughprogrammingteachesstudentsabout

programminglanguagesandalgorithms,studentsshouldalsohaveaccesstotheconcepts

andpracticescomputerscientistsusetosolveproblems,referredtoascomputational

thinking(CT).CTempowerslearnerstouseprogrammingasatooltogenerateinnovative

solutionstoproblems,tobecomethoughtfultechnologyusersintheireverydaylives,to

applylogicalthinkingtoavarietyofsituations,andtoprepareforjobsusingtechnology

acrossavarietyoffields.

NewinitiativesinCSeducationcallfortheintegrationofCTintoK-12schools.

PresidentObama’sComputerScienceforAllinitiativearticulatedtheneedtoexposeall

studentsto“computationalthinkingskillsthatarerelevanttomanydisciplinesand

careers”(Smith,2016).CTwasoneofthefivemainconceptualstrandsinthe2011K-12CS

standardsdevelopedbytheComputerScienceTeachersAssociation(CSTA).NowCSTA,

alongwiththeAssociationforComputingMachinery(ACM),areupdatingtheCSstandards

andintegratingCTthroughouttheconceptsandpractices(CSTA&ACM,2016).Atthesame

time,CSTAandtheInternationalSocietyofTechnologyinEducation(ISTE)createda

toolkittohelpteachersandschoolleadersadvocateforanddevelopaCTcurriculum(ISTE

&CSTA,2011).Theseinitiativesdemonstrateeducators’andpolicymakers’focusonCTas

animportantpartofCSeducationforallstudents.

TakingCTlearningastepfurther,manyresearchersarebeginningtoexplorethe

integrationofCTwithSTEM(science,technology,engineering,andmathematics)fieldsand

otherdisciplines.TheNextGenerationScienceStandards(NGSS)alsoincludeexamplesof

CTintheirscienceandengineeringpracticesforgradesK-12(NGSS,2013).By

incorporatingCTintoexistingschoolsubjects,researchershopetoaddressseveralfactors

thathinder“CTforall”efforts:(1)allstudentswouldbeexposedtoCTifitispartoftheir

coresubjectsratherthananelectivecomputingcourse;(2)itwouldsavetimetoteachCT

duringanexistingsubjectratherthanaddingacoursetobusyschoolschedules;(3)itmay

Page 4: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

2

beeasiertotrainteachersifCTisincorporatedaspartofwhattheyalreadydo;and(4)not

allschoolshaveaccesstoadvancedtechnologytosupportCSclasses(Hornetal.,2014;Hu,

2011;Sneider,Stephenson,Schafer,&Flick,2014;Weintropetal.,2016;Wilensky,Brady,

&Horn,2014).Infact,astudyexaminingschool-wideintegrationofcomputingatthe

elementarylevelfoundthatclassroomteacherscouldonlyteachcomputingbyintegrating

itintotheircontentareasbecausethepre-existingcurriculumwastootime-consumingto

introducecomputingonitsown(Israeletal.,2015).

DespitetheseinitiativesinK-12education,researchersstilldonothaveastrong

consensusaboutwhatCTisandhowitisappliedindifferentcontexts.Abetter

understandingofhowpeopleuseCTinavarietyoffieldsisnecessarytomeaningfully

integrateCTacrossschoolsubjects(Grover&Pea,2018).Furthermore,inordertoengage

allstudentsinCT,notjustthosepredisposedtocomputing,researchersneedto

understandhowstudentscanlegitimatelyparticipateinaCTlearningcommunitythrough

richlyvariedexperiences.Therefore,myquestionsinthispaperare:whatdoesCTlook

likeindifferentcontexts,andhowdolearnersengageinCTinthesedifferentK-12

learningcommunities?Inthesectiontitled“ContextsofFocus”below,IdiscusswhyI

chosetoexploreCTinthecontextofcomputerscienceandengineeringinthispaper.My

goalistoexpandideasofwhatitmeanstobeacompetentcomputationalthinkerby

identifyingelementsofCTfromCSthendiscussinghowpeopleuseCTskillsinother

disciplinesoutsideCS.

ComputationalThinkinginSociety

Computersarenolongeraspecializedtoolbutarepervasiveinoursociety.

Therefore,“theabilitytoextendthepowerofhumanthoughtwithcomputersandother

digitaltoolshasbecomeanessentialpartofoureverydaylivesandwork”(Barr,Harrison,

&Conery,2011,p.23).ComputerscientistsemployCTskillstoaskquestionsandsolve

problemsacrossdisciplinesusingcomputers.AtaworkshoporganizedbytheNational

ResearchCouncilin2009todiscussthescopeandnatureofCT,attendeesarguedthatCTis

“comparableinimportanceandsignificancetothemathematical,linguistic,andlogical

reasoningthatsocietytodayagreesshouldbetaughttoallchildren”(NationalResearch

Council,2010,p.3).

Page 5: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

3

Thisemphasisontheimportanceofcomputinginoursocietyisnotnew.For

decades,therehavebeenappealsforwidespreadintegrationofcomputingskillsintoall

levelsandtypesofeducation(Weintropetal.,2016).In1962,Perlis,thefirstrecipientof

theACMTuringAward,claimedthatallundergraduatesshouldlearnprogramming

(Guzdial,2008).Papert(1980)laterarguedforintroducingaliteracyofcomputingto

children,andheusedCTtodescribetheabilityofcomputingtoempowerideas(Papert,

1996).diSessa(2000)calledforanewformofcomputationalliteracythatchangestheway

weallcommunicate,learn,andlivewithtechnology.Morerecently,therehasbeena

resurgenceininterestinCTfromtheperspectiveof21stcenturyskillspreparingstudents

forajobmarketthatincreasinglyinvolvestechnologycreationanduse(Grover&Pea,

2013;Wing,2006).

However,participationincomputingfieldsremainslowintheU.S.By2024,there

couldbeapredicted1.1millionjobsincomputingfields(NationalCenterforWomenand

InformationTechnology,2017),butlessthan17,000peoplegraduatedwithcomputer

scienceorprogrammingdegreesin2015,includingfewerthan3,000women(Snyder,

2016).Exposingstudentstocomputersciencebeforetheyentercollegeisessentialfor

increasingthenumberandvarietyofcomputingmajors,asstudentsare8timesmorelikely

tomajorincomputerscienceaftertakinganAPCScourseinhighschool(Mattern,Shaw,&

Ewing,2011).Furthermore,jobsincomputingtendtobeintellectuallyrewardingandhigh

paying;themedianannualwagewasover$80,000in2015,muchhigherthantheoverall

medianannualwageforalljobsof$36,000(BureauofLaborStatistics,2017).Butthevast

majorityofthosejobsareheldbymen.Theproportionofwomenincomputingjobshas

actuallydecreasedsince1990,downto25%in2015(NCWIT,2017).Just7%ofworkersin

computingin2014identifiedasBlackand7%asHispanic(Beckhusen,2016).Thehigh

wagesofcomputingjobshighlightsthevalueoursocietyplacesonthatwork,butthe

diversityofparticipationinthosejobsislimited.“Ifthepopulationofpeoplecreating

softwareismorecloselymatchedtothepopulationusingsoftware,thesoftwaredesigned

andreleasedwillprobablybettermatchusersneeds”(Kelleher&Pausch,2005,p.131).

Computerscientistsandengineersdesigntoolsthatareintegraltolivesacrosstheworld,

soitmakeslittlesensethatthevastmajorityofthosedesignersonlyrepresentonetypeof

Page 6: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

4

person.Thechallengewefacetodayisbothtoincreaseengagementintechnological

creationandtoensurethefieldisrepresentativeofourdiversepopulation.

StereotypesofwhatCSjobsentailandtheimageofloner,nerdy,maleprogrammers

stillperpetuateandunderminediversityincomputingfields.Stereotypesoftenserveas

gatekeepersforwomeninparticular,hinderinglearning(Cheryan,Master,&Meltzoff,

2015)anddecreasingsenseofbelonging(Master,Cheryan,&Meltzoff,2016).K-12schools

playanimportantroleinintroducingavarietyofstudentstoCSandpotentiallychanging

theirperceptionsofwhatCSisandwhocanparticipateinit.

CTvs.CSvs.Programming

ThelinesbetweenCT,CS,andprogrammingcansometimesbeblurredin

educationalcontexts.ThebestarticulationoftheinterconnectionsamongthethreeIhave

foundisablogpostwrittenbysoftwareengineer,author,andstartupco-founderYevgeniy

Brikman.Ratherthanlearningprogramming,Brikman(2014)articulatestheimportanceof

learningtothink.First,programmingisjustwhatitsoundslike:writingcode,whetheron

paperoronthecomputer.Programminginvolvesspeakingaparticularlanguagetoa

computertogetthecomputertodosomething.Itcouldinvolvecreatingapieceof

software,anapp,awebsite,oritcouldbeassimpleasusingacomputertocalculatea

multiplicationproblem.Programmingisatooltohelpsolveaproblemorperforma

computation.Itisacommontoolusedbycomputerscientists,butprogrammingdoesnot

definewhatcomputerscienceis.Thebrainisalsoatoolforcomputation;itcanthink

logically,solveproblems,andruncalculations.

Computerscience,ontheotherhand,isabroaddisciplinethatincludessoftware

engineering,algorithmdesign,problemsolving,computationaltheory,artificial

intelligence,informationtheory,logic,andmore.Everydisciplineinvolvesparticularways

ofthinking,andpartoflearningtoparticipateinafieldinvolveslearningthosewaysto

think.Forinstance,physicsgivesusaparticularwayofthinkingaboutthephysicalworld

throughcalculusandintermsofmatter,motion,andforces.Chemistrygivesusawayof

thinkingaboutmatterintermsofstructure,properties,andreactions.Computational

thinkingreferstothewaysofthinkingcomputerscientistsuse.TheideaofCTisto

articulatehowcomputerscientiststhinkandsolveproblemssootherscanlearntothinkin

Page 7: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

5

asimilarway.Programmingisjustonetoolforexercisingthatwayofthinking,inthesame

waychemistsperformexperimentsusingtesttubes(Brikman,2014).

Whilechemistrymayinvolveitsownwayofthinkingabouttheworld,theskills

chemists’usealsoleakintootherfieldsofstudy,likephysics,biology,medicine,and

engineering.Forinstance,biochemistryisahybridfieldthattakestheabilitytothinkabout

chemicalprocessesandappliesittolivingcreatures.AccordingtotheUKBiochemical

Society,thiscross-applicationhascontributedsignificantadvancesintheareasofhealth,

disease,technology,andmore(BiochemicalSociety,2017),demonstratingthatapplying

disciplinarythinkingskillsacrosscontextscreatesinnovativesolutionsandtechnological

advances.Inmuchthesameway,theabilitytothinklogicallyandcomputationallycanleak

outsidetheCSfieldandhelpsolveproblemsinotherendeavors.Regardlessofthesubject

matter,theconstantincreaseintechnologyacrossdifferentculturesstrengthensthecall

foranunderstandingofhowpeopleuseCTtothinkwithandsolveproblemsthrough

technology.

Computerliteracyisanothertermpeopleusearoundcomputingprofessions,butit

oftencanrefertotheknowledgeofspecificprograms,likeWordorAdobePhotoshop,and

componentsofcomputers,likeusingamouseandkeyboard.Someresearchersusethe

termcomputationalliteracy,whichisclosertoCTbutnotexactlythesame.Whilereading

andwritingarefundamentaltoeducation,diSessa(2000)arguesthatcomputational

literacyisalsocrucialtocreatingknowledgeablepeople.Inmuchthesamewaythe

inventionoftheprintingpresschangedmainstreamliteracy,theproliferationofcomputers

changesourcurrentstructuresofliteracyandwhatitmeanstobealiterateperson.

Computationalliteracyisa“materialintelligence”thatismediatedbymaterialssuchas

symbolsandrepresentations,itinvolvesthewayswethinkinthepresenceofthose

materials,anditisasocialendeavor,developingwithotherindividualsacrosstimeand

space(diSessa,2000).Thefirstpillarofcomputationalliteracy--materials--issimilarto

thenotionofprogrammingasatoolandprogramminglanguagesasaninscriptionor

symbolsystemofacomputer-basedliteracy.Thesecondpillar--mentalprocesses--

includesthewaysinwhichpeoplethinkandsolveproblemswithcomputersand

programmingtools,whichcapturestheessenceofCT.Thethirdpillar--socialaspects--

goesbeyondthecollaborativeprocessescentraltoCTtodescribethewaysinwhich

Page 8: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

6

knowledgebuildsoverlongperiodsoftimeandwiththehelpofmanydifferentpeople.

Therefore,computationalliteracyincludesCTbuthasthemoreambitiousgoalof

fundamentallychangingmoderneducation,whichgoesbeyondthescopeofthispaper.

However,educatorsareincreasinglyfocusedonteachingCTratherthanjust

programming.WhereaslearningtoprogramgivesstudentstoolsforexercisingCT,learning

howtothinklikeacomputerscientisthelpsstudentsadapttoconstantlychanging

technologicalinnovationsandcomputingproblems.Whileresearchersarestillworkingto

buildaclearoperationaldefinitionofCT(Grover&Pea,2013),manyagreewiththeideaof

CTas“solvingproblems,designingsystems,andunderstandinghumanbehavior,by

drawingontheconceptsfundamentaltocomputerscience”(Wing,2006,p.33).CTisaway

ofthinkingthatallowspeopletocreatealgorithmsorsolutionstoproblemsinsuchaway

thattheycanbecarriedoutbyacomputationalagent,whetherthatisacomputerora

human(Brennan&Resnick,2012).Computationalparticipationisanothertermusedto

emphasizethesocialandcreativepracticesatthecoreofwhatcomputerscientistsdo

(Kafai,2016).ComputationalparticipationisalsoaformofdiSessa’s(2000)thirdpillar,

withitsfocusonthesocialaspectsofcomputing.Ultimately,asstudentslearnCT,they

developwaysofparticipatingincommunitiesoflearnersandcomputationalthinkers

(NationalResearchCouncil,2010).

ContextsofFocus:ComputerScienceandEngineering

WithinitiativeslikeCSforAllandtheinclusionofCTincomputing,science,and

engineeringeducationstandards,educatorsneedwaystogetallstudents,notjustthose

predisposedtocomputers,engagedinCTskills.Manypublicandprivatefundingagencies

supportSTEMandSTEAM(integratingartsintoSTEMsubjects)projects,highlightingthe

public’sinterestinengagingstudentsinmultidisciplinaryexperiencesthatfocusonnotjust

computingbutalsointegratingthoseskillsacrossscience,mathematics,engineering,and

thearts(Feldman,2015;Handelsman&Smith,2016;Jagodzinski,2016).Researchaimedat

betterunderstandinghowthesesubjectsintersectisessentialforcreatinglearning

environmentsthattrulyembodyinterdisciplinarymindsetsandallowstudentstoapply

problemsolvingstrategiesacrossdisciplines.WhileCTiscloselytiedtotheT(Technology)

inSTEAMthroughitsrootsincomputing,inthispaper,Iseektoimproveunderstandingsof

Page 9: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

7

CTwhileadvancingitsintegrationwithotherdisciplinesbyexploringconnectionstoother

STEAMsubjects,namely,engineering.

ToexploreapplicationsofCTintechnology,Ifocusoncomputerprogrammingasa

toolforengaginginCTskills.ProgrammingisacommoneducationaltoolforCT.Itprovides

manyproblem-solvingactivitiesandempowersstudentstolearnthroughcreatingtheir

ownartifactsthatcanbesharedwithothers(Papert,1980).Inotherwords,programming

canintroducestudentstothetoolsusedbyprofessionalcomputerscientists,butitcanalso

empowerstudentstouseCTskillstosolveavarietyofcomputationalproblems.Designers,

researchers,andeducatorshavedevelopednumeroustoolsforlearningprogramming,

bothwithandwithoutcomputers.

Ichosetoexploreengineering(theEinSTEAM)astheseconddisciplinarycontext

fordefiningCTforseveralreasons.Giventherecentincreaseinengineeringeducationin

U.S.classrooms(Catterall,2013;NationalAcademyofEngineeringandNationalResearch

Council,2009;Robelen,2013),itisimportanttounderstandhowengineeringconnectsto

otherschoolsubjects,includingCS.Engineeringcanimprovestudentlearninginother

STEAMcontextsbyconnectingdisciplinaryconceptsandpracticestoreal-worldproblems

(Catterall,2013;NAE&NRC,2009).Atthesametime,engineering“canprovideawayto

integratetheSTEMdisciplinesmeaningfully”(Mooreetal.,2014,p.2)byapplyingskills

frommathematics,science,andCStocreatesolutionstoproblems.Thus,engineeringmay

beapowerfulcontextforlearningandapplyingCTconceptsandpractices.Onebranchof

engineering,softwareengineering,ispartofthecomputersciencefieldandinvolves

significantprogrammingwork.Butbeyondsoftwareengineering,recentNGSSstandards

illustratedconnectionsbetweenCTandbroaderengineeringpractices(NGSS,2013).CT

andCSeducationhaverootsinconstructionism,whichemphasizeslearningthroughthe

design,buildinganddiscoverypracticesatthecoreofengineering(Lucas,Hanson,Claxton,

&CentreforRealWorldLearning,2014;Papert,1980).ItthenfollowsthatCTwouldhave

deepconnectionstoengineeringprocesses,makingtheengineeringfieldastrong

candidateforexploringwhatCTisandhowitoverlapswithdifferentdisciplines.

Page 10: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

8

TheoreticalFramework

BylookingathowCTisre-contextualizedinCSandengineering,Iseekto

understandhowstudentscanengageinCTinrichandmeaningfulways.Bothstudentswho

likeprogrammingandthosewithinterestsoutsidecomputingshouldbeabletoparticipate

inthepracticesofCTandtakeonlegitimaterolesintheCTlearningcommunity.Iam

curiousabouthowstudentscanparticipateinCTinrichandmeaningfulwaysandhow

participationrelatestostudents’interestsin,experienceswith,andbeliefsabout

computing.Therefore,inthenextsections,Idrawonperspectivesofsituatedlearningand

legitimateperipheralparticipation(Lave&Wenger,1991)tounderstandwhatitmeansto

beacomputationalthinkerindifferentcontexts.

Historically,researchineducationfocusedonunderstandingtheknowledge

studentsacquireandhowtheylearnit.Thedevelopmentofsituativetheories

demonstratesthatknowledgeandpracticesaretiedtogether,andtheactivitiespeople

engageinarecentraltoandmakeuptheknowledgebeingdeveloped(Cobb&Bowers,

1999).Insituativeperspectives,learninginvolvesachangeinparticipationwithasetof

resourcesoractivitiesinadditiontochangesinwaysofthinking(Gresalfi,Martin,Hand,&

Greeno,2009;Hand&Gresalfi,2015;Lave&Wenger,1991;Nasir&Cooks,2009).Essential

tothisframeworkistheideathatproductivelearninghappensthroughlegitimate

peripheralparticipation(LPP),thatis,whenpeoplehaveaccesstothecorepracticesofa

communityofpractitionersandopportunitiestoparticipatemorefullyovertime(Lave&

Wenger,1991).LPPaskswhatkindsofsocialsituationsprovideacontextforlearning,

ratherthanwhatcognitiveprocessestakeplaceintheindividual.LPPdescribes

engagementinsocialpracticeasdistributedamongco-participantsinalearningcontext,

withafocusonparticipationinthesocialworld.Inthisway,learningoccursthrough

interactionsincommunitiesofpracticebothinsideandoutsidetheformalclassroom.

Communitiesofpractice(CoP)aregroupsofpeopleengaginginasimilarcraftor

profession(Lave&Wenger,1991;Wenger,2010).Throughsharinginformationand

experiences,memberslearnfromeachotheranddeveloptheiridentitiesinrelationtoa

broadercommunity.PeopleinaCoPareactivepractitioners,asopposedtoacommunityof

interestthatinvolvespeoplewithasharedinterestwithoutdependenceonexpertiseor

Page 11: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

9

practice(Wenger,2010).CoPsinvolverelationsamongpeople,activities,andtheworld

acrosstimeandspace.Differentcommunitiesoverlapwithoneanother,andpeopleare

membersofmultiplecommunitiesatatime.

Duringthelearningprocess,thecommunityitselfchanges.Itisnotjustthenovice

wholearns,buttheexpertandtheskillitselfalsochangeinsomeway.LPPmoveslearners

towardfullerparticipationinacommunity.Peoplestartbyparticipatingintasksthatare

meaningfulandproductivetothecommunitybuthaveminimalrisk.Throughthiswork,

novicesslowlybecomefamiliarwiththelanguages,tasks,andpracticesofacommunity.As

theycontinuetoparticipateovertime,theytakeonmoreaspectsandresponsibilities,and

theirparticipationbecomesmorecentraltothefunctioningofthecommunity.The

legitimateperipheralnatureimpliesthatlearnerscanchangeperspectivesinthe

communityaspartoflearninganddevelopingidentities,andthereisnosinglecoretothe

community.Therearedifferentwaysofbeingfullparticipants.

AsanexampleoflearningthroughLPP,wecanthinkaboutthetrajectoryofa

doctoralstudent.Firstyeargraduatestudentsworkingasresearchassistantsmaystartby

readingpaperswrittenbytheiradvisorsandcorrectingtyposorfillinginmissing

referencesinthebibliography.Thisworkisnecessaryandimportant,whichallowsthe

newcomertocontributetotheacademiccommunityeveninaperipheralway,butitisnot

toocostlyifmistakesaremade.Overtime,thegraduatestudentmaycontributetowriting

apaperwithanadvisor,collectdatawitharesearchteam,theneventuallyconducttheir

ownresearchandpublishtheirownpapers.Intheirfirstyearofstudy,astudentmaynot

feellikeanimportantmemberofthecommunity,butoveryearsofbecomingafuller

participant,theymaydevelopacloserrelationshipandsenseofbelongingwiththe

academiccommunity.Inthisway,thegraduatestudentsarelearning,changingtheirforms

ofparticipationandroleswithinthecommunity,andconstructingidentitiesinrelationto

thecommunityofacademicpractitionersintheirfield.Itmaynotalwaysfeellikeitto

graduatestudents,butaslongastheyhaveaccesstoexpertmentorsandauthentic

practices,theyareslowlytransformingtheiridentitiesandlearningtobecomereal

researchersandfullmembersofthefield.Thus,learninginvolvesbecomingamemberofa

communityandresultsinachangeinrelationshipwithrespecttoacommunity.A

Page 12: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

10

newcomer’s“changingknowledge,skill,anddiscoursearepartofadevelopingidentity”

(Lave&Wenger,1991,p.122).

Manyscholarspointtoissuesofidentityascriticaltolearningandengagement(e.g.

Boaler&Greeno,2000;Hand&Gresalfi,2015;Holland,Lachicotte,Skinner,&Cain,1998;

Wenger,1998).Inmathematicseducation,researchershavearguedfortheimportanceof

understandinghowstudentsdevelopviewsofthemselvesasmembersinthedisciplineand

ascapableoflearninganddoingmathematics(Martin,2000;Nasir,2002;Nasir&de

Royston,2013).Howlearnersviewthemselvesaffectshowtheyengageinlearning

contexts,andtheirengagementisshapedbytheopportunitiesaffordedforparticipation

(Nasir&deRoyston,2013).

InLPP,identityandlearningareinextricablytiedtochangesinparticipationwith

resourcesandactivitiesinaparticularsocialcontext(Greeno&Gresalfi,2008;Hand&

Gresalfi,2015;Lave&Wenger,1991;Nasir&Cooks,2009).Inotherwords,bothlearning

andidentityaretheresultofparticipationincommunitiesofpractice(Wenger,1998).

Identitiesformthroughparticipation,andlearninginvolvesbecomingalegitimate

participantandmemberofthecommunity(Lave&Wenger,1991).Learninginvolvesa

shiftinparticipationwithartifactsorresources,whilethewaysinwhichresourcesare

usedandparticipationoccursdependonthelearner’sidentity(Nasir&Cooks,2009;

Gresalfietal.,2009).Learninginvolveschangesinwaysofactinginrelationtothenorms

andresourcesofacommunity,andatthesametime,identityaffectswhatpeoplelearn,

howtheyengage,andwhattheychoosetopursue(Bishop,2012).

Identities“playafundamentalroleinenhancing(ordetractingfrom)ourattitudes,

dispositions,emotionaldevelopment,andgeneralsenseofself”(Bishop,2012,pp.34–35).

Ratherthanasingle,staticsenseofself,identityisamixtureofchangingrepresentations

negotiatedbasedonhowpeopleviewthemselves,howtheyarepositionedbyothers,their

engagementwithnorms,practices,culturaltools,pastexperiences,waysofparticipating,

feelingsandbeliefs,andtheparticularsocialcontext(Bishop,2012;Gee,2000;Hand&

Gresalfi,2015;Hollandetal.,1998;Wenger,1998).Anyindividualhasmanyidentities

acrosscommunitiesthatarenegotiatedandinformeachother(Hollandetal.,1998).

Individualscancontroltheiridentitiesinsomewaysbuttheyarelimitedbyrelationsof

structureandpowerinthebroadercontextofparticipation(Brickhouse&Potter,2001).A

Page 13: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

11

studentmayclaimanidentitybuttheirinteractionswithothersmayadjustthestrengthor

formofthatidentityasitisenactedovertimeandspace.

CSlearningcontexts,suchastheclassroomorinformalclub,areparticular

communitiesofpracticewherelearningoccursthroughchangesinparticipationinrelation

tothenormsandpracticesofthecommunity.Atthesametime,identitiesdevelop

accordingto“whostudentsare,whotheycanbe,andwhotheywanttobe,assanctioned

bythenormsoftheclassroom”(Tan,CalabreseBarton,Kang,&O’Neill,2013,p.1145).

Identityinvolveshowpeopleseethemselvesinrelationtothecommunity,butalsohow

othersseethemandhowtheyareallowedtoparticipateandcontributetothecommunity.

Bothindividualandsharedidentitiesarecontinuouslynegotiatedthroughinteractionwith

othersandthroughengaginginthepracticesofacommunity. Students’engagement,

persistence,andgoalsmediatebothidentityandlearning(Nasir&Cooks,2009).

Nasir&Hand(2008)usetheterm“practice-linkedidentities”torefertothisnotion

ofidentityasasenseofselftiedtoactivity.These“aretheidentitiesthatpeoplecometo

takeon,construct,andembracethatarelinkedtoparticipationinparticularsocialand

culturalpractices”(p.147).Thisviewofidentityistiedtothenotionofengagement.

Variouspracticesafforddifferenttypesofengagement,whichsupportpractice-linked

identitydevelopmentindifferentways.Forinstance,whenanindividualfeelsaclose

connectionbetweentheirdevelopingsenseofselfandthepracticesofacommunity,the

individualismorelikelytobeengagedandtoparticipateintensely(Nasir&Hand,2008).

Hence,somesettingssupportengagementforparticularindividualsbetterthanothersdo.

Atthesametime,someactivitiesmayaffordmorewaysofparticipatingthanothers,

allowingstudentstoengageindifferentways.Thisinturnsupportsstudentstosee

themselvesascapableofparticipatinginthosepracticesanddevelopingaproductivesense

ofselfinrelationtotheparticularcommunity.

Asworkonidentityconstructionreveals,membershipinacommunityismediated

bythepossibleformsofparticipationpeoplehaveaccessto,includingphysicalandsocial

tools.Learnersmusthaveopportunitiestousethetoolsandparticipateintheactivitiesofa

communitytodevelopunderstandingandasenseofbelonging.Forinstance,ifnovicescan

directlyobserveexpertpractice,thentheyhaveabetterunderstandingoftheorganization

ofthecommunityandwheretheirworkfitsin.Butifnewcomershavelittleaccesstothe

Page 14: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

12

toolsandbroadercommunity,theycanstagnateinthesameroleovermanyyearsand

neverachievefullerparticipation(Lave&Wenger,1991).Thus,accesstoresourcesand

opportunitiestolearnareessential.Therefore,wemustfirstunderstandwhatthe

community’stoolsandactivitiesarebeforewecandesignforlearning.Inthecaseof

integratingCTintoK-12schools,researchersmustfirstidentifythecentralcharacteristics

oftheprofessionalcomputingcommunity,includingthedomainofknowledge,the

practicesoractivities,andthewaysofapproachingactivitywithinthecommunity.

IntheLPPframework,changesinparticipationoccurinthreedifferentways.First,

thetoolsorresourcespeopleleveragetosolveproblemschangeastheydevelopnew

knowledgeandbetterunderstandings.Insteadoftools,Iusethetermconceptsinthis

papertoreflectthelanguagemostresearchersusetoclassifywhatpeoplelearnwhenthey

engageinCT(e.g.Barr&Stephenson,2011;Brennan&Resnick,2012;Weintropetal.,

2016).Learningalsoinvolvesengagingindisciplinarypractices.Thatis,learnersmakeuse

ofthecoreactivitiesorprocessesusedbythecommunity.Finally,overtime,learners

developidentitiestowardsthedisciplinarycommunity.Theactivitieschildrenexperience

informalandinformallearningcontextshelpformtheiridentitiesinrelationtodifferent

disciplines,whichaffectsthewaysinwhichstudentsusetheirknowledgeandapproach

newproblems(Boaler,2002).Boaler(2002)callsthistypeofidentitya“disciplinary

relationship.”Theseidentitiesdescriberelationshipstoothers,waysofbeing,orviewsof

oneselfinrelationtothediscipline.Inthispaper,Iusethetermdispositionstoconnectthis

typeofdisciplinaryidentitywithworkonproductivedispositions.Researchonproductive

dispositionsclaimsthatstudentsneedtodevelopthinkingskillsalongwiththeappropriate

dispositionstousethoseskills(Gresalfi&Cobb,2006;McLeod,1992;Schoenfeld,1992).

Makinguseofknowledgedependsonthepracticesstudentshaveengagedinandwhether

theyhaveaproductiverelationshipordispositiontowardsthediscipline(Boaler,2002).

MyuseofthetermdispositionalsocorrespondswithBrennanandResnick’s(2012)focus

ondispositionsintheirassessmentsofCTskills.

Asmentionedbriefly,thisframeworkofconcepts,practices,anddispositions

correspondswithhowmanyresearchersnowtalkaboutCTineducationalcontexts(Barr&

Stephenson,2011;Brennan&Resnick,2012;Shute,Sun,&Asbell-Clarke,2017;Weintrop

etal.,2016).CTconceptsarenotionsorideasusedastoolsintheconstructionof

Page 15: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

13

algorithmsandproblemsolutions.CTpracticesincludeprocessesofconstructing

algorithmsorsolutions.Whileconceptsdescribeknowledgeandunderstandings,practices

describehowpeopleparticipateanduseconceptswhilecreatingsolutionprocesses.Atthe

sametime,learners’dispositionstowardsCTaffecttheirengagementandwaysof

participatinginactivitiesinvolvingCT.Learnersneednotonlytheskillsandknowledgeof

acommunitybutalsotheinclinationtorecognizewhenskillsareusefulandthewillingness

tousethem(Halpern,1999).BrennanandResnick(2012)refertotheseunderstandingsof

oneselfandrelationshipswiththedisciplineofCTas“perspectives.”However,inthispaper

Iusethemorefamiliarterm“dispositions”asitconnectstoworkonproductive

engagementandproductivedisciplinaryrelationshipsinthebroaderfieldofeducation.

Iusethesecategoriesofconcepts,practices,anddispositionstodescribewhatit

meanstoknowandparticipateinCTindifferentcontexts.Inotherwords,participatingin

CTinvolvesusingoneormoreoftheCTpractices,andknowingCTinvolvesunderstanding

CTconceptsorbeingabletodescribeandengageinCTpractices.Atthesametime,CT

dispositionsaffectwhetherpeoplecanproductivelyengageinthosepracticesanddevelop

understandingsofCTconcepts.

Inthispaper,IdrawontheframeworkofLPPwiththegoalofbroadeningideasof

whatitmeanstobecompetentorlegitimatecomputationalthinkers.First,Idescribethe

waysinwhichresearchersdefineCTinCScontexts,andthenIlooktoengineeringtosee

howpeopleinthefieldlegitimatelyuseCTpracticeswhendesigningsolutionstoproblems.

ByhighlightingtheoverlapsbetweenCTandotherdisciplines,Iillustratehowpeoplecan

legitimatelyengageinCTandactascompetentcomputationalthinkersoutsidethe

traditionalboundariesofcomputing.WhileIseparatelearningandidentityinthesections

belowonCTinengineeringandCStobetterstructureandclarifytheliteraturereview,

learningandidentityareintricatelytiedtogetherinLPP.Theyinfluenceoneanother,and

bothchangeasaconsequenceofparticipation.

Page 16: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

14

LiteratureSearch

IfirstwantedtolookathowresearchersandpolicymakerscharacterizeCTandCT

learninginCSandinengineering.FortheCTinCStrack,Istartedwithhighlycitedanchor

readings,includingWing(2006;2008)andGrover&Pea(2013),andIcollectedarticles

basedontheircitationsaswellasarticlescitingthem.Icontinuedlookingatthose

subsequentarticles’citationstofindfurtherwork.MuchofwhatIfound,especiallyfor

empiricalwork,camefromconferenceproceedings.IthensearchedforCTeducation

standards,andIlookedfornationalCSstandardswithCTembeddedinthem.

ForCTinengineering,therewerenoanchorpaperstobasethesearchon,andI

foundadearthofworkonlearningengineeringinK-12ingeneral.Therefore,Iextended

mysearchbeyondCTspecificallytoarticlesthattalkaboutgeneralengineeringpractices.I

alsosearchedfornationalengineeringeducationstandardsthatincorporateCTandfocus

ondesign,sincedesigniswheretheoverlapwithCTappliesacrossengineeringfields.

IdidnotfindmanypapersintheCSorCTfieldsthattalkedaboutidentityintheway

Iconceptualizeithere.Instead,Ifoundpaperslookingatbeliefs,motivation,andinterest,

soIincludethoseconstructsinmyliteraturereviewonCTidentitybelow.Ontheother

hand,thereisasignificantamountofliteratureaboutidentityinengineeringfields.

However,almostalltheworkfocusesonadults(collegestudentsandprofessionals)and

primarilyaroundbeliefandidentification,whichisdifferentfromtheconceptualization

basedonparticipationthatIuseinthispaper.Iusetheexistingliteraturetohighlight

potentialfindingsrelatedtoCTidentityfromworkonbeliefs,interest,andmotivationinCS

andengineering,andIpointtoopportunitiesforfurtherexploration.

Page 17: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

15

ComputationalThinkinginComputerScience

Followingtheideathatlearningtoprogramalsohelpspeoplelearnhowtothink,

thissectionaimstoidentifysomeoftheconceptsandpracticesinvolvedinlearningto

thinkcomputationallythroughcomputerprogramming.CTandprogrammingaredeeply

intertwinedhere,aseffortstodefineCThavestartedbylookingattheskillsprogrammers

usetosolveproblemsandformulatesolutions.Inthiscontext,“solution”referstothe

processofcomingtoananswerratherthantheansweritself.Whilealgorithmsor

programsarenotanswersontheirown,theyaresolutionsthatcanbecarriedoutbya

computationalagenttoproduceananswertoaquestionorproblem.

Concepts

Inessence,“analgorithmisanabstractionofastep-by-stepprocedurefortaking

inputandproducingsomedesiredoutput”(Wing,2008,p.3718).SinceCThelpssolve

problemsbycreatingalgorithms,abstractionisatitscore(Wing,2006;2008).Abstraction

involvesdecidingwhattopayattentiontoandwhattoignoreinrepresentingand

processingdata(Weintropetal.,2016).Forexample,whenyouwanttoprintsomething

fromyourcomputer,youonlyneedtoworryaboutfindingthe“print”button;youdonot

needtothinkaboutorunderstandthemechanicsbehindhowaprinterworks,howdatais

senttotheprinter,etc.Inessence,muchoftheprintingprocessisina“blackbox”that

userscanignore;youneedonlyseethe“print”buttononyourcomputerscreen.Therefore,

“theprintcommandisanabstractionthatshowstheuseronlywhatheorsheneedstosee”

(NationalResearchCouncil,2004,p.16).

WhileabstractioniscentraltoCT,itisstillabroadconceptanddoesnothelp

educatorsunderstandhowtoimplementCTandwhattopayattentionto.Some

researchershavesuggestedthatCTissimilartonotionsofproceduralthinkingdeveloped

bySeymourPapert(NationalResearchCouncil,2010).Proceduralthinkinginvolves

thinkinginandaboutproceduresforperformingactions.Thesecouldbeeverydayactions

likegivingsomeonedirectionsormorecomplextaskslikedevelopingprogramming

algorithms.Proceduralthinkinghelpspeoplebreakdowncomplextasksintosmaller

componentsanddebugerrorsinthesolutionprocesses(Papert,1980).

Page 18: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

16

UsingScratch,ablock-basedprogramminglanguagedevelopedbasedonprinciples

fromPapert’sLogolanguage,BrennanandResnick(2012)specifiedtheconnections

betweenCTandproceduralthinking.Specifically,CTconceptsthatprogrammersuseto

thinkprocedurallyandcreatealgorithmsinclude:(i)creatingandfollowingsequencesof

instructions;(ii)parallelinstructions(executingmultiplesetsofinstructionsatthesame

time);(iii)usingandorganizingdata;(iv)operatingondata;and(v)elementsofcontrol

flowlikeloopingsetsofinstructions,conditionals(ifthisistruethendothis),andevents

(whenthishappensthendothis)(Brennan&Resnick,2012;CSTA,2017;Grover&Pea,

2013).AnanalysisofprogrammerswithyearsofexperienceintheScratchonline

community(https://scratch.mit.edu)showedthattheymakeuseofawidevarietyof

Scratchblocksthatinvolvealloftheconceptslistedabove(Brennan&Resnick,2012).

Furthermore,Bersandcolleagues(2014)demonstratedthatchildrenasyoungasfourcan

engageintheseCTconcepts,likesequencinginstructionsandcontrolflow,through

tangibleprogrammingactivities.Thus,evennoviceprogrammerscanlegitimately

participateintheCTcommunitybyaccessingthesecoreconceptsthroughCSeducation.

Practices

Beyondunderstandingprogrammingconcepts,CTisultimatelyawayofthinking

thatdescribes“processesofconstruction”(Brennan&Resnick,2012,p.6)usedtosolve

problems.Solvingproblemsusingproceduralthinkingfromprogramminginvolvesactively

developing,representing,testing,anddebuggingproceduresoralgorithms(Papert,1980).

TheseproceduralthinkingpracticesmapontosimilarCTpractices.First,developing

proceduresoralgorithmsinCTinvolvesthepracticeofbeingincrementalanditerative

(Brennan&Resnick,2012;CSTA,2017;Grover&Pea,2018;Shute,Sun,&Asbell-Clarke,

2017).Forexample,designinganalgorithmisnotaconsecutiveprocessbutinvolves

adaptingplansandgoingthroughcyclesofbrainstormingandcreating.Evenexperienced

programmersarelikelytomakeerrorswhentheyfirstwritenewprocedures,sorevisionis

expectedandnotanindicationofsomeone’slackofprogrammingability.Instead,both

noviceandexpertprogrammerscodealittlebit,tryitout,andadjustitormoveforward

basedonwhattheyfindandthenewideastheygenerate(Brennan&Resnick,2012).

Hence,theprocessinvolvesiteratingonsolutionideas.

Page 19: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

17

Anotherpracticemanyprogrammersusewhendevelopingproceduresinvolves

reusingorremixingsolutionsfromothers(Brennan&Resnick,2012;CSTA,2017.

“Remixing”involvesstartingwithaproceduresomeoneelsehaswrittenandchangingitin

somewaytoachieveanewgoal.Newtechnologiesallowprogrammerstoeasilyexchange

ideas,accesseachother’swork,andengageinreusingandremixingpractices.Stack

Overflow(http://stackoverflow.com/)isjustoneexampleofapopularonlinecommunity

whereprogrammersofalllevelshelpeachothersolveproblemsandsharesamplesofcode.

Scratchalsohasitsownonlinecommunity(https://scratch.mit.edu/)forprogrammersto

view,commenton,andremixeachother’sprojects.Thesecommunitiesgivelearners

accesstotheknowledge,skills,andworkofmoreexperiencedmembersofthecommunity.

Newcomersandoldtimerscanexchangethoughts,andnewcomerscandevelopan

understandingofthekindsofparticipationtheyaremovingtowardsastheyseeexamples

ofoldtimers’workandthekindsofinteractionsthatareconsideredlegitimateinthelarger

communityofpractitioners.Hence,theseresourcessupportlearningandprogression

towardfullerparticipationintheprogrammingandCTcommunity(Lave&Wenger,1991).

Duringtheiterativedevelopmentprocess,programmerstestanddebugtorefine

theirsolutions(Papert,1980).“Debugging”isaprocessoffindingandfixingerrors(Berset

al.,2014;Brennan&Resnick,2012;CSTA,2017;Grover&Pea,2013;2018;Shute,Sun,

Asbell-Clarke,2017).Debuggingstartsbyrecognizingthatsomethingisnotworkingas

expected,theninvolveschoosingtocontinueworkingtowardstheoriginalgoalorchanging

thedesiredgoal.Iftheprogrammerdecidestofixtheproblem,theywilldevelop

conjecturesaboutwhatcausedtheproblem,thenfinallyattempttosolvetheproblem.This

four-stepdebuggingprocedurecanevenbeusedbykindergarten-agedchildren(Bersetal.,

2014),showingthatthiscorepracticeisaccessibletonovicecomputationalthinkers.

Alongwithdevelopingsolutions,representingproceduresorsolutionssotheycan

becarriedoutbyacomputationalagentisacorepartofCT.Inprogramming,the

computationalagentisusuallyamechanicalcomputer.Programmersuseseveralrelated

skillsinthisprocess.Oneskillinvolvesreworkingproblemssotheycanbesolvedbya

computer(ISTE&CSTA,2011;Wing,2006).Evenafterdevelopinganideathatsolvesa

problem,proceduresmustbespecific,clear,andwritteninaparticularwaydependingon

theprogramminglanguageandcomputationalagent.Inmanycases,efficiencyofsolutions

Page 20: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

18

isanimportantconsideration.Thepracticeofworkingtowardsefficientsolutionsinvolves

addressingconstraintssuchastimeittakesasolutiontocompute,thespacetheprogram

takestorunandstore,andeventhesimplicityofinstructionssotheycanbereusedand

understoodbyothers(Barr,Harrison,&Conery,2011;Grover&Pea,2013;Wing,2008).

ThesecoreCTpracticesfundamentallydependonthecomputationalagentbeingusedto

carryoutthesolution,soprogrammersmustconsiderandusetheminvariouswaysacross

programmingcontexts.Thus,partoflearningtoparticipateintheprogramming

communityinvolvesdevelopingtheabilitytoadaptpracticesofdesignindifferent

situations.Thisisespeciallytrueaslearnersgainexpertiseandmovebeyondasingle

programminglanguageorenvironment.

Becauseexpertprogrammersmustadapttomanydifferentenvironments,

especiallytokeepupwiththechangingtechnologiesandlanguagesusedtocreate

programs,itishelpfuliftheirsolutionscantransferacrossavarietyofproblems.Hence,

someresearchersnowidentifythepracticeofgeneralizingasolutionintoaproblem

solvingprocessasanimportantpartofCT(Barr,Harrison,&Conery,2011;Hu,2011;

Shute,Sun,Asbell-Clarke,2017).Insteadofaspecificsolutionthatonlyappliestoa

particularcomputationalagentorprogramminglanguage,thesegeneralprocessesareless

formalandspecificsotheycanbeadaptedtodifferentenvironments.Forinstance,overthe

years,programmershavedevelopedgeneralalgorithmsforsortinglistsofnumbers.

Programmerslearnthesealgorithmsandexplainhowtheyworkusingpseudo-code,

imagesanddiagrams,orparagraphsoftext.Withthatgeneralunderstandingofthe

algorithmsforsortingnumbers,programmerscanthenconsidertheenvironmentand

constraintstheyhave,choosewhichalgorithmismostappropriate,andcodeitinthe

specificprogramminglanguagetheyneed.Fornovicesthen,itdoesnotmakesenseto

memorizetheproceduresforsortingnumbersinmanydifferentlanguages.Instead,

learnersshoulddevelopknowledgeofgeneralsortingalgorithmsandengageinthe

practiceofreformulatingandspecifyingthosealgorithmsacrosscontexts.

Thispracticeofgeneralizingsolutionsrelatestotheideaofmodularizingcode.In

modularizing,programmersbreaktheproblemdownintosimplertasksandgrouplinesof

codeaccordingtothefunctionstheyperform(CSTA,2017).Thesegroupsareoftencalled

“functions”or“methods”inobject-orientedprogramming.Asanexampleofmodularization

Page 21: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

19

inanoviceprogrammingcontext,theScratchlearningenvironmentallowslearnersto

engageinthispracticeofmodularizationbycreatingseparatestacksofcodethatrunin

responsetoaneventthatoccursinthelargerprogram.Forinstance,BrennanandResnick

(2012)illustratehowalearnerintheScratchcommunityusesmodularizationtosplither

codeintothreestacks.Thefirststackcontrolsanobject’smovement,thesecondstack

control’sitsvisualappearance,andthethirdstackcontrolsothereventsthatoccurin

responsetotheobject,likeresettingalevelinthegamewhentheobjectcollideswith

something.Inthisexample,thelearneralsousestheconceptofparallelproceduresasall

threeofherstacksaresettostartwhentheyreceivethesameeventcommand.

Modularizationisatypeofabstractioninwhichprogrammersbuildsomething

complicatedbycombiningsmallerpartstogether(Brennan&Resnick,2012;CSTA,2017).

Thepracticeofrepresentingandusingdataalsodrawsonabstraction(Barr,Harrison,&

Conery,2011;CSTA,2017;Grover&Pea,2013;Hu,2011;NRC,2010;Wing,2006;ISTE&

CSTA,2011;Shute,Sun,&Asbell-Clarke,2017).“Allinformationstoredandprocessedbya

computingdeviceisreferredtoasdata…Asstudentsusesoftwaretocompletetasksona

computingdevice,theywillbemanipulatingdata”(CSTA,2017,p.2).Twoways

programmerscommonlyworkwithdifferentrepresentationsofdataisbyusingdifferent

datatypesandstructures,likearraysandlists,andbytransformingdatatomakeitmore

usable(CSTA,2017).Whilenewcomersdonottypicallystartoutbylearningdata

structures,childrencanworkwithdataintheformofvariables.Forinstance,inScratch,

learnerscanexplicitlyusevariablestostoreinformationandperformcalculations.

Variablescanstoredataintheformofnumbersortext.Scratchuserscanalsochooseto

displaythedataindifferentways,usingasimplebarshowingthevalueofthevariable,

havingcharacterssaythevalueofavariable,orbychangingavisualorauditoryoutputin

responsetoadatavalue.Inthisway,novicescanparticipateinalegitimatebutperipheral

formofthedatausepracticeuntiltheydevelopfullerunderstandingsofdatain

computationalcontexts.

ThissectiondiscussedseveralCTpracticesfromprogramming,namely:being

incrementalanditerative,reusingorremixingsolutionsfromothers,testingand

debugging,representingproceduressotheycanbecarriedoutbyacomputationalagent,

generalizingasolutionintoaproblemsolvingprocess,modularizing,andrepresenting

Page 22: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

20

data.ThenextsectiondivesintothedispositionsCTresearchersarebeginningtorecognize

fromstudyingprogramming.

Dispositions

CTdispositionsaffectlearners’viewsofthemselves,theirwaysofparticipating,

theirattitudestowardstechnology,andtheirperspectivesonCT.Productivedispositions

helplearnersengageandmakeprogressintheirlearningastheyshifttowardsfuller

participationinthecommunity.Drawingonprogrammingandcomputerscienceata

meetingtodevelopanoperationaldefinitionofCT,researchersandeducatorscalled

attentiontoseveralrelevantdispositions.Thesedispositionsincludedealingwith

complexity,persistingondifficultproblems,dealingwithambiguityandopen-ended

problems,andcollaboratingwithothersonasharedgoal(Barr,Harrison,&Conery,2011;

Barr&Stephenson,2011;ISTE&CSTA,2011).BrennanandResnick(2012)usedexamples

fromprogramminginScratchtodescribetwoadditionalCTdispositions:using

computationforself-expressionandquestioningtheworldaboutandwithtechnologies.

First,itisnotclearexactlywhatthedifferencesarebetweenthedispositionslabeled

asdealingwithcomplexity,dealingwithopen-endedproblems,andpersistingondifficult

problems.Theyallseemtooverlap,andtheyareallmentionedtogetherseveraltimesin

theCSTAK-12ComputerScienceStandards(CSTA,2013).Theyallinvolvecharacteristics

likepatience,adaptability,acceptingchallenges,andabilitytotinkerortrythingsout

(CSTA,2013).Theydescriberecognizedwaysofapproachingproblemsandcharacteristics

ofsuccessfulproblemsolversfromotherfields,includingmetacognitiveskillsandbeliefs

(Lester,1994;Mayer,1998).Therefore,thesethreeCTdispositionscanbecombinedto

describeproductivecharacteristicsforapproachingopen-endedandcomplexproblemsin

programming(CSTA,2013).Moreresearchisneededtounderstandwhatthese

dispositionsentail,howtheyaffectlearningandengagement,andhowtofosterthem

productivelyineducationalprogrammingenvironments.

Thenextdispositionhighlightstheimportanceofcollaborationinprogrammingand

CT.CollaborationoccursinbothK-12classrooms,suchasthroughpairprogrammingand

groupprojects,andintheworkplace,alsoinpairprogrammingandthroughdivisionsof

labor(Grover&Pea,2018).Ineducationalcontexts,collaborationgivesstudentsaccessto

Page 23: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

21

othersinthecommunityasaresourceforlearningthroughaskingquestions,observing

practices,anddevelopingabroadoverviewofotherrolesandwaysofparticipatinginCT

(Lave&Wenger,1991).Foryounglearners,theseconnectionscanoccurwhencreating

projectsbothwithothersandforothers(Brennan&Resnick,2012).Forinstance,

collaboratingwithothersallowsnoviceprogrammerstoaskquestionsoftheirpeers,reuse

others’code,andcreatelastingpartnerships.Bycreatingprojectsforotherstouse,

learnersmustengageinnewskillsandconceptsinvolvedinunderstandingtheiraudience,

definingtheirgoals,anddisseminatingtheirwork.Asanotherexample,theScratchonline

communitysupportssimilarcollaborationsamongparticipantsofalllevels(Brennan&

Resnick,2012;Resnicketal.,2009).Inordertocollaborateintheseways,participants

mustbeabletogiveeachotherfeedback,makeuseoffeedbackintheirwork,understand

differentperspectives,andcreatebothsocialandworkingrelationshipswithother

membersoftheprogrammingcommunity(CSTA,2013;2017).Thesedispositionshelp

learnerstakeonnewrolesastheyproductivelyengagewithotherprogrammersand

computationalthinkers.

Whilelearningtoprogram,studentsshouldalsodevelopadispositiontowards

expressingideaswithtechnology.Ratherthanjustconsumingexistingtechnologies,like

browsingtheInternetortextingfriends,programmerscanactuallycreateandadapt

technologiestosolveproblemsinnewways(CSTA,2017;Grover&Pea,2018).For

programmers,“computationissomethingtheycanusefordesignandself-expression.A

computationalthinkerseescomputationasamedium”forcreativityandexploration

(Brennan&Resnick,2012,p.10).Experiencedprogrammerswithwell-developed

knowledgeandskillscancreatemanydifferenttypesofprojectsdependingontheir

interests,professionalwork,andconfidenceintheirabilities.Butevennovicescanexpress

themselvesthroughprogramminginScratchbycreatingsimplestoriesandbyimporting

theirowncontentlikemusic,images,andvoicerecordings(Resnicketal.,2009).

Finally,programmershavetheabilitytoaskquestionsabouttechnologyandwith

technology.Ratherthantakingtechnologyforgranted,programmerscanusecomputation

tomakesenseofhowtechnologieswork,theirlimitations,andhowtoimprovethemin

responsetoreal-worldsituations(Brennan&Resnick,2012).Fornovices,thiscanstartout

asadispositiontowardswonderinghowthingswork.Oritcandevelopovertimeas

Page 24: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

22

programmersrealizetheirabilitiestoadapttechnologiesfortheirownandothers’needs.

Questioningempowerscomputationalthinkerstomodifytechnologies,considerthe

affordancesandconstraintsofexistingtools,anddiscusstheimpactsoftechnologyonthe

world(CSTA,2013;2017).

LearningCTConceptsandPracticesinK-12ComputerScience

Inthispaper,Iamconceptualizinglearningasachangeinparticipationina

communityofpracticethatoccursthroughinteractionswiththetools,practices,and

participantsinacommunity.ButthatconceptualizationisnothowresearchersinCS

alwaystalkaboutlearning.EarlyideasofCTcamefromsuggestionsthatwhilelearningto

programcomputers,studentsalsolearnpowerfulthinkingskillsapplicabletobroader

problems(Papert,1980;Nickerson,1983).Inthe1980s,manyresearchersinterestedin

programmingeducationclaimedtoalsoengagechildreningeneralproblem-solvingskills,

supportedbyqualitativeanalysesandcasestudies(e.g.Gorman,Jr.&Bourne,Jr.,1983;

Papert,1980;Soloway,1986;Yelland,1995).However,quantitativestudiesonthe

cognitiveeffectsoflearningprogramminglanguages,includingproblemsolving,creativity,

logicalreasoning,andmore,showedmixedresults(Gorman,Jr.&Bourne,Jr.,1983;

Kalelioglu&Gülbahar,2014;Pea,1983;Pea&Kurland,1984;Pea,Kurland,&Hawkins,

1985;Swan,1989).Mostofthechangestostudents’thinkingskillsappearedwhenthe

skillswereassessedinaneartransfertaskorwerecloselyrelatedtothespecific

programminglanguagestudentslearned(Clements&Gullo,1984;Mayer,Dyck,&Vilberg,

1986;MidianKurland,Pea,Clement,&Mawby,1986).Thisisnotsurprisingfroma

situativeperspectiveinwhichknowledgeandunderstandingarefundamentallytiedtothe

contextandpracticesinwhichpeopleparticipate.Furthermore,muchofthisworkstudied

theeffectsoflearningaspecificprogramminglanguage,andresultssuggestthatgeneral

problemsolvingandthinkingpracticesmaynotspontaneouslyarisefromlearninga

programminglanguageonitsown(Pea,1983).Thisfindingconfirmsworkinmathematics

educationthatspecifiesthatskills(inthiscase,beingabletouseaparticularprogramming

language)andpractices(inthiscase,CTpractices)arenotthesamething(Greeno,1991).

Incontrast,recentworkonCTfavorsinstructionongeneralthinkingskillsinthe

contextofprogrammingorotherdisciplinesinordertodevelopcomputationalthinkers

Page 25: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

23

whocansolveproblemsindifferentcontexts.Inotherwords,CTemphasizesthe

importanceoflearningpracticeswhilesolvingproblemsindifferentenvironmentsrather

thanlearningaprogramminglanguageandhopingthepracticesarise.Inthissense,theact

ofprogrammingisausefultoolforsupportingengagementinCT(Grover&Pea,2013).

Programmingaffordsopportunitiesforchildrentothinkabouttheirownthinkingbecause

they“mustmakeprocessesexplicitinordertoteachthecomputerhowtoperformagiven

task”(Cejka,Rogers,&Portsmore,2006,p.712).Forexample,researchoncreatingdigital

gamesthroughprogrammingdemonstratedpositiveeffectsonmotivation,creativity,

problemsolving,andcriticalthinking(e.g.CarolynYang&Chang,2013).

Thevalueoflearningprogramming,beyondpreparingadiverseworkforcein

computing,comesfromempoweringchildrentocreatetheirownsolutionsanduseCT

skillstosolvepersonallymeaningfulproblems.Thissoundspromisingintheory,butwhat

dostudentsactuallylearnbyengaginginCTthroughprogramming?Andwhatdoweknow

aboutstudents’identitydevelopmentinrelationtoCTwhenengagedinthecontextof

programming?MuchoftheworkonCThasfocusedondesigninglearningenvironmentsto

supportCTconceptsandpractices.Thispaperaskshowthesedesignscansupportthe

apprenticeshipofpeopleintotheCTcommunityusingLPP.

Studiesofeducationalprogrammingenvironmentshaveshownthatevenyoung

newcomerstotheCTcommunitycanengageinCTpractices.Tangibleprogramming

environments,whichusephysical(ratherthandigital)blockstocode,haveshownpromise

forpreschoolandkindergarten-agedchildren.Theseenvironmentsallowlearnerstoeasily

createafunctioningprojectwithlittleintroductiontime(Bers,2010;Horn&Jacob,2007;

Kelleher&Pausch,2005;Wang,Wang,&Liu,2014;Wyeth&Purchase,2002).

Programminglanguageswithsimplesyntacticalstructuresgivenewcomersimmediate

accesstolegitimateconceptsandskills(Resnicketal.,2009),creatingaspaceforlearning

throughLPP.

Forexample,5-9yearoldchildrenusingT-Maze,amaze-buildingandpuzzle-

solvingprogrammingenvironmentusingphysicalblocks,wereabletousetheCTpractices

ofabstraction,automation,andproblemdecomposition(Wang,Wang,&Liu,2014).

Childrenunderstoodtherelationshipbetweenphysicalblocksofcodeandvirtualsquares

inthemazeonthescreen,aformofabstractinginformation.Fromevidenceinstudents’

Page 26: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

24

talk,researchersconcludedthatstudentsrealizedthecomputerautomatedtheirprograms

inthevirtualspacebyexecutingtheinstructionstheycreatedusingthephysicalblocks.In

termsofconcepts,studentslearnedtocreatesequentialinstructions,andresearcherslater

introducedtheconceptofloopstochildren.Additionally,therewassomeevidenceof

problemdecomposition,suchaswhenastudentseparatedthemazeproblemintotwosub-

problems:movingforwardandturning.Whiletangibleprogrammingispromisingfor

introducingCTtoyoungchildren,itisnotclearhowlearnerswhostartwithtangible

programmingmovetowardsbecomingfullerparticipantsinthecommunityovertime.We

needtoconsiderhowtoconnectCTskillsacrossdifferenteducationaltoolssostudentscan

buildontheirCTlearningastheyusemoreadvancedprogrammingenvironments,like

professionaltext-basedlanguages.

Studieswithmiddleschoolstudentsusingvisualprogrammingtools(digitalblock-

basedenvironments)havealsodemonstratedsomesuccessfulCTlearning.Forexample,

StorytellingAliceisamixtureofblock-basedandtext-basedprogrammingthatallows

learnerstocreatedetailedstoriesandgames.Asearlyasfifthgrade,studentsusing

StorytellingAlicecanapplytheCTconceptsofloops,conditionals,sequencesof

instructions,variables,anddatatypes(Kelleher&Pausch,2007).Evenwithintwohoursof

usingthetoolinonestudy,allstudentswereabletocreateaworkingsequentialprogram,

andsomeusedloopsandvariables(Kelleher&Pausch,2007).

OtherresearchonScratch,ablock-basedprogrammingtool,hasshownthat

learnersofallagesandexperiencelevelscanengageinalmostalloftheCTconceptsand

practicesdiscussedabove(Brennan&Resnick,2012).UsingtheScratchonlinecommunity

(https://scratch.mit.edu/),novicescandevelopabroadpictureofwhatthecommunity

doesandwheretheirlearningmighttakethemastheyparticipatemorefullythroughLPP.

Thesedifferentrolesandopportunitiestoengageleaveopenquestionsabouthowthe

variationsaffectstudentlearning.InwhatwaysdolearnersuseCTindifferentroleswithin

theprogrammingcommunity(e.g.peoplewhoremixworkmightlearndifferentconcepts

andskillsthanthosewhoalwaysmaketheirownprojects)?Onestudylookedatamountof

participationintheScratchonlinecommunityandfoundnocorrelationbetweenlevelof

involvement(includingamixtureofdownloadingprojects,commenting,remixing,and

friendingotherusers)andtypesofCTconceptsusedintheusers’projects(Fields,Giang,&

Page 27: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

25

Kafai,2014).Notmuch,ifany,workhasbeendoneonacloserleveltounderstandthe

relationshipbetweendifferentwaysofparticipatinginthecommunityandstudents’CT

learning.

Remixingalsoplaysaroleinlearning.Throughremixingothers’projects,

newcomersareexposedtodifferentwaysofsolvingproblemsandcanseestrategiesused

byold-timersinthecommunity.Learnerscanalsopracticetheirownskillsinalow-stakes

environmentbystartingwithprojectsthatalreadyworkandbuildingoffthemtoaddnew

code.InScratch,theremixedprojectsareautomaticallysavedinanewfile,soanychanges

donotaffecttheoriginalcreator’swork,whichlowersthepressurefornewcomersto

produceaccurateandefficientwork.Notsurprisingly,themorelearnersremixothers’code

inScratch,themoreCTconceptstheyuseintheirownprojects(Dasguptaetal.,2016).

Atthesametime,astudyofover5,000usersintheScratchonlinecommunityfound

thatlengthofmembershipintheprogrammingcommunitydoesnotalwayspredictthe

amountofprogrammingconceptsused(Fields,Giang,&Kafai,2014).Inotherwords,some

peoplewithlessthanoneyearofexperiencewithScratchusedjustasmanyCTconcepts,

likeloops,conditionals,variables,andBooleans,asold-timerswithyearsofexperiencein

Scratch.However,mostgirlsinthestudyremainedatthebeginnerlevelinScratch,only

usingsimpleloopsintheirprojects,whilemoreboyscreatedprojectsusingseveral

differentCTconcepts.

Tosummarize,workonlearningCTinprogrammingcontextsdemonstratesthat

childrenasyoungasfivecanlearnCTconcepts,andvisualprogrammingtoolsworkwellto

introduceCTconceptstonewcomersinmiddleschoolgradesandabove.Visualtoolsallow

newcomerstoquicklyparticipateinlegitimatewaysbycreatingnewprojectswithout

memorizingcomplicatedsyntax.Onlinecommunities,likeScratch,supportavarietyof

typesofparticipation.Withinthosecommunities,learnerscanparticipateontheperiphery

byremixingexistingprojects,ortheycanengageinotherlegitimatetypesofparticipation

bycommenting,sharing,and“friending”otherusers.Regardlessofthelevelof

participation,learnersinScratchusemanyCTconcepts.Infact,Scratchhasbeenshownto

supportavarietyoflearnerstoparticipateinCTconcepts,practices,anddispositions.

Thestudiesreviewedabove,focusingonlearningCTthroughCS,includeamixture

ofin-schoolandout-of-schoolcontexts.However,thein-schoolstudiesdonotexplainhow

Page 28: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

26

theactivitieswereintegratedintotheclassroomsystem.ToimplementCTinstructionin

waysthatencouragediversityandmeaningfullearning,weneedabetterunderstandingof

theroleoftheteacher,theintegrationofCTactivitiesintothedisciplineoftheoverall

course,andclassroomnorms.Additionally,mostofthisworkonCTlearninghasfocusedon

CTconceptsratherthanpracticesordispositions.Thenextsectiondiscussessome

connectionstoCTdispositionsandidentitydevelopment,butmoreresearchneedsto

explorehowlearnersparticipateinCTpracticesandhowtheirparticipationchangesover

timeastheybecomefullermembersofthecommunity(or,inmanycases,chooseto

distancethemselvesfromtheCScommunity).

FromresearchonlearningCTthroughprogramming,weseethattherearedifferent

wayslearnerscanlegitimatelyengageinCTpracticesanduseCTconcepts.Therearemany

rolesforcomputationalthinkerswithintheprogrammingcommunity,includingcreating

algorithms,debuggingprojects,andmanagingothers’work.Thesevariationsinrolesand

waysofparticipatingintheCTcommunityinvitequestionsaboutidentitydevelopment.

Forinstance,howdodifferenttypesofprogrammingprojectsaffectstudents’identity

developmentinrelationtoCT,especiallyinrelationtostudents’priorinterestsand

experiences?Somescholarshaveusedstorytellingtocapturegirls’interestsin

programming(e.g.Kelleher,2009;Pinkard,Erete,Martin,&McKineydeRoyston,2017),

butitisnotclearwhetherandhowthoseinitiallearningexperiencesleadtolong-term

identitydevelopmentandproductiverelationshipswithcomputing.Additionally,itisnot

clearhowparticipatingindifferentroleswhilelearningCTthroughprogrammingsupports

identityandpersistenceinthefield.Canwechangestudents’viewsofwhatcomputational

thinkersdoandbroadenparticipationincomputingbyexposingstudentstothevarietyof

meaningfulandlegitimatewaystoparticipate?Thisisanopenquestioninthefield.Maybe

someonewhodislikescreatingproceduresbutenjoystestingandlookingforerrorsin

others’workwillbesurprisedtolearnthatfindingerrorsstillinvolvesCTskills,andthen

learntorecognizethemselvesasacomputationalthinker.

CTIdentityDevelopmentandDispositionsinK-12ComputerScience

Iconceptualizeidentityinthispaperasthedevelopmentofdispositionsor

regularitiesinthewayspeopleparticipateinpracticesandtheirviewsofthosepractices

Page 29: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

27

andthemselvesinrelationtoacommunity.Todate,littleresearchhasfocusedonidentity

towardsCTasitisconceptualizedhere,butsomestudieshaveexploredstudents’interests

andmotivationsinCTlearningenvironments.Idrawontheliteratureoninterestand

motivationherebecauseitinfluencespeople’sviewsofthedisciplineandtheirviewsof

themselves,bothpartoftheframeworkofidentityfromLPP.Specifically,interestand

motivationhavebeenshowntoleadtomeaningfulengagementandincreasedpersistence,

whicharerelatedtofeelingsofcompetence,productivedisciplinaryrelationships,and

productivesenseofselfinrelationtothediscipline(Kaplan&Flum,2009;McCaslin,2009;

Potvin&Hasni,2014;Renninger,2009;Waterman,2004;Wigfield&Wagner,2005).

HavingareasonforlearningCTandasocialcontextforusingitareimportantfor

motivatingstudentsandaddressingsociologicalbarrierstolearning(Kelleher&Pausch,

2005).ByseeingCTasatoolforaccomplishingtheirowngoals,studentshaveagencyover

whattheycreateandhowtheyengagewithcomputersinandbeyondtheclassroom.The

goalistocreatepositiveexperiencesandtosupportstudentstofeelasenseofbelongingin

thecommunitybyexploringfactorsrelatedtoidentityanddispositions.

SeveraldesigncharacteristicsofCSlearningenvironmentshavebeenshownto

supportthedevelopmentofproductiveelementsofidentity,includingcommunities,

mentorsandrolemodels,collaborativework,andprogrammingcontextslikestoriesor

games.First,asanexampleofcommunity,theScratchonlinecommunityisaplacewhere

peoplecanengageinCTinmanydifferentways.Itisacommunityoflearnersand

practitionersofalldifferentlevelsofexperience,makingitanimportantresourcefor

learningandidentitydevelopmentthroughLPP.Whenuserscreateprojects,postonline,

commentonothers’work,orremixexistingprojects,they’reengaginginaformof

apprenticeshiplearningbyparticipatinginthecommunityandinteractingwithother,

moreexperiencedpractitioners.MembersoftheScratchcommunitycantakeondifferent

rolesandparticipateindifferentways,dependingonwhattheyareinterestedinand

wheretheirpriorexperiencestakethem.Thesechoicesforparticipationgivestudents

someagencyovertheirownengagementandallowstudentstodefinetheirroleswhilestill

actingaslegitimatemembersofthecommunity.However,moreresearchisneededto

understandhowthesedifferentrolesaffectwhatstudentslearn.Someonewhospends

moretimecommentingonandcritiquingprojectswouldmostlikelydevelopdifferentskills

Page 30: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

28

andunderstandingsfromsomeonewhocreatesprojectsbutdoesn’tengagein

commenting.ItseemslikelythatK-12educatorswouldwantstudentstoexploreallthe

rolestosupportthedevelopmentofdifferentconceptsandpractices,butitisalso

importantthateducatorsvaluestudents’interestsandpreferencesforparticipationso

studentscanparticipateinlegitimaterolesinthelearningcommunity.

HighlightingthesocialnatureofcomputinginenvironmentslikeScratch,withits

onlinecommunity,cancreatepositive,gender-inclusiveeducationalexperiencesfor

newcomers(Mark,1992;Resnicketal.,2009).Eveninteractionswithfictionalcharacters

cansupportpositivedisciplinaryrelationships.Forinstance,inDigitalYouthDivas,

researchersdesignedcharacterstoimitateactualmiddleschoolgirlswithavarietyof

interests,bodytypes,andstories(Pinkard,Erete,Martin,&McKineydeRoyston,2017).

Therelatablecharactersandsituationsofferideationalresourcestosupportgirls’

identificationwithCT.Researchersfoundthenarrativesmotivatedgirlstoworkon

projects,whilethecharactersprovidedacommunityofrelatable(butfictional)girls

interestedinSTEM,ignitingandconfirmingstudents’owninterestsinSTEMfields

(Pinkardetal.,2017).Thestudydidnotreportonparticipants’useofCTconceptsand

practices.Buttheresultsdidpointtoseveralfactorsrelatedtoidentityanddispositions,

includinggirls’increasedinterestsinworkingontheprojects,opportunitiestoexercise

agencyindesignchallenges,andchangesinviewsofthemselvesinrelationtoSTEM.

TeachingCTthroughprogrammingstories,dances,andgamesareotherpopular

waystoconnecttostudents’interestsandcreategender-inclusivelearningenvironments.

OnestudyusingthelanguageAlicetoprogramcharacterstoperformadanceshowed

increasedmotivationforsomegirlsintheclass,butit’snotclearwhattheylearnedabout

programmingorCT(Dailyetal.,2014).Otherresearchhasshownthatstorytellingisa

particularlyinterestingcontextforgirlslearningtoprogramandcanincreasethetimethey

spendpersistingonaprogrammingproject(Kelleher,2009;Kelleher&Pausch,2007).

ProgrammingstoriesalsoallowslearnerstodevelopproductiveCTdispositions.Students

canexpressthemselvesthroughtheirstories,developingadispositiontowardsusing

computationaltoolsforexpression.Studentscanalsousecomputationaltoolstoconnect

withothers,bysharingtheirstorieswithfriends,family,andtheirclassroompeers,to

developproductivedispositionsforcollaboration.

Page 31: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

29

Alongwithopportunitiestoshareprojects,theDigitalYouthDivasprogram

structuresin-personmentorshipandconversationswithpeersintothecurriculum

(Pinkardetal.,2017).Studentstalkinformallywhileworkingontheirprojects,butthey

alsoparticipateinstructuredcheck-inswithmentorsatthebeginningofeachlesson.

Mentorsshareculturalconnectionswithstudentsandencourageengagement,goalsetting,

andcommunication.Digitalmaterialsbuiltintothenarrativeenvironmentmediate

discussionsandrelationshipbuilding.Conversationswithmentorsandfictionalcharacters

intheonlinenarrativeencouragestudentstoreflectontheirSTEMexperiencesandracial

andsocialissuesrelatedtoSTEM.Researcherspointtoapotentiallinkbetweentheseon-

andofflineconversationswithasenseofconnectionandpositiveengagementwithina

classroomSTEMlearningcommunity(Pinkardetal.,2017).Futureresearchshouldexplore

theroleofthispersonalmentorshipinCTforK-12students.Howcanteachersincorporate

mentorsintotheirclassrooms?Itmightbedifficultforsometeachers,particularlythosein

ruralcommunities,tohaveaccesstomentorsandrolemodelswithprofessionalexperience

inCT.Inthoseinstances,mentors’closesocialandculturalconnectionswithstudents

wouldbeparticularlyimportant.Virtualmentorshipsorevenpenpalsmightbeawayof

supportingstudentswhodon’thaveaccesstoin-personrolemodels.Howlongdo

mentorshipexperiencesneedtolast,andhowcantheybeimplementedinwaysthattruly

affectstudents’viewsofthemselvesandinterestsinpersistinginCT?

Besidesmentorship,pairprogrammingisanothercommonin-personcollaborative

programmingtask,buildingtheCTdispositionforcollaborationandcommunication.Pair

programminginvolvestwopeopleworkingatacomputeratthesametime.Oneperson

actsasthe“driver”bytypingatthecomputerwhiletheotheractsasthe“navigator”by

observingandcritiquingthedriver.Bothparticipantscollaborateonsolvingproblemsand

oftenswitchroles(Williamsetal.,2002).Whilemakingprogrammingamorecollaborative

experience,pairprogrammingalsogivesauthoritytostudentsastheysolvetheirown

problems.Thistypeofinteractionallowsstudentstolearnfromdifferencesineachother’s

knowledgeandexperiences.Ratherthanaskinganexpertfortheanswer,studentscan

workwiththeirpeerstosolveaproblemorsearchforanswersfromothersources,like

onlineforums.Botharevaluableskillsinprofessionalcomputationalwork,soitlegitimizes

students’rolesascomputationalproblemsolvers.Pairprogramminginclassroomsettings

Page 32: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

30

apprenticesstudentsintotheactofpairprogrammingthatalsooccursinprofessional

settings.Byworkingtogethertodevelopsolutions,studentscanseethemselvesascapable

ofparticipatingintheCTcommunity.Thisisincontrastwithexpectingananswerfroman

expertTA,whichpositionsstudentsaslesscompetentandlessqualifiedtoparticipate

legitimatelyinthecommunityofpractitioners.Mostpairprogrammingresearchfocuseson

college-levelcourses,buthowsuccessfulisitformiddleorhighschoolstudents?

Intentionallypairingstudentswithdifferentkindsofknowledgeorexperiencesin

programmingmighthelpthemcollaborateandlearnfromeachother,butwhathappensin

anintroductorycoursewhenstudentshavenopriorcomputingexperience?Whatisthe

roleoftheinstructorinsupportingproductivecollaborations,andwhatshouldthe

instructordowhenstudentsstruggle?Theseareallimportantquestionstothinkaboutif

pairprogrammingisgoingtosupportavarietyoflearnersinK-12settings.

Non-stereotypicalapproachestoprogramminginstruction,likethestorytellingand

danceexampleshere,canpotentiallyreducegenderdisparitiesincomputationalsubjects

bysparkinggirls’interests.TheDigitalYouthDivasprogramalsodemonstratedthevalue

ofrolemodels,whetherrealorfictional,forinterestandpersonalidentityconstruction

(Pinkardetal.,2017).Additionally,arecentstudyfoundthatevenreducingstereotypical

objectsincomputingclassrooms(e.g.replacingStarWarsposters,electronicparts,and

techmagazineswithart,plants,andgeneralmagazines)canincreasegirls’senseof

belongingandinterestinahighschoolcomputingcoursewithoutloweringboys’existing

interests(Master,Cheryan,&Meltzoff,2016).Non-stereotypicallearningenvironments,

activities,androlemodels–alldesignedtominimizeandchallengestereotypes-affect

students’senseofbelonginginCTcontexts(Cheryan,Master,&Meltzoff,2015).

Muchofthisworkfocusesonmotivationandinterest,particularlyforgirls,butitis

notclearhowthesedifferentapproachesaffectlong-termidentitydevelopmentand

persistenceinCT.Thereisalsoalackofresearchonmarginalizedracialgroupsin

computing.Futureworkshouldconsidertheintersectionofrace,gender,andother

institutionalfactorsthatinfluencestudents’experiencesandidentitiesbothinsideand

outsidetheclassroom.Totrulybreakawayfromstereotypicalviewsofcomputational

thinkers,researchersneedtolookevenbeyondprogrammingtoseehowlearnerscan

engageinCTinothercontexts.

Page 33: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

31

ComputationalThinkinginEngineering

AccordingtotheRoyalAcademyofEngineering,engineeringcoversmanydifferent

industries,frombuildingstofoodtomedicine,anditinvolvesmakingthingsworkand

designingsolutionstomeettheneedsofsociety(Brophy,Klein,Portsmore,&Rogers,2008;

RoyalAcademyofEngineering,2017).SomeresearchersseeCTasawayofthinkingthat

createsabridgebetweencomputerscienceandengineering(NRC,2010).CT“inherently

drawsonengineering,giventhat[computerscientists]buildsystemsthatinteractwiththe

realworld”(Wing,2006,p.35).Computationalthinkingandengineeringbothinvolve

solvingproblemsandmakingthings(Wing,2008),butengineeringisinherently

constrainedbythephysicalworldinwaysthatCTisnot(Shute,Sun,Asbell-Clarke,2017;

Wing,2010).Engineeringdesignthinking“focusesonproductspecificationandthe

requirementsimposedbyboththehumanandtheenvironment—i.e.,practicalproblems.

CTisnotalwayslimitedbyphysicalconstraints,enablingpeopletosolvetheoreticalaswell

aspracticalproblems”(Shute,Sun,Asbell-Clarke,2017,p.8).Thisdistinctionismeantto

highlighttheideathatpeoplecanthinkcomputationallyaboutproblemsinimaginative

wayswithoutbeingtiedtorulesofthephysicalworld,whileengineersultimatelyaimto

implementtheirideasinthephysicalworldsotheirworkcannotbeseparatedfromthose

constraints.However,whenpeopleuseCTtocreateproceduresforacomputationalagent

tocarryout,whetherthatagentisamechanicalcomputerorthehumanbrain,theymust

considerthecapabilitiesoftheagent.Asanexampleofsomeoneconsideringthe

limitationsandcapabilitiesofacomputationalagent,aprogrammerusingScratchcould

notmakeawordprocessingsoftwareorawebsite,buttheycouldmakeastoryorgame.If

animportantpartofCTisconsideringandtestingsolutionswithacomputationalagent,

thenitdoesoverlapwithengineeringinitsconsiderationofthephysicalanddigitalworld.

Educatorsandpolicymakersarestartingtorecognizetheseconnectionsbetween

designinginCTandengineering.TheNGSSnowincludeaCTprogressionwithintheirK-12

engineeringstandards(NGSS,2013).Additionally,researchalreadyshowsthatengaging

studentsindesignisusefulforlearning.Design-basedactivitiescanhelplearnersdevelop

deepconceptualunderstandingsandinquiryskills(Crismond,2001;Kimmeletal.,2006;

Kolodneretal.,2003;Roth,1995;Sadler,Barab,&Scott,2007).Tobetterunderstandthe

Page 34: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

32

roleofCTindesign,thenextsectiondrawsonLPPtoexplorehowengineersuseCT

concepts,practices,anddispositionsintheirwork.Thediscussionalsomentionssome

waysinwhichlearnerscanaccessthoseskillsthroughengineeringeducation.

Concepts

InspecifyingtheconceptsfromCT,researcherslookedtoprogramminginsteadof

thebroadfieldofcomputersciencewithitsmanydifferentdomainsofknowledge.

Similarly,itisdifficulttolistthespecificconceptsinvolvedinengineeringbecauseit

encompassesmanydifferentsub-fieldswiththeirowncoreconcepts.Engineersuse

conceptsfromacrossSTEMdisciplines,withprogrammingincludedasoneoftheareas

someengineersmaydrawon(Brophy,Klein,Portsmore,&Rogers,2008;RoyalAcademyof

Engineering,2017).Inparticular,softwareengineeringinvolvescomputerprogrammingin

thedevelopmentandmaintenanceofcomputersoftware.Thus,softwareengineersusethe

CTconceptsfromprogrammingdescribedabove,butbeinganexpertengineermayinvolve

knowingmanyotherSTEMconceptsoutsidethescopeofCT.

However,engineersdouseCTconceptsrelatedtodatacollection,organization,and

representation.Whentestingdifferentdesigns,engineerscollectdatatodeterminethebest

optionthatmeetstheconstraintsoftheproblem(NRC,2012).Bothengineersand

computerscientistsusetechnologytocollectandinterpretdata.Theymustunderstand

howtocollectthedata,howtousetheappropriatetools,howtoappropriatelyorganizethe

data,andhowtointerprettheresults.

SincethispaperfocusesonhowpeopleuseCTindifferentdisciplines,itisoutside

thescopeofthisworktospendtimedescribingalltheotherconceptsusedbyengineers.

Instead,therestofthissectionlooksatbroaderprocessesofdesignandproblemsolving

usedacrossengineeringfieldstogenerateanoverviewofCTpracticesanddispositionsin

thecontextofgeneralengineeringskills,particularlythosespecifiedinlearningstandards

andcurricula.

Practices

CentraltotheworkofengineersistheEngineeringDesignProcess(Haik,

Sivaloganathan,&Shahin,2015).Thisistheiterativeprocessengineersusetodesign

Page 35: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

33

artifactsbasedonspecificneedsorgoals(NASA’sBest,2016).Itisacyclicalprocessthat

includesidentifyingaproblemoraskingaquestion,imaginingasolution,designinga

prototype,testingthedesigns,andimprovingthesolution(EiE,2017a;NASA’sBest,2016;

NGSS,2013).OneCTpracticefromprogramminginvolvesgeneralizingsolutionsintoa

problemsolvingprocessthatcanbeappliedtoavarietyofproblems(Barr,Harrison,&

Conery,2011;Hu,2011),whichiswhattheEngineeringDesignProcessalreadyis.Itisa

wayofsolvingproblemsthatengineerscandrawoninanysituation.Ultimately,CTisalso

aboutdesigningsolutionstoproblems,andeachoftheseelementsoftheEngineering

DesignProcessoverlapwithotherCTpracticesusedincreatingcomputerprograms.

First,engineersstartbyidentifyingaproblemorquestiontheywanttoaddress.In

bothprofessionalandeducationalenvironments,theproblemmaybedefinedbythe

engineerormaybeassignedbyanotherperson,likeamanager,funder,orteacher.Inany

case,theengineermustworktounderstandtheconstraintsofthesituationandlearnabout

howothershaveapproachedsimilarproblems(EiE,2017a).Theremaybelimitationsin

thematerialsthatcanbeused,thenumberofprototypesthatcanbetested,andthe

timeframeforcompletingtheproject.Thegoalinthisphaseistoaskquestionsofaclient

andaboutpriorapproachestosimilarproblemstounderstandtheprobleminasmuch

detailaspossible(NASA’sBest,2016).Thesamecanbetrueaboutsolvingprogramming

problemsusingCT,althoughthereareusuallyfewerphysicalconstraintstoconsider

(Shute,Sun,Asbell-Clarke,2017).Bothnoviceandexpertprogrammersmustidentifya

problemanddefinetheirgoalsatthebeginningofthecomputationalproblem-solving

process.Inprogramming,someofthisworkmayinvolvereworkingtheproblemintoone

thatcanbesolvedbyacomputer(ISTE&CSTA,2011;Wing,2006),whileinengineering,it

mayinvolvereworkingtheproblemintoonethatcanbesolvedwiththeavailable

materialsandwithincurrenttechnologicalcapabilities.

Thesecondandthirdpartsofthedesignprocessinvolveimaginingasolutionand

implementingthesolutionbycreatingamodelorprototype.Thesearetheprocessesof

buildingsomethinginengineeringorwritingaprocedureinprogramming.Whilecreating

designs,bothprogrammersandengineershavetoconsidertheefficiencyoftheirsolutions,

apracticemanylabelaspartofCT(Barr,Harrison,&Conery,2011;Grover&Pea,2013;

Wing,2008).Engineershavetoconsiderlimitationsonmaterials,cost,andtimetoboth

Page 36: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

34

buildandworkefficiently.AnotherCTpracticebothengineersandprogrammersusein

designisreusingothers’work(Brennan&Resnick,2012).Todevelopideas,engineerscan

drawonpreviousattemptstosolvethesameproblemorexistingsolutionsfromrelated

problems.Toengageinthispractice,engineeringstudentscangivefeedbackandsuggest

ideastotheirpeers,andtheycaninvestigaterelateddesignscreatedbymoreexperienced

engineers.Forinstance,inabridge-designtask,studentsdonothavetostartfromscratch

butcanlooktoreal-worldbridgesforideasaboutmaterials,functionality,andstrength.

ThefinaltwoelementsoftheEngineeringDesignProcessaretestingandrefining

designs.Engineersmayrelyonmodelsorsimulationswhentestingdesigns.Bothtypesof

abstractionsarealsoconsideredpartofCT(Grover&Pea,2013;Hu,2011;NRC,2010;

Wing,2006;ISTE&CSTA,2011).Additionally,engineersmayworkwithdata

representationstoorganizetheoutcomesoftheirtrials,anotherpracticeinCT(Barr,

Harrison,&Conery,2011;Grover&Pea,2013;Hu,2011;NRC,2010).Butthecentral

componentoftestingandrefininginengineering,likeinCT,isthedebuggingprocess(Bers

etal.,2014;Brennan&Resnick,2012;Grover&Pea,2013).Engineersdebugtheir

prototypesbyfindingandfixingerrorsandpreparingthemforfurthertesting.This

practicedrivestheiterativenatureofthedesignprocess.Debuggingalsooffers

opportunitiesforproductivestruggleandfailure,whichhaveshowntohelpstudents

developmetacognitiveskillsandperformbetteronotheropen-endedproblemsolving

tasks(Bullmaster-day,2015;Hung,Chen,&Lim,2009;Kapur,2008).Specifically,“the

stepsoftestingandimproving,whichrequiredebugging,areparticularlyimportantin

establishingalearningenvironmentwherefailure--ratherthanimmediatesuccess--is

expectedandseenasnecessaryforlearning.WiththeEngineeringDesignProcess,children

arenotexpectedto‘getitright’thefirsttime”(Bersetal.,2014,p.149).Debuggingallows

studentstogetthingswrongbutstilllegitimatelyparticipateinCTandengineering.Infact,

testingsolutionsgivesstudentsaspacetotinkerbybuildingthingsonthefringesof

professionalengineeringwhilealsoapprenticingintoacorepracticeoftheengineeringand

CTcommunities.Inotherwords,theprocessesoftestingandrefiningallowlearnersto

participatebothlegitimatelyandperipherallyinCTandengineeringdisciplines(Lave&

Wenger,1991).

Page 37: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

35

Engineersengageinthepracticeofreusingandremixingothers’workwhen

troubleshootingorreverseengineeringexistingdesigns.“Troubleshootingandreverse

engineeringrequireinvestigatingsomeoneelse’sdesignstoeitherrepairit,replicateit,or

refineit”(Brophyetal.,2008,p.375).Engineeringstudentsengaginginthisprocessshould

evaluatethequalityofanexistingproductbyanalyzingtheoriginaldesigner’sintentions

andconstraints.

ToexposelearnerstothepracticesoftheEngineeringDesignProcess,curriculaare

usuallycreatedtomovestudentssystematicallythroughallphasesoftheprocess(EiE,

2017a).However,professionalengineersmayworkwithinacoupleofthephases,andthen

passtheirworkontootherengineerstocontinuetheprocess.Thus,theworkbecomes

morespecializedasengineerstakeondifferentroleswithinthecommunity.Thephases

themselvesareflexibleandcanbecompletedindifferentordersandinmultipleways.

WhenconsideringconnectionsbetweenengineeringandCT,engineersindifferentroles

willusedifferentCTpracticesintheirworkdependingonhowtheyusetheEngineering

DesignProcess.Inotherwords,itmakessensethatengineeringstudentsmayusesomeCT

practicesbutnotothers.Educatorswanttoexposenovicestoallthecorepracticesusedby

theengineeringcommunity,buttheyshouldalsoconsiderthedifferentwaysof

legitimatelyactingasanengineer.Studentscanstillbecompetentcomputationalthinkers

eveniftheydonotmakeuseofalltheCTpracticesintheirwork.Ifastudentdoesnotlike

thedebuggingortestingprocess,theyshouldnotbediscouragedfrombeinganengineeror

computationalthinker.Instead,educatorsshoulddemonstratethatthereareotherwaysof

legitimatelyparticipating.Studentscouldspecializeindefiningproblemsorcreating

solutionsandstillhaveimportantrolesascomputationalthinkersintheengineering(or

programming)communities.

Evenyoungchildrencanengageinplanning,making,andevaluatingtheirsolutions

indesign-basedengineeringactivities(Fleer,1999;2000).InFleer’sstudy,preschool

childrenweregivenanopen-endedtasktodesignahomeforamythicalcreaturethe

teacherimaginedlivinginhergarden.Youngchildrenoftenbegintheseactivitieswithan

unspecifieddesigngoalthatemergesastheybuildthings(Brophyetal.,2008;Johnsey,

1995).Bysecondgradehowever,studentswhohavebeenengagingindesignprocessesfor

severalyearsareabletoplantheirdesignsbyconsideringmaterialsandconstraintsofthe

Page 38: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

36

task(Roden,1999).Thisworkdemonstratesthatitisreasonablefornovicestoengagein

makingandtestingpracticesfirst,since“thenaturalcycleofiterativedesignplaces

studentsinacontinuouscycleoftestandevaluation”(Brophyetal.,2008,p.373).After

gainingsomeexperiencewiththedesigncycle,thenlearnerscanpracticeplanningtheir

designsandspecifyingtheirgoalsaheadoftime.Contentknowledgealsoseemstoaffect

thenumberofiterationsofthedesigncycle.Expertshavemorepriorknowledgeand

experiencestodrawonwhenplanningtheirdesigns,sotheyaremorelikelythannovices

tocomeupwithanaccurateplanthefirsttime(Roth,1996;Wineburg,1991).However,

likewithdebuggingprograms,evenexpertsareexpectedtofinderrorsandmakechanges

throughcyclesofdesign.

Dispositions

OneofthedispositionsBrennanandResnick(2012)identifiedasimportantto

learningCTinprogrammingistheabilitytodealwithopen-endedproblems.Similarly,

designingsolutionstoopen-endedproblemsiscentraltotheworkofengineering.“Design

andtroubleshootingrepresentthetypesofill-structured,oropen-ended,problemson

whichengineersenjoyspendingintellectualenergy”(Brophyetal.,2008,p.371).

Engineersservingdifferentrolesinthedesigncyclehavetorespondtoopen-ended

problemsindifferentways.Somemayfocusonplanningandbrainstormingsolutions,

whileothersmayfocusontestinganddebuggingsolutions.Likecomputerscientists,

engineersmustwelcomeopen-endedproblemsasachallengeandpersistinsolvingthem.

Butthisraisesaquestionabouttransferability.Ifstudentsdevelopthedispositionto

persistonengineeringproblems,willtheyalsopersistonopen-endedproblemsinCSand

otherdisciplines?Thedispositionmaystartoutascontext-specific,butasitbecomespart

oflearners’identitiesovertime,theymaybeabletousesimilarapproachestoproblemsin

differentcontexts.Longitudinalstudiesareneededtoinvestigatetheconstructionof

dispositionsoveryearsoflearningandidentitydevelopment.

QuestioningisanotherCTdispositionfromprogrammingthatoverlapswiththe

coreofengineering.Thegoalofengineeringistoaddresssocialneedsandsolveproblems

throughdesign.Ratherthantakingexistingtoolsandtechnologiesasgiven,engineersask

howtheycanimproveandre-conceptualizethosetoolstosolvenewproblemsand

Page 39: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

37

improvesolutionstooldproblems(NGSS,2013).Theyalsousetechnologiesaspartofthe

designprocess,tomodelsituationsandtestsolutions.Thus,engineersaskquestionsboth

aboutandwithtechnologies.Moreresearchisneededtounderstandwhetherandhow

studentslearningCSandengineeringdevelopthesequestioningmindsets.Isita

dispositionthatallstudentsdevelopwhentheyseetheycancreatenewthingswith

technology,oraresomestudentsmoreapttolookattechnologyinthiswaythanothers

are?Itseemslikethelatterismorelikely,sincethedispositionalignswithmasculineforms

ofcompetenceandstereotypesofmakersthatenjoytakingthingsaparttoseehowthey

work.However,thisbroaderviewofquestioninginCTinvolvesaskingnotonlyhow

technologiesworkbutalsowhatnewtechnologieswecancreate.

StereotypesinbothengineeringandCSincludevisionsoflonelyindividualsworking

ontheirowntosolveproblems.EarlierIdescribedhowtheabilityandwillingnessto

collaboratewithothersisactuallyanimportantmindsetofcomputationalthinkersinCS,

andthesamecanbesaidinengineering.LearningtocollaboratewithothersisbuiltintoK-

12engineeringeducationstandardsandcurricula(EiE,2017b;NRC,2012;NGSS,2013).

Collaborationandcommunicationwithothersarealsoconsideredengineering“habitsof

mind”orattitudesassociatedwithengineering(NAE&NRC,2009).Multipleengineers

oftenworkonthesameproblembydesigningandtestingdifferentideas,then

collaboratingtochoosethemostpromisingsolution(NRC,2012).Engineersmustlearnto

evaluateandcompareeachother’sideasandformulateargumentsbasedondataand

testing.Theyalsoneedtocommunicatetheirideasclearlysotheirsolutionscanbe

understoodbyoutsideclientsaswellasengineersservingotherrolesinthedesignprocess

(NRC,2012).

LearningCTPracticesinK-12Engineering

LearningengineeringinK-12anditsintegrationwithotherSTEMdisciplinesis

understudied(Mooreetal.,2014;Rogers,Wendell,&Foster,2010),includingtheideaof

learningCTthroughengineering.K-12engineeringeducationisstillquitenewandnot

widelyimplementedintheU.S.(NAE&NRC,2009).Inthecurriculathathavebeen

developedforK-12engineering,thecontentcentersondesign(NAE&NRC,2009).

Likewise,theprevioussectionoutliningtheconnectionsbetweenCTandengineering

Page 40: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

38

demonstratesthatmostoftheoverlapsoccurintheengineeringdesignprocess.Sowhatdo

weknowaboutlearningtheengineeringdesignprocessinK-12?Weknowverylittleabout

it,actually.Researchinengineeringeducationtendstofocusonthepresentationof

educationaltoolsorcurricula,oronidentitydevelopment.Veryfewengineeringeducation

studieshavefocusedonstudents’understandingsofconceptsandpractices.Researchers

suggestthatengineeringlearningoccursbestwhenstudentshaveextendedtimetodesign

anditerateonprojects(Rogers,Wendell,&Foster,2010)andwhentools(e.g.software,

computationaltools)aremeaningfullyintegratedintoproblem-solvingactivities(NAE&

NRC,2009).However,thereislittleempiricalevidencetobackthoseclaims.

TheideaoflearningCTthroughengineeringisagapintheliteratureandan

importantspaceforfutureexploration.Thesmallamountofresearchthatexistsoccursin

thecontextofe-textiles,andthatworkisframedaslearningCTthroughcraftratherthan

engineering(Kafaietal.,2010;2013;2014;Kafai,Searle,Martinez,&Brayboy,2014;Fields,

Searle,&Kafai,2016;Luietal.,2016;Rodeetal.,2015;Searle,Fields,Lui,&Kafai,2014).I

touchontheliteraturebrieflyherebecauseitisaformofengineering;engineersuse

scienceconceptstodesignsolutionstoproblems,ande-textilesprojectsdrawoncircuitry

andmaterialsscienceconceptsthroughdesign.

E-textilesallowmakerstoincorporateelectronichardware(e.g.lights,sensors,

microcomputers,andbuzzers)intofabricdesigns.Onestudyusinge-textileswithhigh

schoolstudentsshowedthatstudentsusedseveralCTconceptsandpracticesintheirwork,

includingsequences,conditionals,loops,variables,remixing,anddebugging(Kafaietal.,

2014).However,studentsinthatstudyprogrammede-textileprojectsusingArduinocode.

Thus,theCTskillsstudents’employedlargelyoccurredinthecontextofprogramming,

withtheexceptionofdebugging,whichstudentsengagedinthroughoutthedesignprocess.

LittleisknownabouthowstudentsuseCTconceptsandpracticesinengineeringactivities

withoutcomputerprogrammingandhowstudents’participationchangesovertimeasthey

becomemembersoftheengineeringcommunity.Thus,anopenquestionis,howmight

studentsengageinCTinwaysthatarelegitimatetotheengineeringcommunityandthus

supportstudentstolearnthroughmeaningfulparticipation?

Page 41: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

39

CTIdentityDevelopmentandDispositionsinK-12Engineering

Whilefewstudiesofengineeringhavedeeplyconsideredlearning,morehave

focusedonstudents’identitiesinrelationtoengineering.Muchoftheworkonengineering-

relatedidentitieshasstudieduniversitylevelengineeringstudentsandtheirpersistencein

engineeringoccupations(e.g.McGee&Martin,2011;Meyersetal.,2012;Pierrakosetal.,

2009;Tate&Linn,2005),oronprofessionalidentitiesofworkingengineers(e.g.Anderson

etal.,2010;Hatmaker,2013;Jorgenson,2002).Onthecollegelevel,senseofbelongingand

recognitionaffectstudents’identificationwithengineering(Meyersetal.,2012).

Additionally,universitystudentswhopersistinengineeringmajorstendtohavemore

knowledgeoftheprofession,greaterexposuretoengineering(e.g.throughfamilymembers

orfriends),andsomeproductiverelationshipswithengineeringfacultyandpeers

(Pierrakosetal.,2009).Persistenceisalsoinfluencedbytheintersectionofacademicand

socialidentities,illustratedinstudiesfocusingontherolesofgenderandracein

engineeringprograms(Tate&Linn,2005).Althoughthisresearchonuniversityand

professionalengineersisahelpfulstartingpointinresponsetopipelineissues,researchers

needabetterunderstandingofhowK-12engineeringeducationaffectsstudents’viewsof

engineering,developmentofproductivedispositions,andsenseofselfinrelationto

engineering.

Asanexampleofhowdesignactivitiescanaffecthighschoolstudents’viewsand

identities,workonlearningCTwithe-textilesinhighschoolclassroomsdemonstratesthat

alternativewaysofapproachingCTcanchangestudents’perceptionsofcomputingand

theirviewsofthemselvesinrelationtocomputing(Kafaietal.,2013).Aftermaking

projectsusingprogrammablee-textilesmaterials,highschoolstudentssawCSasmore

relevanttotheirlives,gainedconfidenceintheirprogrammingskills,anddevelopedbetter

understandingsofwhatthecomputingfieldinvolves(Kafaietal.,2014).Furthermore,e-

textilesactivitieshavebeenshowntoengageallstudents,regardlessofraceorgender,in

CT(Kafaietal.,2013;2014).Whilethisworkconnectstoengineeringdesignprocesses,it

stillexplicitlyengagesstudentsinCTthroughcomputerprogramming.Questionsremain

abouthowstudentsuseCTinengineeringcontextswithoutprogramming,andhowother

engineeringactivitiesaffectstudents’perceptionsofCTandtechnologyfields.

Page 42: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

40

Otherstudiesinhighschoolanduniversityengineeringhavedrawnexplicitlyon

LPPtostudyaspectsofidentitydevelopment.InonestudyusingLPPasaframeworkto

lookatuniversityengineeringstudents’engagementinindustrialvocationwork,Jawitz,

Case,andAhmed(2005)foundthatopportunitiestoparticipatelegitimatelyinmeaningful

activityinfluencedstudents’senseofbelongingandviewsofthemselvesinrelationto

engineering.Notsurprisingly,thementoringorsupervisingengineerssignificantly

influencedaccesstomeaningfulactivities,andtheyaffectedeachstudent’ssenseofselfby

advocatingfororagainstthestudent’sroleasalegitimateparticipant.Inanotherstudy

lookingatmentorshipinahighschoolcontext,researchersdemonstratedthat

communitiesofpracticeareessentialforsupportingpersistenceinscienceandengineering

fieldsthroughmentorshipandrolemodels(Aschbacher,Li,&Roth,2010).Alongwith

outsidementors,K-12teachershavesignificantinfluenceoverstudents’identity

developmentandlearningintheirrolesasmentorsandsupervisors.Thus,itisimperative

thatresearcherstakeintoaccounttheroleoftheteacherinfacilitatinglegitimate

participationforalllearnerstodevelopproductiveidentitiesascomputationalthinkers.

Whilementorsclearlyinfluencelearningandidentity,moreresearchisneededto

understandhowtoimplementmentorshipcommunitiesthatsupportproductive

engagementandsenseofbelongingforstudentsevenbeforetheyreachhighschool.In

general,fewstudieshavefocusedonlearningandidentitydevelopmentinengineering

withelementaryandmiddleschoolstudents(Capobianco,Diefes-Dux,Mena,&Weller,

2011),whichisnotsurprisinggiventhelackofemphasisonformalengineeringinstruction

foryoungchildren.

Page 43: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

41

Discussion

Thegoalofthispaperwastodevelopabetterunderstandingoftheconcepts,

practices,anddispositionsinvolvedinCTandhowpeoplecanlearnitbylookingathowCT

isdefinedinCSthenexploringtheoverlapswithanothercontext,namelyengineering.I

choseengineeringbecauseofitstiestootherSTEMcontentareasandtheabilityto

practicallyapplySTEMcontent,includingCS,throughengineeringdesignproblems,along

withthefactthatCTisbeginningtoappearinK-12engineeringeducationstandards.

EngineeringoffersanopportunitytounderstandhowpeopleuseCTinconnectionwith

otherSTEMdisciplinesthatdonotnecessarilyinvolvemechanicalcomputersorcomputer

programming.

FrommyreviewofliteraturedefiningCTinCScontexts,IidentifiedcommonCT

concepts,practices,anddispositionsthatoverlapwithCS.ThenIexploredhowthose

elementsofCToverlapwiththeliteratureondesignprocessesinengineering.First,CT

conceptsthatoverlapwithbothCSandengineeringinclude:datacollection,organization,

andrepresentation(manyotherconceptsfromCSandprogrammingaretraditionally

includedinCTbutdonotnecessarilyoverlapwithdifferentengineeringfields).Second,CT

practicesthatoverlapwithbothCSandengineeringinclude:(i)generalizingsolutionsinto

aproblemsolvingprocess,(ii)reworkingtheproblemsoitcanbesolvedbya

computationalagent,(iii)consideringefficiencyandperformanceconstraints,(iv)reusing

orremixingothers’work,(v)creatingandusingabstractions,and(vi)debuggingand

testingsolutions.Finally,CTdispositionsthatoverlapwithbothCSandengineering

include:(i)dealingwithopen-endedproblems,(ii)questioningaboutandwith

computationaltools,and(iii)collaboratingandcommunicatingwithothers.

MuchoftheoverlapbetweenCTasitisdefinedinCSanditsapplicationin

engineeringcanbeseenintheengineeringdesignprocess.Sothisbegsthequestion,isCT

reallyjustdesignthinkingorproblemsolving?Theanswertothisquestionisnot

completelyclearfromthecurrentliteratureonCT.Withoutaclear,agreed-uponvisionof

whatwewantstudentstolearnaboutCT,it’shardtoarticulatewhatthosedifferences

reallyare.Therecentintroductionoftheterm“computationalmaking”(Rodeetal.,2015),

withtiestomakerspacesandthemakermovement,shiftsCTevenmoreinthedirectionof

Page 44: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

42

designandcreation.Giventheconcepts,practices,anddispositionsexploredhere,itseems

likeCTmightbeaspecificformofproblemsolvingordesign,withsomespecificconcepts

thatcomefromCSandprogramming.ItcouldbethatCTaddslogicalthinkinganddatause

conceptstotraditionaldesignpracticesanddispositions.Inotherwords,CTseemstobe

aboutlogicalthinking(manyoftheconceptsfromCS)plusdesignpractices.CTmay

potentiallybeausefulcombinationofconcepts,practices,anddispositionsthatprepares

studentsforjobsacrossfieldsinvolvingdesignandproblemsolving.Buttheseandrelated

claimsaboutCT’sabilitytoempowerchildrentosolveproblems(e.g.ISTE&CSTA,2011;

Papert,1980;Wing,2006)arehighlytheoreticalatthispoint,untilmoreworkcanbedone

todefineCTinuseanddistinguishitfromotherformsofthinking.

Ingeneral,moreresearchonCTlearningandidentitydevelopmentinK-12contexts

isneeded.MostresearchonCTinK-12hasoccurredininformaleducationsettings(Lye&

Koh,2014).GiventherecentdevelopmentofCTinK-12educationalstandards,suchasin

theCSTAandISTEComputerScienceStandardsandintheNextGenerationScience

Standards,CTisclearlybecomingpartofformalK-12educationforall,notjustanelement

ofselectafter-schoolactivities.Thus,researchersneedtounderstandhowtodesignforin-

schoollearningenvironmentsandtoproductivelyincorporateCTintoclassrooms.

TherehasbeensomeempiricalworkonlearningCTinprogrammingorCScontexts,

butvirtuallynothinginK-12engineering.ResearchinCSdemonstratesthatyoungchildren

canlearnCTconceptsusingvisualandblock-basedprogrammingtools,andonline

communitiesofpracticesupportdifferentformsoflegitimateparticipationandroles

withinthecommunity.StudiesusingScratchinparticularhavedemonstratedthatstudents

inavarietyofgradelevelscanengageinalmostalltheCTconcepts,practices,and

dispositionslistedinthispaper.However,wedon’tknowmuchabouthowtheselearning

toolsareintegratedintoK-12classroomsystemsandhowclassroomscansupport

engagementinmeaningfulactivitiesthatcontinuetolegitimizestudents’rolesin

communitiesthatuseCT.Inthecaseofengineering,educatorsarejustbeginningto

incorporateengineeringinK-12classroomsacrosstheU.S.,sotherearefewempirical

studiesonlearningengineeringinK-12classrooms,letalonelearningCTthrough

engineering.ThereisworkonlearningCTwithe-textiles,butthosestudiesareframedas

CTinthecontextofcraftratherthanengineering.Additionally,thatworklooksatCT

Page 45: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

43

learningthroughprogramminginArduino,soitisstillunclearhoworwhatstudentslearn

aboutCTinengineering(orevencraft)contextsthatdonotinvolveprogramming

mechanicalcomputers.

Whenitcomestoidentitydevelopment,relevantliteratureinbothCSand

engineeringhighlightsthefactthatCTeducation“isnotjustamatterofquantitybutalso

oneofqualityofengagement”(Fields,Giang,&Kafai,2014,p.8).Researchershave

contextualizedproblemsinnarratives,dance,andgamestomotivatestudentsto

participateinCT.Somestudieshavedemonstratedstudents’productiveengagementinCT

dispositionswhenprogrammingstoriesorgames,includingexpressingideas,collaborating

andcommunicatingwithothers,andaskingquestionswithcomputationaltools.However,

itisnotclearhowframingCTthroughthesecontextsaffectslong-termpersistence,beliefs

aboutCT,andstudents’viewsofthemselvesinrelationtoCT.

MentorshipalsoplaysasignificantroleinidentitydevelopmentthroughLPPinboth

CSandengineeringcontexts.Mentorsshapestudents’viewsaboutwhatCTis,whocan

participateinit,andwhethertheyhaveaccesstolegitimateroleswithinthecommunity.

Giventheimportantroleteachersplayasmentorsandsupervisors,weneedmoreresearch

tounderstandhowteacherscanimplementandbepartofsuccessfulmentorship

communitiesinK-12settingstosupportmeaningfulparticipationforallstudents,notjust

thosealreadyrepresentedbythemajorityofCSandengineeringprofessionals.

WhilethispaperillustratesthatCToverlapswithdesignprocessesindisciplines

otherthanCS,engineeringisstillamale-dominatedprofession.Only14%ofengineersin

2016identifiedasfemale(TheEconomicsDaily,2017).Totrulyexpandnotionsof

competenceandparticipationinCTforstudentswhodonotalreadymatchwiththe

stereotypesintechnologyfields,thisworkneedstoconnectCTwithcontextsthatare

dominatedbyothergroupsofpeople.Therefore,IplantoexploreCTintraditionally

femininecontextsofcraftinfuturework.

Page 46: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

44

Conclusion

ResearchintoCTinSTEMandevenhumanitiesinK-12contextsisjustbeginningto

emerge.Thisisanimportantareaforfutureworkthathasthepotentialtoexpandaccessto

CTlearningopportunities.ItwillalsohelprefinethedefinitionofCTandimprove

understandingsofwhatCTlookslikeindifferentcontexts.ThewayDeannaKuhn

describedscientificthinkinghelpsexplainhowresearchersmightexpandtheroleofCTin

K-12educationandourlives.Kuhnexplained,

Scientificthinkingtendstobecompartmentalized,viewedasrelevantandaccessibleonlytothenarrowsegmentofthepopulationwhopursuescientificcareers.Ifscienceeducationistobesuccessful,itisessentialtocounterthisviewandestablishtheplacethatscientificthinkinghasinthelivesofallstudents.Atypicalapproachtothisobjectivehasbeentotrytoconnectthecontentofsciencetophenomenafamiliarinstudents’everydaylives.Anultimatelymorepowerfulapproachmaybetoconnecttheprocessofsciencetothinkingprocessesthatfigureinordinarypeople’slives(1993,p.333).

Byconnectingscientificprocessestothethinkingprocessesinoureverydaylives,it

highlightstherelevanceofscientificthinking,pointstotheneedtoengageinthepracticeof

thinkingtoenhancethequalityofthinking,andmakessocialdialogueaplacetoexternalize

thinkingstrategies(Kuhn,1993).Inthisviewofthinkingprocesses,itisokay,andeven

ideal,thatCToverlapswithotherprocesses,includingdesignthinking,problemsolving,

criticalthinking,systemsthinking,andalgorithmicthinking,becauseitconnectstheways

inwhichcomputerscientiststhinktootherthinkingprocessespeopleuseinavarietyof

contexts.AfocusonthinkingprocessesdemandsworkonthenatureandroleofCTin

contextsoutsideofcomputing,withavarietyoflearners,andineverydayprocesses.Itis

stillunclearwhattheroleofcomputersinengaginginCTreallyis,andwhetherpeoplecan

legitimatelypracticeCTwithoutmechanicalcomputers(Weintropetal.,2016).Thiswork

connectingCTtoothercontextswilladvancethefieldtowardsaricherunderstandingof

theconceptsandpracticescollectedunderCT,manyofwhicharenotyetclearlydefined,

andthepracticalutilityofCTasaconstructwithinK-12education.

Page 47: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

45

REFERENCES

Anderson,K.J.B.,Courter,S.S.,McGlamery,T.,Nathans-Kelly,T.M.,&Nicometo,C.G.(2010).Understandingengineeringworkandidentity:across-caseanalysisofengineerswithinsixfirms.EngineeringStudies,2(3),153-174.

Aschbacher,P.R.,Li,E.,&Roth,E.J.(2010).Isscienceme?Highschoolstudents’identities,participationandaspirationsinscience,engineering,andmedicine.JournalofResearchinScienceTeaching,47(5),564–582.

Barr,B.D.,Harrison,J.,&Conery,L.(2011).ComputationalThinking :ADigitalAge.Learning&LeadingwithTechnology,5191(March/April),20–23.

Barr,V.,&Stephenson,C.(2011).BringingcomputationalthinkingtoK-12.ACMInroads,2(1),111–122.

Beckhusen,J.(2016).OccupationsinInformationTechnology:AmericanCommunitySurveyReports(Vol.1980).Washington,D.C.:U.S.CensusBureau.

Bers,M.U.(2010).TheTangibleKroboticsprogram:Appliedcomputationalthinkingforyoungchildren.EarlyChildhoodResearchandPractice,12(2),1–20.

Bers,M.U.,Flannery,L.,Kazakoff,E.R.,&Sullivan,A.(2014).Computationalthinkingandtinkering:Explorationofanearlychildhoodroboticscurriculum.ComputersandEducation,72,145–157.

BiochemicalSociety(2017).Whatisbiochemistry?Retrievedfromhttp://www.biochemistry.org/?TabId=456.

Bishop,J.P.(2012).“She’sAlwaysBeentheSmartOne.I’veAlwaysBeentheDumbOne”:IdentitiesintheMathematicsClassroom.JournalforResearchinMathematicsEducation,43(1),34–74.

Boaler,J.(2002).Thedevelopmentofdisciplinaryrelationships:knowledge,practice,andidentityinmathematicsclassrooms.FortheLearningofMathematics,22(1),42–47.

Boaler,J.,&Greeno,J.G.(2000).Identity,agency,andknowinginmathematicsworlds.Multipleperspectivesonmathematicsteachingandlearning,171-200.

Brennan,K.,&Resnick,M.(2012).Newframeworksforstudyingandassessingthedevelopmentofcomputationalthinking.InannualAERAmeeting,Vancouver,BC,Canada(pp.1–25).

Brickhouse,N.W.,&Potter,J.T.(2001).YoungWomen’sScientificIdentityFormationinanUrbanContext.JournalofResearchinScienceTeaching,38(8),965–980.

Page 48: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

46

Brikman,Y.(2014).Don’tlearntocode.Learntothink.[Blogpost].Retrievedfromhttps://www.ybrikman.com/writing/2014/05/19/dont-learn-to-code-learn-to-think/.

Brophy,S.,Klein,S.,Portsmore,M.,&Rogers,C.(2008).AdvancingEngineeringEducationinP-12Classrooms.JournalofEngineeringEducation,(July),369–387.

Bullmaster-Day,M.L.(2015).ProductiveStruggleforDeeperLearning.TriumphLearning.

BureauofLaborStatistics(2017).Computerandinformationtechnologyoccupations.Retrievedfromhttps://www.bls.gov/ooh/computer-and-information-technology/home.htm.

Capobianco,B.M.,Diefes-Dux,H.A.,Mena,I.,&Weller,J.(2011).WhatisanEngineer?ImplicationsofElementarySchoolStudentConceptionsforEngineeringEducation.JournalofEngineeringEducation,100(2),304–328.

CarolynYang,Y.T.,&Chang,C.H.(2013).Empoweringstudentsthroughdigitalgameauthorship:Enhancingconcentration,criticalthinking,andacademicachievement.ComputersandEducation,68,334–344.

Catterall,J.(2013).GettingrealabouttheEinSTEAM.TheSTEAMJournal,1(1),Article6.

Cejka,E.,Rogers,C.,&Portsmore,M.(2006).KindergartenRobotics:UsingRoboticstoMotivateMath,Science,andEngineeringLiteracyinElementarySchool.InternationalJournalofEngineeringEducation,22(4),711–722.

Cheryan,S.,Master,A.,&Meltzoff,A.N.(2015).Culturalstereotypesasgatekeepers:Increasinggirls’interestincomputerscienceandengineeringbydiversifyingstereotypes.FrontiersinPsychology,6(FEB),1–8.

Clements,D.H.,&Gullo,D.F.(1984).EffectsofComputerProgrammingonYoungChildren’sCognition.JournalofEducationalPsychology,76(6),1051–1058.

Cobb,P.,&Bowers,J.(1999).Cognitiveandsituatedlearningperspectivesintheoryandpractice.Educationalresearcher,28(2),4-15.

Crismond,D.(2001).Learningandusingscienceideaswhendoinginvestigate-and-redesigntasks:Astudyofnaive,novice,andexpertdesignersdoingconstrainedandscaffoldeddesignwork.JournalofResearchinScienceTeaching,38(7),791–820.

CSTA.(2013).CSTAK-12ComputerScienceStandards:MappedtoCommonCoreStateStandardsforMathematicalPractice.Retrievedfromhttp://www.csta.acm.org/Curriculum/sub/CurrFiles/CSTA_Standards_Mapped_to_CommonCoreStandards.pdf

Page 49: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

47

CSTA.(2017).CSTAK-12ComputerScienceStandards.Retrievedfromhttp://www.csteachers.org/page/standards

CSTA&ACM(2016).InterimCSTAK-12computersciencestandards.NewYork,NY:CSTA&ACM.Retrievedfromhttps://c.ymcdn.com/sites/www.csteachers.org/resource/resmgr/Docs/Standards/2016StandardsRevision/INTERIM_StandardsFINAL_07222.pdf.

Daily,S.B.,Leonard,A.E.,Jörg,S.,Babu,S.,&Gundersen,K.(2014).DancingAlice:Exploringembodiedpedagogicalstrategiesforlearningcomputationalthinking.InProceedingsofthe45thACMtechnicalsymposiumonComputerscienceeducation-SIGCSE’14(pp.91–96).Atlanta,GA:ACM.

Dasgupta,S.,Hale,W.,Monroy-Hernandez,A.,&Hill,B.M.(2016).RemixingasaPathwaytoComputationalThinking.InCSCW(pp.1438–1449).SanFrancisco,CA.

diSessa,A.(2000).ChangingMinds:Computers,Learning,andLiteracy.Cambridge,MA:MITPress.

EiE(EngineeringisElementary)(2017a).Theengineeringdesignprocess.Retrievedfromhttps://www.eie.org/overview/engineering-design-process.

EiE(EngineeringisElementary)(2017b).Trajectoriesforpreschool-middleschoolengineeringactivities.Retrievedfromhttps://eie.org/overview/engineering-trajectories.

Feldman,A.(2015).STEAMrising:WhyweneedtoputtheartsintoSTEMeducation.Slate.Retrievedfromhttp://www.slate.com/articles/technology/future_tense/2015/06/steam_vs_stem_why_we_need_to_put_the_arts_into_stem_education.html.

Fields,D.A.,Giang,M.,&Kafai,Y.(2014).Programminginthewild.InProceedingsofthe9thWorkshopinPrimaryandSecondaryComputingEducationon-WiPSCE’14(pp.2–11).Berlin,Germany.

Fields,D.A.,Searle,K.A.,&Kafai,Y.B.(2016).DeconstructionKitsforLearning:Students’CollaborativeDebuggingofElectronicTextileDesigns.InFabLearn(pp.82–85).Stanford,CA.

Fleer,M.(1999).Children’salternativeviews:Alternativetowhat?InternationalJournalofScienceEducation,21(2),119–35.

Fleer,M.(2000).Workingtechnologically:Investigationsintohowyoungchildrendesignandmakeduringtechnologyeducation.InternationalJournalofTechnologyandDesignEducation,10(1),43–59.

Page 50: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

48

Gee,J.P.(2000).Chapter3:Identityasananalyticlensforresearchineducation.Reviewofresearchineducation,25(1),99-125.

Gorman,H.,&Bourne,L.E.(1983).LearningtothinkbylearningLOGO:Rulelearninginthird-gradecomputerprogrammers.BulletinofthePsychonomicSociety,21(3),165–167.

Greeno,J.G.(1991).Numbersenseassituatedknowinginaconceptualdomain.JournalforResearchinMathematicsEducation,22(3),170–218.

Greeno,J.G.,&Gresalfi,M.S.(2008).Opportunitiestolearninpracticeandidentity.InP.A.Moss,D.C.Pullin,J.P.Gee,E.H.Haertel,&L.J.Young(Eds.),Assessment,Equity,andOpportunitytoLearn.NewYork:CambridgeUniversityPress.

Gresalfi,M.S.,&Cobb,P.(2006).Cultivatingstudents’discipline-specificdispositionsasacriticalgoalforpedagogyandequity.Pedagogies,1(1),49–57.

Gresalfi,M.,Martin,T.,Hand,V.,&Greeno,J.(2009).Constructingcompetence:ananalysisofstudentparticipationintheactivitysystemsofmathematicsclassrooms.EducationStudiesinMathematics,70(1),49–70.

Grover,S.,&Pea,R.(2013).ComputationalThinkinginK-12:AReviewoftheStateoftheField.EducationalResearcher,42(1),38–43.

Grover,S.,&Pea,R.(2018).ComputationalThinking:Acompetencywhosetimehascome.InS.Sentance,E.Barendsen,&C.Schulte(Eds.),ComputerScienceEducation:PerspectivesonTeachingandLearning.London:Bloomsbury.

Guzdial,M.(2008).Education:Pavingthewayforcomputationalthinking.CommunicationsoftheACM,51(8),25–27.

Haik,Y.,Sivaloganathan,S.,andShahin,T.M.(2015).EngineeringDesignProcess(3rdEd.).Boston,MA:CengageLearning.

Halpern,D.F.(1999).Teachingforcriticalthinking:Helpingcollegestudentsdeveloptheskillsanddispositionsofacriticalthinker.Newdirectionsforteachingandlearning,1999(80),69-74.

Hand,V.,&Gresalfi,M.(2015).TheJointAccomplishmentofIdentity.EducationalPsychologist,50(3),190–203.

Handelsman,J.andSmith,M.(2016,February11).STEMforall[Blogpost].TheWhiteHouseBlog.Retrievedfromhttps://obamawhitehouse.archives.gov/blog/2016/02/11/stem-all.

Hatmaker,D.M.(2013).Engineeringidentity:Genderandprofessionalidentitynegotiationamongwomenengineers.Gender,Work&Organization,20(4),382-396.

Page 51: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

49

Holland,D.,Lachicotte,W.,Skinner,D.,&Cain,C.(1998).Identityandagencyinculturalworlds.History.Cambridge,MA:HarvardUniversityPress.

Horn,M.S.,Brady,C.,Hjorth,A.,Wagh,A.,&Wilensky,U.(2014,June).Frogpond:Acodefirstlearningenvironmentonevolutionandnaturalselection.InProceedingsofthe2014conferenceonInteractiondesignandchildren(pp.357-360).ACM.

Horn,M.S.,&Jacob,R.J.K.(2007).DesigningTangibleProgrammingLanguagesforClassroomUse.InProceedingsofthe1stInternationalConferenceonTangibleandEmbeddedInteraction(pp.159-162).ACM.

Hu,C.(2011).Computationalthinking–Whatitmightmeanandwhatwemightdoaboutit.ITiCSE’11:Proceedingsofthe16thAnnualJointConferenceonInnovationandTechnologyinComputerScienceEducation(pp.223–227).

Hung,D.,Chen,V.,&Lim,S.H.(2009).Unpackingthehiddenefficaciesoflearninginproductivefailure.LearningInquiry,3(1),1–19.

Israel,M.,Pearson,J.N.,Tapia,T.,Wherfel,Q.M.,&Reese,G.(2015).Supportingalllearnersinschool-widecomputationalthinking:Across-casequalitativeanalysis.ComputersandEducation,82(March),263–279.

ISTE,&CSTA.(2011).OperationalDefinitionofComputationalThinking.Retrievedfromhttps://c.ymcdn.com/sites/www.csteachers.org/resource/resmgr/CompThinkingFlyer.pdf.

Jagodzinski,A.(2016,June30).STEAMontherise:Thegrowingimportanceofartseducation[Blogpost].ArtForce.Retrievedfromhttp://artforce.org/steam-on-the-rise/.

Jawitz,J.,Case,J.,&Ahmed,N.(2005).Smilenicely,makethetea-ButwillIeverbetakenseriously?Engineeringstudents’experiencesofvacationwork.InternationalJournalofEngineeringEducation,21(1),134–138.

Johnsey,R.(1995).Theplaceoftheprocessskillmakingindesignandtechnology:Lessonsfromresearchintothewayprimarychildrendesignandmake.InProceedingsoftheIDATER95:InternationalConferenceonDesignandTechnologyEducationalResearchandCurriculumDevelopment,Loughborough,UK.

Jorgenson,J.(2002).Engineeringselves:Negotiatinggenderandidentityintechnicalwork.ManagementCommunicationQuarterly,15(3),350-380.

Kafai,Y.B.(2016).FromcomputationalthinkingtocomputationalparticipationinK–12education.CommunicationsoftheACM,59(8),26–27.

Page 52: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

50

Kafai,Y.B.,Lee,E.,Searle,K.,&Fields,D.(2014).Acrafts-orientedapproachtocomputinginhighschool:Introducingcomputationalconcepts,practices,andperspectiveswithelectronictextiles.ACMTransactionsonComputingEducation,14(1),1–20.

Kafai,Y.B.,Peppler,K.A.,Burke,Q.,Moore,M.,&Glosson,D.(2010).Fröbelʼsforgottengift:Textileconstructionkitsaspathwaysintoplay,designandcomputation.InInteractionDesignandChildren,Barcelona,Spain.

Kafai,Y.B.,Searle,K.,Martinez,C.,&Brayboy,B.(2014).EthnocomputingwithElectronicTextiles:CulturallyResponsiveOpenDesigntoBroadenParticipationinComputinginAmericanIndianYouthandCommunities.InSIGCSE/14,Atlanta,GA.

Kafai,Y.B.,Searle,K.,Fields,D.A.,Kafai,Y.,Searle,K.,Fields,D.,&Lui,D.(2013).Cupcakecushions,ScoobyDooshirts,andsoftboomboxes:E-textilesinhighschooltopromotecomputationalconcepts.InSIGCSE’13(pp.311–316),Denver,CO.

Kalelioǧlu,F.,&Gülbahar,Y.(2014).TheeffectsofteachingprogrammingviaScratchonproblemsolvingskills:Adiscussionfromlearners’perspective.InformaticsinEducation,13(1),33–50.

Kaplan,A.,&Flum,H.(2009).Motivationandidentity:Therelationsofactionanddevelopmentineducationalcontexts–Anintroductiontothespecialissue.EducationalPsychologist,44(2),73-77.

Kapur,M.(2008).Productivefailure.CognitionandInstruction,26(3),379–424.

Kelleher,C.(2009).Barrierstoprogrammingengagement.AdvancesinGenderandEducation,1,5–10.

Kelleher,C.,&Pausch,R.(2005).Loweringthebarrierstoprogramming:Ataxonomyofprogrammingenvironmentsandlanguagesfornoviceprogrammers.ACMComputingSurveys,37(2),83–137.

Kelleher,C.,&Pausch,R.(2007).Usingstorytellingtomotivateprogramming.CommunicationsoftheACM,50(7),58.

Kimmel,H.,Carpinelli,J.,Alexander,L.B.,andRockland,R.(2006).Bringingengineeringintok-12schools:Aproblemlookingforsolutions?InProceedingsoftheAmericanSocietyforEngineeringEducationAnnualConferenceandExposition,Chicago,IL.

Kolodner,J.L.,Camp,P.J.,Crismond,D.,Fasse,B.,Gray,J.,Holbrook,J.,Puntambekar,S.,andRyan,M.(2003).Problem-basedlearningmeetscase-basedreasoninginthemiddle-schoolscienceclassroom:Puttinglearningbydesign™intopractice.JournaloftheLearningSciences,12(4),495–547.

Page 53: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

51

Kuhn,D.(1993).ScienceasArgument :ImplicationsforTeachingandLearningScientificThinking.ScienceEducation,77(3),319–337.

Lave,J.,&Wenger,E.(1991).Situatedlearning:Legitimateperipheralparticipation.Cambridge,U.K.:Cambridgeuniversitypress.

Lester,F.K.(1994).Musingsaboutmathematicalproblem-solvingresearch:1970-1994.Journalforresearchinmathematicseducation,25(6),660-675.

Lucas,B.,Hanson,J.,Claxton,G.,andCentreforReal-WorldLearning(2014).Thinkinglikeanengineer:Implicationsfortheeducationsystem.UK:RoyalAcademyofEngineering.

Lui,D.,Litts,B.K.,Widman,S.,Walker,J.T.,&Kafai,Y.B.(2016).CollaborativeMakerActivitiesintheClassroom:CaseStudiesofHighSchoolStudentPairs’InteractionsinDesigningElectronicTextiles.InFabLearn(pp.74–77),Stanford,CA.

Lye,S.Y.,&Koh,J.H.L.(2014).Reviewonteachingandlearningofcomputationalthinkingthroughprogramming:WhatisnextforK-12 ?ComputersinHumanBehavior,41,51–61.

Mark,J.(1992).Beyondequalaccess:Genderequityinlearningwithcomputers.Women’sEducationalEquityActPublishingCenterDigest,1-2-7.

Martin,D.B.(2000).MathematicsSuccessandFailureamongAfrican-AmericanYouth:TheRolesofSociohistoricalContext,CommunityForces,SchoolInfluence,andIndividualAgency.Mahwah,NJ:LawrenceErlbaumAssociates.

Master,A.,Cheryan,S.,&Meltzoff,A.N.(2016).Computingwhethershebelongs:Stereotypesunderminegirls’interestandsenseofbelongingincomputerscience.JournalofEducationalPsychology,108(3),424–437.

Mattern,K.D.,Shaw,E.J.,&Ewing,M.(2011).AdvancedPlacement®ExamParticipation:IsAP®ExamParticipationandPerformanceRelatedtoChoiceofCollegeMajor?ResearchReportNo.2011-6.CollegeBoard.

Mayer,R.E.(1998).Cognitive,metacognitive,andmotivationalaspectsofproblemsolving.InstructionalScience,26,49–63.

Mayer,R.E.,Dyck,J.L.,&Vilberg,W.(1986).Learningtoprogramandlearningtothink:what’stheconnection?CommunicationsoftheACM,29(7),605–610.

McCaslin,M.(2009).Co-RegulationofStudentMotivationandEmergentIdentity.EducationalPsychologist,44(2),137–146.

McGee,E.O.,&Martin,D.B.(2011).‘‘YouWouldNotBelieveWhatIHavetoGoThroughtoProveMyIntellectualValue!"StereotypeManagementamongAcademicallySuccessful

Page 54: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

52

BlackMathematicsandEngineeringStudents.AmericanEducationalResearchJournal,48(6),1347–1389.

McLeod,D.B.(1992).Researchonaffectinmathematicseducation:Areconceptualization.InD.A.Grouws(Ed.),Handbookofresearchonmathematicsteachingandlearning(pp.575-596).Macmillan.

Meyers,K.L.,Ohland,M.W.,Pawley,A.L.,Silliman,S.E.,&Smith,K.A.(2012).Factorsrelatingtoengineeringidentity.GlobalJournalofEngineeringEducation,14(1),119–131.

MidianKurland,D.,Pea,R.D.,Clement,C.,Mawby,R.,&Mawby,R.A.(1986).Astudyofthedevelopmentofprogrammingabilityandthinkingskillsinhighschoolstudents.JournalofEducationalComputingResearch,2(4),429–458.

Moore,T.J.,Glancy,A.W.,Tank,K.M.,Kersten,J.A.,&Smith,K.A.(2014).AFrameworkforQualityK-12EngineeringEducation:ResearchandDevelopment.JournalofPre-CollegeEngineeringEducation,4(1),Article2.

NASA’sBEST(2016).Theengineeringdesignprocess.NASA.Retrievedfromwww.nasa.gov/foreducators.

Nasir,N.I.S.(2002).Identity,goals,andlearning:Mathematicsinculturalpractice.Mathematicalthinkingandlearning,4(2-3),213-247.

Nasir,N.I.S.,&Cooks,J.(2009).Becomingahurdler:Howlearningsettingsaffordidentities.Anthropology&EducationQuarterly,40(1),41-61.

Nasir,N.S.,&deRoyston,M.M.(2013).Power,identity,andmathematicalpracticesoutsideandinsideschool.JournalforResearchinMathematicsEducation,44(1),264–287.

Nasir,N.S.,&Hand,V.(2008).Fromthecourttotheclassroom:Opportunitiesforengagement,learning,andidentityinbasketballandclassroommathematics.JournaloftheLearningSciences,17(2),143–179.

NationalAcademyofEngineering(NAE)andNationalResearchCouncil(NRC).(2009).EngineeringinK-12Education:UnderstandingtheStatusandImprovingtheProspects.Washington,D.C.:TheNationalAcademiesPress.

NationalCenterforWomenandInformationTechnology(NCWIT).(2017).BytheNumbers.Retrievedfromhttps://www.ncwit.org/resources/numbers.

NationalResearchCouncil(NRC).(2004).ComputerScience:ReflectionsontheField,ReflectionsFromtheField.Washington,D.C.:TheNationalAcademiesPress.

NationalResearchCouncil(NRC).(2010).ReportofaWorkshopontheScopeandNatureofComputationalThinking.Washington,D.C.:TheNationalAcademiesPress.

Page 55: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

53

NationalResearchCouncil(NRC).(2012).AframeworkforK-12scienceeducation:Practices,crosscuttingconcepts,andcoreideas.Washington,D.C.:TheNationalAcademiesPress.

NGSS.(2013).ScienceandEngineeringPractices.Washington,D.C.:TheNationalAcademiesPress.

Nickerson,R.S.(1983).Computerprogrammingasavehicleforteachingthinkingskills.Thinking:TheJournalofPhilosophyforChildren,4(3/4),42-48.

Papert,S.(1980).Mindstorms:Children,computers,andpowerfulideas.NewYork,NY:BasicBooks.

Papert,S.(1996).AnExplorationintheSpaceofMathematicsEducations.InternationalJournalofComputersforMathematicalLearning,1(1),95–123.

Pea,R.D.(1983).LogoProgrammingandProblemSolving.InAmericanEducationalResearchSymposium(pp.2–10),Montreal,Canada.

Pea,R.D.,&Kurland,D.M.(1984).Onthecognitiveeffectsoflearningcomputerprogramming.NewIdeasinPsychology,2(2),137–168.

Pea,R.D.,Kurland,D.M.,&Hawkins,J.(1985).LogoandtheDevelopmentofThinkingSkills.InM.Chen&W.Paisley(Eds.),ChildrenandMicrocomputers:ResearchontheNewestMedium(pp.193–317).Sage.

Pierrakos,O.,Beam,T.K.,Constantz,J.,Johri,A.,&Anderson,R.(2009).OntheDevelopmentofaProfessionalIdentity:EngineeringPersistersVsEngineeringSwitchers.In39thASEE/IEEEFrontiersinEducationConference(pp.1–6),SanAntonio,TX.

Pinkard,N.,Erete,S.,Martin,C.K.,&McKinneydeRoyston,M.(2017).DigitalYouthDivas:ExploringNarrative-DrivenCurriculumtoSparkMiddleSchoolGirls’InterestinComputationalActivities.JournaloftheLearningSciences,26(3),477-516.

Potvin,P.,&Hasni,A.(2014).Interest,motivationandattitudetowardsscienceandtechnologyatK-12levels:asystematicreviewof12yearsofeducationalresearch.StudiesinScienceEducation,50(1),85–129.

Renninger,K.A.(2009).InterestandIdentityDevelopmentinInstruction:AnInductiveModel.EducationalPsychologist,44(2),105–118.

Resnick,M.,Maloney,J.,Monroy-Hernández,A.,Rusk,N.,Eastmond,E.,Brennan,K.,…Kafai,Y.(2009).Scratch:ProgrammingforAll.CommunicationsoftheACM,52,60–67.

Robelen,E.W.(2013).K-12BolstersTiestoEngineering.EducationWeek,32(26),1-18.

Page 56: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

54

Rode,J.A.,Weibert,A.,Marshall,A.,Aal,K.,VonRekowski,T.,ElMimoni,H.,&Booker,J.(2015).FromComputationalThinkingtoComputationalMaking.InUbiComp(pp.239–250),Osaka,Japan.

Roden,C.(1999).Howchildren’sproblemsolvingstrategiesdevelopatkeystage1.TheJournalofDesignandTechnologyEducation,4(1),21–27.

Rogers,C.B.,Wendell,K.,&Foster,J.(2010).AReviewoftheNAEReport,EngineeringinK-12Education.JournalofEngineeringEducation,(April),179–181.

Roth,W.M.(1995).From“wigglystructures”to“unshakytowers”:Problemframing,solutionfinding,andnegotiationofcoursesofactionsduringacivilengineeringunitforelementarystudents.ResearchinScienceEducation,25(4),365–381.

Roth,W.M.(1996).Knowledgediffusioninagrade4–5classroomduringaunitoncivilengineering:Ananalysisofaclassroomcommunityintermsofitschangingresourcesandpractices.CognitionandInstruction,14(2),179–220.

RoyalAcademyofEngineering(2017).Whatisengineering?Retrievedfromhttp://www.raeng.org.uk/education/what-is-engineering.

Sadler,T.,Barab,S.,andScott,B.(2007).Whatdostudentsgainbyengaginginsocioscientificinquiry?ResearchinScienceEducation,37(4),371–91.

Schoenfeld,A.H.(1992).Learningtothinkmathematically:Problemsolving,metacognition,andsensemakinginmathematics.InD.Grouws(Ed.),HandbookforResearchonMathematicsTeachingandLearning(pp.334–370).NewYork,NY:Macmillan.

Searle,K.A.,Fields,D.A.,Lui,D.A.,&Kafai,Y.B.(2014).Diversifyinghighschoolstudents’viewsaboutcomputingwithelectronictextiles.InICER(pp.75–82),Glasgow,UK.

Shute,V.J.,Sun,C.,&Asbell-Clarke,J.(2017).Demystifyingcomputationalthinking.EducationalResearchReview,22,142-158.

Smith,M.(2016,January30).Computerscienceforall[Blogpost].TheWhiteHouseBlog.Retrievedfromhttps://obamawhitehouse.archives.gov/blog/2016/01/30/computer-science-all.

Sneider,C.,Stephenson,C.,Schafer,B.,&Flick,L.(2014).Computationalthinkinginhighschoolscienceclassrooms.TheScienceTeacher,81(5),53-59.

Snyder,T.D.(2016).DigestofEducationStatistics:2015.NationalCenterforEducationStatistics.

Soloway,E.(1986).Learningtoprogram=learningtoconstructmechanismsandexplanations.CommunicationsoftheACM,29(9),850–858.

Page 57: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

55

Swan,K.(1989).Programmingobjectstothinkwith:Logoandtheteachingandlearningofproblemsolving.InAnnualMeetingoftheAmericanEducationalResearchAssociation,SanFrancisco,CA.

Tan,E.,CalabreseBarton,A.,Kang,H.,&O’Neill,T.(2013).DesiringacareerinSTEM-relatedfields:Howmiddleschoolgirlsarticulateandnegotiateidentities-in-practiceinscience.JournalofResearchinScienceTeaching,50(10),1143–1179.

Tate,E.D.,&Linn,M.C.(2005).HowDoesIdentityShapetheExperiencesofWomenofColorEngineeringStudents?JournalofScienceEducationandTechnology,14(5/6),483–493.

TheEconomicsDaily(2017).Womeninarchitectureandengineeringoccupationsin2016.BureauofLaborStatistics.Retrievedfromhttps://www.bls.gov/opub/ted/2017/women-in-architecture-and-engineering-occupations-in-2016.htm.

Wang,D.,Wang,T.,&Liu,Z.(2014).Atangibleprogrammingtoolforchildrentocultivatecomputationalthinking.TheScientificWorldJournal,2014.

Waterman,A.S.(2004).FindingSomeonetoBe:StudiesontheRoleofIntrinsicMotivationinIdentityFormation.Identity:AnInternationalJournalofTheoryandResearch,4(3),209–228.

Weintrop,D.,Beheshti,E.,Horn,M.,Orton,K.,Jona,K.,Trouille,L.,&Wilensky,U.(2016).DefiningComputationalThinkingforMathematicsandScienceClassrooms.JournalofScienceEducationandTechnology,25(1),127–147.

Wenger,E.(1998).Communitiesofpractice:Learning,meaning,andidentity.Cambridge,UK:CambridgeUniversityPress.

Wenger,E.(2010).Communitiesofpracticeandsociallearningsystems:Thecareerofaconcept.InC.Blackmore(Ed.),SocialLearningSystemsandCommunitiesofPractice(pp.179–198).London:Springer.

Wigfield,A.,&Wagner,A.L.(2005).Competence,motivation,andidentitydevelopmentduringadolescence.InA.J.Elliot&C.S.Dweck(Eds.),HandbookofCompetenceandMotivation(pp.222–239).NewYork:GuilfordPress.

Wilensky,U.,Brady,C.E.,&Horn,M.S.(2014).FosteringComputationalLiteracyinScienceClassrooms.CommunicationsoftheACM,57(8),24–28.

Wineburg,S.S.(1991).Historicalproblemsolving:Astudyofthecognitiveprocessesusedintheevaluationofdocumentaryandpictorialevidence.JournalofEducationalPsychology,83,73–87.

Page 58: Exploring Computational Thinking Concepts, Practices, and ... · way chemists perform experiments using test tubes (Brikman, 2014). While chemistry may involve its own way of thinking

56

Williams,L.,Wiebe,E.,Yang,K.,Ferzli,M.,&Miller,C.(2002).InSupportofPairProgrammingintheIntroductoryComputerScienceCourse.ComputerScienceEducation,12(3),197–212.

Wing,J.M.(2006).Computationalthinking.CommunicationsoftheACM,49(3),33–35.

Wing,J.M.(2008).Computationalthinkingandthinkingaboutcomputing.PhilosophicalTransactionstheRoyalSocietyofLondonA,366(1881),3717–3725.

Wyeth,P.,&Purchase,H.C.(2002).TangibleProgrammingElementsforYoungChildren.InCHI’02extendedabstractsonHumanfactorsincomputingsystems(pp.774–775).ACM.

Yelland,N.J.(1995).Encouragingyoungchildren’sthinkingskillswithLogo.ChildhoodEducation,71(3),152–155.