Transcript
Page 1: Parameter Estimation in Reservoir Engineering Models via

OutlineIntroduction to Reservoir Engineering

Two-Phase Water-Oil Fluid Flow ModelKalman Filtering Techniques

Case StudyResults

ConclusionQuestions

Parameter Estimation in Reservoir EngineeringModels via Data Assimilation Techniques

Mariya V. Krymskaya

TU Delft

July 16, 2007

Page 2: Parameter Estimation in Reservoir Engineering Models via

OutlineIntroduction to Reservoir Engineering

Two-Phase Water-Oil Fluid Flow ModelKalman Filtering Techniques

Case StudyResults

ConclusionQuestions

Introduction to Reservoir Engineering

Two-Phase Water-Oil Fluid Flow Model

Kalman Filtering TechniquesEnsemble Kalman Filter (EnKF)Iterative Ensemble Kalman Filter (IEnKF)

Case StudyState Vector FeasibilityRe-scaling state vectorExperimental Setup

ResultsEnKFIEnKF

Conclusion

Page 3: Parameter Estimation in Reservoir Engineering Models via

OutlineIntroduction to Reservoir Engineering

Two-Phase Water-Oil Fluid Flow ModelKalman Filtering Techniques

Case StudyResults

ConclusionQuestions

Structure of Reservoir EngineeringReservoir Engineering

sshhhhhhhhhhhhhhhhhh

**VVVVVVVVVVVVVVVVV

Production Engineering Reservoir Simulation

approaches

tthhhhhhhhhhhhhhhhh

||yyyy

yyyy

yyyy

yyyy

yyyy

y

��

Analogical

Experimental

Mathematical

Page 4: Parameter Estimation in Reservoir Engineering Models via

OutlineIntroduction to Reservoir Engineering

Two-Phase Water-Oil Fluid Flow ModelKalman Filtering Techniques

Case StudyResults

ConclusionQuestions

A Reservoir

General information> 40, 000 oil fields in the world300 m to 10 km below the surface2− 500 million years old

Ghawar oil fieldthe biggest among discoveredLocation: Saudi ArabiaRecovery: since 1951Size: 280× 30 kmAge: 320 million years oldProduction: 5 million barrels(800, 000 m3) of oil per day

Page 5: Parameter Estimation in Reservoir Engineering Models via

OutlineIntroduction to Reservoir Engineering

Two-Phase Water-Oil Fluid Flow ModelKalman Filtering Techniques

Case StudyResults

ConclusionQuestions

Oil Recovery

I Primary20% extracted

I Secondary (water flooding)25% to 35% extracted

I Tertiary50% left

Page 6: Parameter Estimation in Reservoir Engineering Models via

OutlineIntroduction to Reservoir Engineering

Two-Phase Water-Oil Fluid Flow ModelKalman Filtering Techniques

Case StudyResults

ConclusionQuestions

Oil Recovery

I Primary20% extracted

I Secondary (water flooding)25% to 35% extracted

I Tertiary50% left

Page 7: Parameter Estimation in Reservoir Engineering Models via

OutlineIntroduction to Reservoir Engineering

Two-Phase Water-Oil Fluid Flow ModelKalman Filtering Techniques

Case StudyResults

ConclusionQuestions

Oil Recovery

I Primary20% extracted

I Secondary (water flooding)25% to 35% extracted

I Tertiary50% left

Page 8: Parameter Estimation in Reservoir Engineering Models via

OutlineIntroduction to Reservoir Engineering

Two-Phase Water-Oil Fluid Flow ModelKalman Filtering Techniques

Case StudyResults

ConclusionQuestions

Oil Recovery

I Primary20% extracted

I Secondary (water flooding)25% to 35% extracted

I Tertiary50% left

Page 9: Parameter Estimation in Reservoir Engineering Models via

OutlineIntroduction to Reservoir Engineering

Two-Phase Water-Oil Fluid Flow ModelKalman Filtering Techniques

Case StudyResults

ConclusionQuestions

Reservoir Properties

I Rock propertiesI PorosityI (Absolute) permeabilityI Rock compressibility

I Fluid properties

I Fluid compressibilityI Fluid densityI Fluid viscosity

I Fluid-rock properties

I Fluid saturationI Capillary pressureI Relative permeability (Corey-type model)

Page 10: Parameter Estimation in Reservoir Engineering Models via

OutlineIntroduction to Reservoir Engineering

Two-Phase Water-Oil Fluid Flow ModelKalman Filtering Techniques

Case StudyResults

ConclusionQuestions

Reservoir Properties

I Rock propertiesI PorosityI (Absolute) permeabilityI Rock compressibility

I Fluid propertiesI Fluid compressibilityI Fluid densityI Fluid viscosity

I Fluid-rock properties

I Fluid saturationI Capillary pressureI Relative permeability (Corey-type model)

Page 11: Parameter Estimation in Reservoir Engineering Models via

OutlineIntroduction to Reservoir Engineering

Two-Phase Water-Oil Fluid Flow ModelKalman Filtering Techniques

Case StudyResults

ConclusionQuestions

Reservoir Properties

I Rock propertiesI PorosityI (Absolute) permeabilityI Rock compressibility

I Fluid propertiesI Fluid compressibilityI Fluid densityI Fluid viscosity

I Fluid-rock propertiesI Fluid saturationI Capillary pressureI Relative permeability (Corey-type model)

Page 12: Parameter Estimation in Reservoir Engineering Models via

OutlineIntroduction to Reservoir Engineering

Two-Phase Water-Oil Fluid Flow ModelKalman Filtering Techniques

Case StudyResults

ConclusionQuestions

Reservoir Properties

I Rock propertiesI PorosityI (Absolute) permeabilityI Rock compressibility

I Fluid propertiesI Fluid compressibilityI Fluid densityI Fluid viscosity

I Fluid-rock propertiesI Fluid saturationI Capillary pressureI Relative permeability (Corey-type model)

Page 13: Parameter Estimation in Reservoir Engineering Models via

OutlineIntroduction to Reservoir Engineering

Two-Phase Water-Oil Fluid Flow ModelKalman Filtering Techniques

Case StudyResults

ConclusionQuestions

Reservoir Properties

I Rock propertiesI PorosityI (Absolute) permeabilityI Rock compressibility

I Fluid propertiesI Fluid compressibilityI Fluid densityI Fluid viscosity

I Fluid-rock propertiesI Fluid saturationI Capillary pressureI Relative permeability (Corey-type model)

Page 14: Parameter Estimation in Reservoir Engineering Models via

OutlineIntroduction to Reservoir Engineering

Two-Phase Water-Oil Fluid Flow ModelKalman Filtering Techniques

Case StudyResults

ConclusionQuestions

Reservoir Properties

I Rock propertiesI PorosityI (Absolute) permeabilityI Rock compressibility

I Fluid propertiesI Fluid compressibilityI Fluid densityI Fluid viscosity

I Fluid-rock propertiesI Fluid saturationI Capillary pressureI Relative permeability (Corey-type model)

Page 15: Parameter Estimation in Reservoir Engineering Models via

OutlineIntroduction to Reservoir Engineering

Two-Phase Water-Oil Fluid Flow ModelKalman Filtering Techniques

Case StudyResults

ConclusionQuestions

Reservoir Properties

I Rock propertiesI PorosityI (Absolute) permeabilityI Rock compressibility

I Fluid propertiesI Fluid compressibilityI Fluid densityI Fluid viscosity

I Fluid-rock propertiesI Fluid saturationI Capillary pressureI Relative permeability (Corey-type model)

Page 16: Parameter Estimation in Reservoir Engineering Models via

OutlineIntroduction to Reservoir Engineering

Two-Phase Water-Oil Fluid Flow ModelKalman Filtering Techniques

Case StudyResults

ConclusionQuestions

Two-Phase Water-Oil Fluid Flow Model

I Mass balance equation for each phase

I Darcy’s law for each phase

I Capillary pressure equation

I Relative permeability equations(Corey-type model)

I Equations of state

I Initial / boundary conditions

I Well model

Page 17: Parameter Estimation in Reservoir Engineering Models via

OutlineIntroduction to Reservoir Engineering

Two-Phase Water-Oil Fluid Flow ModelKalman Filtering Techniques

Case StudyResults

ConclusionQuestions

Two-Phase Water-Oil Fluid Flow Model

I Mass balance equation for each phase

I Darcy’s law for each phase

I Capillary pressure equation

I Relative permeability equations(Corey-type model)

I Equations of state

I Initial / boundary conditions

I Well model

Page 18: Parameter Estimation in Reservoir Engineering Models via

OutlineIntroduction to Reservoir Engineering

Two-Phase Water-Oil Fluid Flow ModelKalman Filtering Techniques

Case StudyResults

ConclusionQuestions

Two-Phase Water-Oil Fluid Flow Model

I Mass balance equation for each phase

I Darcy’s law for each phase

I Capillary pressure equation

I Relative permeability equations(Corey-type model)

I Equations of state

I Initial / boundary conditions

I Well model

Page 19: Parameter Estimation in Reservoir Engineering Models via

OutlineIntroduction to Reservoir Engineering

Two-Phase Water-Oil Fluid Flow ModelKalman Filtering Techniques

Case StudyResults

ConclusionQuestions

Model Discretization

E(X) X − A(X) X − B(X) U = 0↑ ↑ ↑ ↑ ↑

accumulationmatrix

systemmatrix

statevector

inputmatrix

inputvector

X =

[pS

]

Page 20: Parameter Estimation in Reservoir Engineering Models via

OutlineIntroduction to Reservoir Engineering

Two-Phase Water-Oil Fluid Flow ModelKalman Filtering Techniques

Case StudyResults

ConclusionQuestions

History Matching Process

Historical Match

ssfffffffffffffffffff

--ZZZZZZZZZZZZZZZZZZZZZZZZZZZZ

Manual Automaticapproaches

ttiiiiiiiiiiiiiii

��

Traditional

Kalman Filtering

Page 21: Parameter Estimation in Reservoir Engineering Models via

OutlineIntroduction to Reservoir Engineering

Two-Phase Water-Oil Fluid Flow ModelKalman Filtering Techniques

Case StudyResults

ConclusionQuestions

Data Assimilation Problem StatementEnsemble Kalman Filter (EnKF)Iterative Ensemble Kalman Filter (IEnKF)

Data Assimilation Problem Statement

I SystemXk+1 = F (Xk ,Uk ,m) + Wk ,Zk+1 = MXk + Vk

I Uncertainties

X0 ∼ N (X0,P0) − uncertain initial state,Wk ∼ N (0,Q) − model noise,Vk ∼ N (0,R) − measurement noise,

I Independency assumption

X0⊥Wk⊥Vk

I State conditional pdf

(Xk |Z1, . . . ,Zl) ∼ N (mean, cov)

Page 22: Parameter Estimation in Reservoir Engineering Models via

OutlineIntroduction to Reservoir Engineering

Two-Phase Water-Oil Fluid Flow ModelKalman Filtering Techniques

Case StudyResults

ConclusionQuestions

Data Assimilation Problem StatementEnsemble Kalman Filter (EnKF)Iterative Ensemble Kalman Filter (IEnKF)

Ensemble Kalman Filter (EnKF)

Initial conditionX0, P0

��

DataZk

��Ensemblegeneration

(ξi )0, X0, P0

//Forwardmodel

integration

//Forecastedensembleand state

(ξi )fk , Xf

k , Pfk

// Dataassimilation

��Analyzed ensemble

and state(ξi )

ak , Xa

k , Pak

@A

OO

Page 23: Parameter Estimation in Reservoir Engineering Models via

OutlineIntroduction to Reservoir Engineering

Two-Phase Water-Oil Fluid Flow ModelKalman Filtering Techniques

Case StudyResults

ConclusionQuestions

Data Assimilation Problem StatementEnsemble Kalman Filter (EnKF)Iterative Ensemble Kalman Filter (IEnKF)

Parameter Estimation via EnKF

Augmented state vector

X =

[pS

]V X =

log k} = mpS

}= Y

d

Page 24: Parameter Estimation in Reservoir Engineering Models via

OutlineIntroduction to Reservoir Engineering

Two-Phase Water-Oil Fluid Flow ModelKalman Filtering Techniques

Case StudyResults

ConclusionQuestions

Data Assimilation Problem StatementEnsemble Kalman Filter (EnKF)Iterative Ensemble Kalman Filter (IEnKF)

Iterative Ensemble Kalman Filter (IEnKF)

[m0, Y0]T,

P0

��_ _ _ _ _ _ _�

�_ _ _ _ _ _ _

Initial conditionX0, P0

// EnKF //

_ _ _ _ _ _ _ _�

�_ _ _ _ _ _ _ _

Analyzed ensembleand state

(ξi )ak , Xa

k ,Pak

//Estimated

model parameterma

k

EDma

koo

Page 25: Parameter Estimation in Reservoir Engineering Models via

OutlineIntroduction to Reservoir Engineering

Two-Phase Water-Oil Fluid Flow ModelKalman Filtering Techniques

Case StudyResults

ConclusionQuestions

State Vector FeasibilityRe-scaling state vectorExperimental Setup

State Vector Feasibility

Ensemblegeneration

// Forward modelintegration

//

Yak−1��

Dataassimilation

// Confirmationstep

mak

ssg g g g g g g g g g g g g g g g g g g g g

mlgf��

New staticparameters

//

Re-initializedensembleand state(ξi )

ak−1,

Xak−1, Pa

k−1

//Forward model

integrationfrom k − 1 to k

//

Confirmedensembleand state

(ξi )ck ,

Xck , Pc

k

OO���

Page 26: Parameter Estimation in Reservoir Engineering Models via

OutlineIntroduction to Reservoir Engineering

Two-Phase Water-Oil Fluid Flow ModelKalman Filtering Techniques

Case StudyResults

ConclusionQuestions

State Vector FeasibilityRe-scaling state vectorExperimental Setup

Re-scaling state vector

X =

log kpSY

,

AB

=

10−7

10

10−7

103

⇒ AMLBL

Page 27: Parameter Estimation in Reservoir Engineering Models via

OutlineIntroduction to Reservoir Engineering

Two-Phase Water-Oil Fluid Flow ModelKalman Filtering Techniques

Case StudyResults

ConclusionQuestions

State Vector FeasibilityRe-scaling state vectorExperimental Setup

Re-scaling state vector

Kalman gain

K =1

N − 1

(B−1B

)

LLTMT

(AA−1

)

(1

N − 1MLLTMT + R

)−1

(A−1A

)= B−1 1

N − 1(BL) (AML)T

(1

N − 1AML (AML)T + ARA

)−1

︸ ︷︷ ︸K1

A

Ensemble update

(ξi )ak = (ξi )

fk + K

(Z−M(ξi )

fk + Vi

)= (ξi )

fk + B−1K1A

(Z−M(ξi )

fk + Vi

)= (ξi )

fk + B−1

(K1

(AZ− AM(ξi )

fk + AVi

))

Page 28: Parameter Estimation in Reservoir Engineering Models via

OutlineIntroduction to Reservoir Engineering

Two-Phase Water-Oil Fluid Flow ModelKalman Filtering Techniques

Case StudyResults

ConclusionQuestions

State Vector FeasibilityRe-scaling state vectorExperimental Setup

Re-scaling state vector

Kalman gain

K =1

N − 1

(B−1B

)LLTMT

(AA−1

) (1

N − 1MLLTMT + R

)−1 (A−1A

)

= B−1 1

N − 1(BL) (AML)T

(1

N − 1AML (AML)T + ARA

)−1

︸ ︷︷ ︸K1

A

Ensemble update

(ξi )ak = (ξi )

fk + K

(Z−M(ξi )

fk + Vi

)= (ξi )

fk + B−1K1A

(Z−M(ξi )

fk + Vi

)= (ξi )

fk + B−1

(K1

(AZ− AM(ξi )

fk + AVi

))

Page 29: Parameter Estimation in Reservoir Engineering Models via

OutlineIntroduction to Reservoir Engineering

Two-Phase Water-Oil Fluid Flow ModelKalman Filtering Techniques

Case StudyResults

ConclusionQuestions

State Vector FeasibilityRe-scaling state vectorExperimental Setup

Re-scaling state vector

Kalman gain

K =1

N − 1

(B−1B

)LLTMT

(AA−1

) (1

N − 1MLLTMT + R

)−1 (A−1A

)= B−1 1

N − 1(BL) (AML)T

(1

N − 1AML (AML)T + ARA

)−1

︸ ︷︷ ︸K1

A

Ensemble update

(ξi )ak = (ξi )

fk + K

(Z−M(ξi )

fk + Vi

)= (ξi )

fk + B−1K1A

(Z−M(ξi )

fk + Vi

)= (ξi )

fk + B−1

(K1

(AZ− AM(ξi )

fk + AVi

))

Page 30: Parameter Estimation in Reservoir Engineering Models via

OutlineIntroduction to Reservoir Engineering

Two-Phase Water-Oil Fluid Flow ModelKalman Filtering Techniques

Case StudyResults

ConclusionQuestions

State Vector FeasibilityRe-scaling state vectorExperimental Setup

Re-scaling state vector

Kalman gain

K =1

N − 1

(B−1B

)LLTMT

(AA−1

) (1

N − 1MLLTMT + R

)−1 (A−1A

)= B−1 1

N − 1(BL) (AML)T

(1

N − 1AML (AML)T + ARA

)−1

︸ ︷︷ ︸K1

A

Ensemble update

(ξi )ak = (ξi )

fk + K

(Z−M(ξi )

fk + Vi

)= (ξi )

fk + B−1K1A

(Z−M(ξi )

fk + Vi

)= (ξi )

fk + B−1

(K1

(AZ− AM(ξi )

fk + AVi

))

Page 31: Parameter Estimation in Reservoir Engineering Models via

OutlineIntroduction to Reservoir Engineering

Two-Phase Water-Oil Fluid Flow ModelKalman Filtering Techniques

Case StudyResults

ConclusionQuestions

State Vector FeasibilityRe-scaling state vectorExperimental Setup

Experimental setup

Twin experimentInitialization

True permeability field (log(m2))

5 10 15 20

2

4

6

8

10

12

14

16

18

20

−32

−31.5

−31

−30.5

−30

−29.5

−29

−28.5

−28Mean of permeability fields ensemble (log(m2))

5 10 15 20

2

4

6

8

10

12

14

16

18

20−29.1

−29

−28.9

−28.8

−28.7

−28.6

−28.5

Page 32: Parameter Estimation in Reservoir Engineering Models via

OutlineIntroduction to Reservoir Engineering

Two-Phase Water-Oil Fluid Flow ModelKalman Filtering Techniques

Case StudyResults

ConclusionQuestions

EnKFIEnKF

RMS Error in Model Parameter

0 100 200 300 400 500 6000.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time (days)

RM

S e

rror

(lo

g(m

2 ))

Ensemble meanEnsemble members

Page 33: Parameter Estimation in Reservoir Engineering Models via

OutlineIntroduction to Reservoir Engineering

Two-Phase Water-Oil Fluid Flow ModelKalman Filtering Techniques

Case StudyResults

ConclusionQuestions

EnKFIEnKF

Estimated Permeability Field

True permeability field (log(m2))

5 10 15 20

2

4

6

8

10

12

14

16

18

20

−32

−31.5

−31

−30.5

−30

−29.5

−29

−28.5

−28

Mean of initial ensemble (log(m2))

5 10 15 20

5

10

15

20−32

−31

−30

−29

−28Variance of initial ensemble ((log(m2))2)

5 10 15 20

5

10

15

200

0.2

0.4

0.6

0.8

1

Variance of estimated ensemble ((log(m2))2)

5 10 15 20

5

10

15

200

0.2

0.4

0.6

0.8

1

Estimated permeability field (log(m2))

5 10 15 20

5

10

15

20−32

−31

−30

−29

−28

Page 34: Parameter Estimation in Reservoir Engineering Models via

OutlineIntroduction to Reservoir Engineering

Two-Phase Water-Oil Fluid Flow ModelKalman Filtering Techniques

Case StudyResults

ConclusionQuestions

EnKFIEnKF

Forecasted Reservoir Performance

0 500 1000 15000.2

0.4

0.6

0.8

1

Time t ( days)

Wat

er s

atur

atio

n S

w a

t wel

l (

1,1)

(−

)

0 500 1000 15000.2

0.4

0.6

0.8

1

Time t ( days)

Wat

er s

atur

atio

n S

w a

t wel

l (

21,1

)(−

)

0 500 1000 15000.2

0.4

0.6

0.8

1

Time t ( days)

Wat

er s

atur

atio

n S

w a

t wel

l (

1,21

)(−

)

0 500 1000 15000.2

0.4

0.6

0.8

1

Time t ( days)

Wat

er s

atur

atio

n S

w a

t wel

l(2

1,21

)(−

)

Page 35: Parameter Estimation in Reservoir Engineering Models via

OutlineIntroduction to Reservoir Engineering

Two-Phase Water-Oil Fluid Flow ModelKalman Filtering Techniques

Case StudyResults

ConclusionQuestions

EnKFIEnKF

RMS Error in Model Parameter

0 100 200 300 400 500 6000.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time (days)

RM

S e

rror

(lo

g(m

2 ))

Ensemble meanEnsemble members

0 100 200 300 400 500 6000.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time (days)

RM

S e

rror

(lo

g(m

2 ))

Ensemble meanEnsemble members

Page 36: Parameter Estimation in Reservoir Engineering Models via

OutlineIntroduction to Reservoir Engineering

Two-Phase Water-Oil Fluid Flow ModelKalman Filtering Techniques

Case StudyResults

ConclusionQuestions

EnKFIEnKF

RMS Error in Model Parameter

0 100 200 300 400 5000.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Time (days)

RM

S e

rror

(lo

g(m

2 ))

Ensemble meanEnsemble members

0 100 200 300 400 5000.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Time (days)

RM

S e

rror

(lo

g(m

2 ))

Ensemble meanEnsemble members

Page 37: Parameter Estimation in Reservoir Engineering Models via

OutlineIntroduction to Reservoir Engineering

Two-Phase Water-Oil Fluid Flow ModelKalman Filtering Techniques

Case StudyResults

ConclusionQuestions

EnKFIEnKF

Estimated Permeability Field

Mean of initial ensemble (log(m2))

5 10 15 20

5

10

15

20−32

−31

−30

−29

−28Variance of initial ensemble ((log(m2))2)

5 10 15 20

5

10

15

200

0.2

0.4

0.6

0.8

1

Variance of estimated ensemble ((log(m2))2)

5 10 15 20

5

10

15

200

0.2

0.4

0.6

0.8

1

Estimated permeability field (log(m2))

5 10 15 20

5

10

15

20−32

−31

−30

−29

−28

Mean of initial ensemble (log(m2))

5 10 15 20

5

10

15

20−32

−31

−30

−29

−28Variance of initial ensemble ((log(m2))2)

5 10 15 20

5

10

15

200

0.2

0.4

0.6

0.8

1

Variance of estimated ensemble ((log(m2))2)

5 10 15 20

5

10

15

200

0.2

0.4

0.6

0.8

1

Estimated permeability field (log(m2))

5 10 15 20

5

10

15

20−32

−31

−30

−29

−28

Page 38: Parameter Estimation in Reservoir Engineering Models via

OutlineIntroduction to Reservoir Engineering

Two-Phase Water-Oil Fluid Flow ModelKalman Filtering Techniques

Case StudyResults

ConclusionQuestions

Conclusion

I Model calibration is essential

I EnKF provides reasonable parameter estimation

I There are cases at which IEnKF is superior to EnKF

I Further investigations on IEnKF sensitivities are required

Page 39: Parameter Estimation in Reservoir Engineering Models via

OutlineIntroduction to Reservoir Engineering

Two-Phase Water-Oil Fluid Flow ModelKalman Filtering Techniques

Case StudyResults

ConclusionQuestions

Questions


Top Related