dq theory

62
dq Theory for Synchronous Machine with Damper Winding

Upload: giuseppe-laudani

Post on 15-Jan-2016

6 views

Category:

Documents


0 download

DESCRIPTION

DQ theory for electrical machines

TRANSCRIPT

Page 1: DQ Theory

dq Theory for Synchronous Machine

with Damper Winding

Page 2: DQ Theory

Relevance to Synchronous Machine

dq means direct and quadrature. Direct axis is aligned with

the rotor’s pole. Quadrature axis refers to the axis whose

electrical angle is orthogonal to the electric angle of direct

axis.

a axis

d axisq axis

b axis

c axis

qm

qa

qd

qmq

22

2

qqq

qq

memqr

mme

P

Pming

max,orr

min,orrmaxg

isr

qd

a axis

qm

qa

q axis

qmq

Page 3: DQ Theory

Park’s Transformation

Stator quantities (Sabc) of current, voltage, or flux can be

converted to quantities (Sdq0) referenced to the rotor.

This conversion comes through the K matrix.

0

1

0

dqabc

abcdq

SKS

KSS

13/2sin3/2cos

13/2sin3/2cos

1sincos

2/12/12/1

3/2sin3/2sinsin

3/2cos3/2coscos

3

2

1

qq

qq

qq

qqq

qqq

meme

meme

meme

mememe

mememe

K

K

13/2cos3/2sin

13/2cos3/2sin

1cossin

2/12/12/1

3/2cos3/2coscos

3/2sin3/2sinsin

3

2

1

qq

qq

qq

qqq

qqq

rr

rr

rr

rrr

rrr

K

K

where

or

(MIT’s notation)

(Purdue’s notation)

c

b

a

abcq

d

dq

S

S

S

S

S

S

SS ,

0

0

Page 4: DQ Theory

Voltage Equations (1)

abcabcSabcdt

dλiRv

0

1

0

1

0

1

dqdqSdqdt

dλKiKRvK

0

1

0

1

0

1

dqdqSdqdt

dλKKiKKRvKK

0

1

0

1

0

1

0 dqdqdqSdqdt

d

dt

dλKKλKKiKKRv

0

1

000 dqdqdqSdqdt

d

dt

dλKKλiRv

100

010

001

sS RR

For stator windings

Under motor reference convention for currents

(i.e. the positive reference direction for currents is into the machine):

Page 5: DQ Theory

Voltage Equations (2)

We derive the derivative of K-1:

Then, we get

000

00

001

r

r

dt

d

KK

00

0

dt

diR

dt

diR

dt

diR

v

v

v

s

rdqqs

rqdds

q

d

03/2sin3/2cos

03/2sin3/2cos

0sincos

03/2cos3/2sin

03/2cos3/2sin

0cossin1

qq

qq

qq

qq

qq

qq

rr

rr

rr

r

meme

meme

meme

medt

dK

dt

d meme

q

And for stator voltage, we

get

2

P

dt

dmme

rr

q

Page 6: DQ Theory

Voltage Equations (3)

For rotor windings:

We assume the rotor has field winding (magnetic field along d axis), one damper with magnetic field along d axis and one damper with magnetic field along q axis.

qdqdqd kfkkfkrkfkdt

dλiRv

q

d

k

k

f

r

R

R

R

00

00

00

R

0

0

f

kfk

v

qdv

q

dqd

k

k

f

kfk

λ

Page 7: DQ Theory

Voltage Equations (4)

qqq

ddd

kkk

kkk

fff

s

qrdqs

drqds

f

q

d

dt

diR

dt

diR

dt

diR

dt

diR

dt

diR

dt

diR

v

v

v

v

000

0

0

In summary:

Page 8: DQ Theory

Dynamical Equations for Flux Linkage

qq

dd

q

d

kk

kk

fff

s

rdqsq

rqdsd

k

k

f

q

d

iR

iR

iRv

iRv

iRv

iRv

dt

d 000

The derivations so far are valid for both linear and nonlinear models.

Let

we have Vλ

dt

d dqf

q

d

k

k

f

q

d

dqf

qq

dd

kk

kk

fff

s

rdqsq

rqdsd

iR

iR

iRv

iRv

iRv

iRv

00

V

Page 9: DQ Theory

Flux Linkage vs. Current (1)

The next step is to relate current to flux linkage through

inductances. For salient pole rotor, the inductances can

be approximately expressed as

3

22cos

3

22cos

2cos

q

q

q

meBAlscc

meBAlsbb

meBAlsaa

LLLL

LLLL

LLLL

or:

3

22cos

3

22cos

2cos

q

q

q

rBAlscc

rBAlsbb

rBAlsaa

LLLL

LLLL

LLLL

2

qq mer

rr

T

sr

srss

abcfLL

LLL

cccbca

bcbbba

acabaa

ss

LLL

LLL

LLL

L

qd

qd

qd

ckckcf

bkbkbf

akakaf

sr

LLL

LLL

LLL

L

qdqq

qddd

qd

kkkfk

kkkfk

fkfkf

rr

LLL

LLL

LLL

L

Page 10: DQ Theory

Flux Linkage vs. Current (2)

3

22cos

2

1

2cos2

1

3

22cos

2

1

q

q

q

meBAcaac

meBAcbbc

meBAbaab

LLLL

LLLL

LLLL

3

2cos

3

2cos

cos

q

q

q

mesffccf

mesffbbf

mesffaaf

LLL

LLL

LLL

or:

3

22cos

2

1

2cos2

1

3

22cos

2

1

q

q

q

rBAcaac

rBAcbbc

rBAbaab

LLLL

LLLL

LLLL

3

2sin

3

2sin

sin

q

q

q

rsffccf

rsffbbf

rsffaaf

LLL

LLL

LLL

2

qq mer

Page 11: DQ Theory

Flux Linkage vs. Current (3)

3

2cos

3

2cos

cos

q

q

q

meskckck

meskbkbk

meskakak

ddd

ddd

ddd

LLL

LLL

LLL

or:

3

2sin

3

2sin

sin

q

q

q

rskckck

rskbkbk

rskakak

ddd

ddd

ddd

LLL

LLL

LLL

2

qq mer

3

2sin

3

2sin

sin

q

q

q

meskckck

meskbkbk

meskakak

qqq

qqq

qqq

LLL

LLL

LLL

3

2cos

3

2cos

cos

q

q

q

rskckck

rskbkbk

rskakak

qqq

qqq

qqq

LLL

LLL

LLL

Page 12: DQ Theory

Flux Linkage vs. Current (4)

Note: Higher order harmonics are neglected in the above expressions.

Ref: 1. A. E. Fitzgerald, C. Kingsley, Jr., and S. D. Umans, Electric Machinery, 6th Edition, pages 660-661.

2. P. C. Krause, O. Wasynczuk, and S. D. Sudhoff, Analysis of Electric Machinery and Drive Systems, 2nd Edition, pages 52and 195.

qqq

ddd

mklkk

mklkk

mflff

LLL

LLL

LLL

0

0

dqqd

qq

dd

kkkk

fkfk

fkfk

LL

LL

LL

Page 13: DQ Theory

Flux Linkage vs. Current (5)

This matrix can be transformed into dq form and used to

find flux linkage.

abcfabcfabcf iLλ

qdkfksrdqssdq iLiKLλK

0

1

0

1

dqfdqfdqf iLλ

qdkfksrdqssdq iKLiKKLλ

0

1

0

r

T

sr

srss

abcfLL

LLL

qd kfk

abc

abcf λ

λλ

qd kfk

abc

abcf i

ii

qd kfksrabcssabc iLiLλ

qdqd kfkrrabc

T

srkfk iLiLλ qdqd kfkrrdq

T

srkfk iLiKLλ

0

1

rr

T

sr

srss

dqfLKL

KLKKLL

1

1

qd kfk

dq

dqf λ

λλ

0

qd kfk

dq

dqf i

ii

0

From with

where

Page 14: DQ Theory

Inductance Matrix in dq Frame

qq

ddd

d

q

d

ksk

kfksk

fkfsf

skq

sksfd

dqf

LL

LLL

LLL

L

LL

LLL

0002

30

0002

3

0002

3

00000

0000

000

0

L

where

)(2

3

)(2

3

BAmq

BAmd

LLL

LLL

mqlsq

mdlsd

LLL

LLL

and

dqfdqfdqf iLλ From

qskkkk

ffkdskkkk

kfkdsffff

kskqqq

kskfsfddd

iLiL

iLiLiL

iLiLiL

iL

iLiL

iLiLiL

qqqq

ddddd

dd

qq

dd

2

32

32

3000

Through derivations, we have

rr

T

sr

srss

dqfLKL

KLKKLL

1

1

lsLL 0

Page 15: DQ Theory

Dynamical Equation in terms of Current

dt

d dqf

For linear model

from

VLi

1 dqf

dqf

dt

d dynamical equationin terms of current

dqfdqfdqf iLλ

qq

dd

kk

kk

fff

s

rdqsq

rqdsd

iR

iR

iRv

iRv

iRv

iRv

00

V

and

where

qq

dd

kskqqq

kskfsfddd

iLiL

iLiLiL

Page 16: DQ Theory

Power

Electrical instantaneous Input Power on Stator can also be

expressed through dq0 theory.

0

11

0 )( dq

TT

dqabc

T

abcccbbaain ivivivp iKKviv

0022

3ivivivp qqddin

200

010

001

2

3)( 11 KK T

Page 17: DQ Theory

Torque

0022

3ivivivp qqddin

00

0

dt

diR

dt

diR

dt

diR

v

v

v

s

rdqqs

rqdds

q

d

From

we have

)(22

32

2

32

2

3 00

2

0

22

dqqdm

q

qd

dqdsin iiP

dt

di

dt

di

dt

diiiiRp

Copper Loss Mechanical PowerMagnetic Power in Windings

Therefore, electromagnetic torque on rotor

)(22

3dqqd

m

meche ii

PpT

m echp

Page 18: DQ Theory

Equivalent Circuit on d Axis (1)

d axis of stator, field winding and d axis damper of rotor can form an equivalentcircuit.

Let mdlsd LLL

mflff LLL

ddd mklkk LLL

dd

dd

dd

kfdfk

kadsk

kdmk

fadsf

fdmf

admd

NNCL

NNCL

NCL

NNCL

NCL

NCL

ˆˆ

ˆˆ

ˆ

ˆˆ

ˆ

ˆ2

3

2

2

2

)2

1(8

2

0 g

av

dPg

DlC

From

(Details @ Inductance for SM.ppt)

,ˆaN

fN̂ and are effective number of turns of armature, field and d axis damper windings, respectively.

dkN̂

Page 19: DQ Theory

Equivalent Circuit on d Axis (2)

dt

iiidL

dt

diLiR

dt

diL

dt

diL

dt

diLiRv

d

d

d

kfd

mdd

lsrqds

k

sk

f

sfd

drqdsd

)( ''

f

a

f

f

md

sf

f iN

Ni

L

Li

ˆ

ˆ

3

2' Define

d

d

d

d

d k

a

k

k

md

sk

k iN

Ni

L

Li

ˆ

ˆ

3

2' and

dt

diL

dt

diL

dt

diLiRv d

d

k

fkd

sf

f

ffff 2

3

dt

diNL

dt

diNL

dt

diNL

dt

diNLiNRNv d

d

k

fkd

sf

f

mf

f

lffff 2

3

dt

diL

N

N

N

N

dt

diL

dt

diL

dt

diLNiRNNv d

d

d

k

fk

k

a

f

admd

f

sf

f

lffff

''

2'2

ˆ

ˆ

2

3

ˆ

ˆ

2

3

2

3

Define

ff Nvv 'ˆ

ˆa

f

NN

Nand

Page 20: DQ Theory

Equivalent Circuit on d Axis (3)

dt

iiidL

dt

diLiRv dkfd

md

f

lffff

)( '''

''''

lf

f

alf

f

f

af

LN

NL

RN

NR

2

'

2

'

ˆ

ˆ

2

3

ˆ

ˆ

2

3

where

ˆˆ

3

2

a

kf

md

fk

N

NN

L

Ldd

dt

diL

dt

diL

dt

diL

dt

diLiR

dt

diL

dt

diL

dt

diLiR

f

fkd

sk

k

mk

k

lkkk

f

fkd

sk

k

kkk

dd

d

d

d

ddd

dd

d

ddd

2

3

2

30From

aboveˆ

ˆ

3

2

dd k

a

sk

md

N

N

L

Lnext page

Page 21: DQ Theory

Equivalent Circuit on d Axis (4)

dt

diL

NN

N

dt

diL

dt

diL

N

N

dt

diL

N

NiR

N

N f

fk

kf

admd

k

mk

k

ak

lk

k

akk

k

a

d

d

d

d

d

d

d

d

dd

d

'2'2

'2

'

2

ˆˆ

ˆ

2

3

ˆ

ˆ

2

3

ˆ

ˆ

2

3

ˆ

ˆ

2

30

dt

iiidL

dt

diLiR dd

ddd

kfd

md

k

lkkk

)(0

'''

'''

where

d

d

d

d

d

d

lk

k

alk

k

k

ak

LN

NL

RN

NR

2

'

2

'

ˆ

ˆ

2

3

ˆ

ˆ

2

3

dd

dd

kf

a

fk

md

k

a

mk

md

NN

N

L

L

N

N

L

L

ˆˆ

ˆ

2

3

ˆ

ˆ

2

3

2

2

Page 22: DQ Theory

Equivalent Circuit on d Axis (5)

From

we get

mdmddls

kskfsfddd

iLiL

iLiLiLdd

''

dkfdmd iiii

dt

iiidL

dt

diLiRv dkfd

mdd

lsrqdsd

)( ''

dt

iiidL

dt

diLiRv dkfd

md

f

lffff

)( '''

''''

dt

iiidL

dt

diLiR dd

ddd

kfd

md

k

lkkk

)(0

'''

'''

'

dki

Page 23: DQ Theory

Equivalent Circuit on q Axis (1)

q axis equivalent circuit and q axis damper equivalent circuit can be combined:

Let mqlsq LLL

qqq mklkk LLL

qq

qq

kaqsk

kqmk

aqmq

NNCL

NCL

NCL

ˆˆ

ˆ

ˆ2

3

2

2

)2

1(8

2

0

Pg

DlC

av

q

From

(Details @ Inductance for SM.ppt)

sN̂ and are effective number of turns of stator and q axis damper windings, respectively.

dkN̂

Page 24: DQ Theory

Equivalent Circuit on q Axis (2)

dt

iidL

dt

diLiR

dt

diL

dt

diL

dt

diLiR

dt

diL

dt

diLiRv

q

q

q

q

q

kq

mq

q

lqrdqs

k

sk

q

mq

q

lqrdqs

k

sk

q

qrdqsq

)(

'

q

q

q

q

d k

a

k

k

md

sk

k iN

Ni

L

Li

ˆ

ˆ

3

2'

where

dt

diL

dt

diL

dt

diLiR

dt

diL

dt

diLiR

q

sk

k

mk

k

lkkk

q

sk

k

kkk

q

q

q

q

qqq

q

q

qqq

2

3

2

30

From

aboveˆ

ˆ

3

2

qq k

a

sk

mq

N

N

L

Lnext page

Page 25: DQ Theory

Equivalent Circuit on q Axis (3)

dt

diL

dt

diL

N

N

dt

diL

N

NiR

N

N q

mq

k

mk

k

ak

lk

k

akk

k

a q

q

q

q

q

q

qq

q

'2

'2

'

2

ˆ

ˆ

2

3

ˆ

ˆ

2

3

ˆ

ˆ

2

30

dt

iidL

dt

diLiR

qq

qqq

kq

mq

k

lkkk

)(0

''

'''

where

q

q

q

q

q

q

lk

k

alk

k

k

ak

LN

NL

RN

NR

2

'

2

'

ˆ

ˆ

2

3

ˆ

ˆ

2

3

qq

qq

kf

a

fk

mq

k

a

mk

mq

NN

N

L

L

N

N

L

L

ˆˆ

ˆ

2

3

ˆ

ˆ

2

3

2

2

Page 26: DQ Theory

Equivalent Circuit on q Axis (4)

From

we get

mqmqqls

kskqqq

iLiL

iLiLqq

'

qkqmq iii

dt

iidL

dt

diLiRv

qkq

mq

q

lqrdqsq

)( '

dt

iidL

dt

diLiR

qq

qqq

kq

mq

k

lkkk

)(0

''

'''

'

qki

Page 27: DQ Theory

Equivalent Circuit on 0 Axis

0 axisdt

diLiRv s

0000

This circuit is not necessary for Y connected windings since i0=0.

Page 28: DQ Theory

Dynamical Equations from

Equivalent Circuits (1)

dt

diLiRv

dt

diL

dt

diLiRv

dt

diL

dt

diLiR

dt

diL

dt

diLiR

dt

diL

dt

diLiRv

dt

diL

dt

diLiRv

lss

mdmd

f

lffff

mq

mq

k

lkkk

mdmd

k

lkkk

mq

mq

q

lsqdrqsqq

mdmd

dlsdqrdsdd

q

qqq

d

ddd

00000

'

''''

'

'''

'

'''

0

0

where

'

''

q

d

kqmq

kfdmd

iii

iiii

Page 29: DQ Theory

Dynamical Equations from

Equivalent Circuits (2)The equations can be written in matrix form as:

VI

L dt

d

where

mqlkmq

mdlkmdmd

mdmdlfmd

ls

mqmqlsq

mdmdmdlsd

LLL

LLLL

LLLL

L

LLL

LLLL

q

d

'

'

'

0

0000

000

000

00000

0000

000

L

'

'

'

0

q

d

k

k

f

q

d

i

i

i

i

i

i

I

''

''

'''

000

qq

dd

kk

kk

fff

s

drqsqq

qrdsdd

iR

iR

iRv

iRv

iRv

iRv

V

VLI 1

dt

dor

Page 30: DQ Theory

dq Theory for Synchronous Machine

without Damper Winding

Page 31: DQ Theory

Relevance to Synchronous Machine

dq means direct and quadrature. Direct axis is aligned with

the rotor’s pole. Quadrature axis refers to the axis whose

electrical angle is orthogonal to the electric angle of direct

axis.

a axis

d axisq axis

b axis

c axis

qm

qa

qd

qmq

22

2

qqq

qq

memqr

mme

P

Pming

max,orr

min,orrmaxg

isr

qd

a axis

qm

qa

q axis

qmq

Page 32: DQ Theory

Park’s Transformation

Stator quantities (Sabc) of current, voltage, or flux can be

converted to quantities (Sdq0) referenced to the rotor.

This conversion comes through the K matrix.

0

1

0

dqabc

abcdq

SKS

KSS

13/2sin3/2cos

13/2sin3/2cos

1sincos

2/12/12/1

3/2sin3/2sinsin

3/2cos3/2coscos

3

2

1

qq

qq

qq

qqq

qqq

meme

meme

meme

mememe

mememe

K

K

13/2cos3/2sin

13/2cos3/2sin

1cossin

2/12/12/1

3/2cos3/2coscos

3/2sin3/2sinsin

3

2

1

qq

qq

qq

qqq

qqq

rr

rr

rr

rrr

rrr

K

K

where

or

(MIT’s notation)

(Purdue’s notation)

c

b

a

abcq

d

dq

S

S

S

S

S

S

SS ,

0

0

Page 33: DQ Theory

Voltage Equations (1)

abcabcSabcdt

dλiRv

0

1

0

1

0

1

dqdqSdqdt

dλKiKRvK

0

1

0

1

0

1

dqdqSdqdt

dλKKiKKRvKK

0

1

0

1

0

1

0 dqdqdqSdqdt

d

dt

dλKKλKKiKKRv

0

1

000 dqdqdqSdqdt

d

dt

dλKKλiRv

100

010

001

sS RR

For stator windings

For field winding:

ffff λdt

diRv

Under motor reference convention for currents

(i.e. the positive reference direction for currents is into the machine):

Page 34: DQ Theory

Voltage Equations (2)

We derive the derivative of K-1:

Then, we get

000

00

001

r

r

dt

d

KK

fff

s

rdqqs

rqdds

f

q

d

dt

diR

dt

diR

dt

diR

dt

diR

v

v

v

v

000

03/2sin3/2cos

03/2sin3/2cos

0sincos

03/2cos3/2sin

03/2cos3/2sin

0cossin1

qq

qq

qq

qq

qq

qq

rr

rr

rr

r

meme

meme

meme

medt

dK

dt

d meme

q

And for voltage, we get

2

P

dt

dmme

rr

q

Page 35: DQ Theory

Dynamical Equations for Flux Linkage

fff

s

rdqsq

rqdsd

f

q

d

iRv

iRv

iRv

iRv

dt

d

000

The derivations so far are valid for both linear and nonlinear models.

f

q

d

dqf

0

λ

fff

s

rdqsq

rqdsd

iRv

iRv

iRv

iRv

00

V

Let

we haveV

λ

dt

d dqf

Page 36: DQ Theory

Flux Linkage vs. Current (1)

The next step is to relate current to flux linkage through

inductances. For salient pole rotor, the inductances can

be approximately expressed as

cf

bf

af

sf

L

L

L

L

3

22cos

3

22cos

2cos

q

q

q

meBAlscc

meBAlsbb

meBAlsaa

LLLL

LLLL

LLLL

or:

3

22cos

3

22cos

2cos

q

q

q

rBAlscc

rBAlsbb

rBAlsaa

LLLL

LLLL

LLLL

2

qq mer

f

T

sf

sfss

abcf LL

LLL

cccbca

bcbbba

acabaa

ss

LLL

LLL

LLL

L

Page 37: DQ Theory

Flux Linkage vs. Current (2)

3

22cos

2

1

2cos2

1

3

22cos

2

1

q

q

q

meBAcaac

meBAcbbc

meBAbaab

LLLL

LLLL

LLLL

Note: Higher order harmonics are neglected.

3

2cos

3

2cos

cos

q

q

q

mesffccf

mesffbbf

mesffaaf

LLL

LLL

LLL

or:

3

22cos

2

1

2cos2

1

3

22cos

2

1

q

q

q

rBAcaac

rBAcbbc

rBAbaab

LLLL

LLLL

LLLL

3

2sin

3

2sin

sin

q

q

q

rsffccf

rsffbbf

rsffaaf

LLL

LLL

LLL

2

qq mer

Ref: 1. A. E. Fitzgerald, C. Kingsley, Jr., and S. D. Umans, Electric Machinery, 6th Edition, pages 660-661.

2. P. C. Krause, O. Wasynczuk, and S. D. Sudhoff, Analysis of Electric Machinery and Drive Systems, 2nd Edition, page 52.

Page 38: DQ Theory

Flux Linkage vs. Current (3)

This matrix can be transformed into dq0 form and used to

find flux linkage.

abcfabcfabcf iLλ

fsfdqssdq iLiKLλK

0

1

0

1

dqfdqfdqf iLλ

fsfdqssdq iKLiKKLλ

0

1

0

f

T

sf

sfss

abcf LL

LLL

f

abc

abcf

λλ

f

abc

abcf i

ii

fsfabcssabc iLiLλ

ffabc

T

sff iLλ iL ffdq

T

sff iLλ

0

1iKL

f

T

sf

sfss

dqfL1

1

KL

KLKKLL

f

dq

dqf

0λλ

f

dq

dqf i

0ii

From with

where

Page 39: DQ Theory

Inductance Matrix in dq0 Frame

fsf

q

sfd

dqf

LL

L

L

LL

002

3

000

000

00

0L

where

)(2

3

)(2

3

BAmq

BAmd

LLL

LLL

ls

mqlsq

mdlsd

LL

LLL

LLL

0

and

dqfdqfdqf iLλ From

dsffff

ls

qqq

fsfddd

iLiL

iL

iL

iLiL

2

3

00

Through derivations, we have

f

T

sf

sfss

dqfL1

1

KL

KLKKLL

Page 40: DQ Theory

Dynamical Equation in terms of Current

dt

d dqf

For linear model

from

VLi

1 dqf

dqf

dt

d dynamical equationin terms of current

dqfdqfdqf iLλ

fff

s

rdqsq

rqdsd

iRv

iRv

iRv

iRv

00

V

and

where

qqq

fsfddd

iL

iLiL

Page 41: DQ Theory

Power

Electrical instantaneous Input Power on Stator can also be

expressed through dq0 theory.

0

11

0 )( dq

TT

dqabc

T

abcccbbaain ivivivp iKKviv

0022

3ivivivp qqddin

200

010

001

2

3)( 11 KK T

Page 42: DQ Theory

Torque

0022

3ivivivp qqddin

00

0

dt

diR

dt

diR

dt

diR

v

v

v

s

rdqqs

rqdds

q

d

From

we have

)(22

32

2

32

2

3 00

2

0

22

dqqdm

q

qd

dqdsin iiP

dt

di

dt

di

dt

diiiiRp

Copper Loss Mechanical PowerMagnetic Power in Windings

Therefore, electromagnetic torque on rotor

)(22

3dqqd

m

meche ii

PpT

m echp

Page 43: DQ Theory

Equivalent Circuits (1)

fff

s

rdqqs

rqdds

f

q

d

dt

diR

dt

diR

dt

diR

dt

diR

v

v

v

v

000

dsffff

ls

qqq

fsfddd

iLiL

iL

iL

iLiL

2

3

00

d axisdt

diL

dt

diLiRv

f

sfd

drqdsd

Page 44: DQ Theory

Equivalent Circuits (2)

q axisdt

diLiRv

q

qrdqsq

0 axisdt

diLiRv s

0000

This circuit is not necessary for Y connected windings since i0=0.

Page 45: DQ Theory

Equivalent Circuits (3)

Field winding

dt

diL

dt

diLiRv d

sf

f

ffff2

3

Page 46: DQ Theory

Combined Equivalent Circuit on d Axis (1)

dt

iidL

dt

diLiR

dt

diL

dt

diLiRv

fd

mdd

lsrqds

f

sfd

drqdsd

)( '

d axis equivalent circuit and field winding equivalent circuit can be combined:

mdlsd LLL

mflff LLL

mf

sf

sf

md

f

a

L

L

L

L

N

NN

3

2

ˆ

ˆ

N

ii

L

Li

f

f

md

sf

f3

2'

fadsf

fdm f

admd

NNCL

NCL

NCL

ˆˆ

ˆ

ˆ2

3

2

2

)2

1(8

2

0 g

av

dPg

DlC

From

(Details @ InductanceSM.ppt)

Let

aN̂ fN̂and are effective number of turns of armature and field windings.

Page 47: DQ Theory

Combined Equivalent Circuit on d Axis (2)

dt

diL

dt

diLiRv d

sf

f

ffff2

3 '

2

3ff Nii

dt

diNL

dt

diNL

dt

diNLiNRNv d

sf

f

mf

f

lffff2

3

mf

sf

sf

md

L

L

L

LN

3

2

dt

diL

dt

diL

dt

diLNiRNNv d

md

f

sf

f

lffff

'

2'2

2

3

2

3

dt

iidL

dt

diLiRv

fd

md

f

lffff

)( ''

''''

lflf

ff

ff

LNL

RNR

Nvv

2'

2'

'

2

3

2

3

Page 48: DQ Theory

Combined Equivalent Circuit on d Axis (3)

dt

iidL

dt

diLiRv

fd

mdd

lsrqdsd

)( '

dt

iidL

dt

diLiRv

fd

md

f

lffff

)( ''

''''

From

ff Nvv '

'

2

3ff Nii

we get

mdmddls

fsfddd

iLiL

iLiL

'

fdmd iii

Page 49: DQ Theory

dq Theory for Permanent Magnet

Synchronous Machine (PMSM)

Page 50: DQ Theory

Relevance to PM Machine

dq means direct and quadrature. Direct axis is aligned with

the rotor’s pole. Quadrature axis refers to the axis whose

electrical angle is orthogonal to the electric angle of direct

axis.

a axis

d axisq axis

b axis

c axis

qa

qd

22

2

qqq

qq

memqr

mme

P

P

qm

qmq

Page 51: DQ Theory

Park’s Transformation

Stator quantities (Sabc) of current, voltage, or flux can be

converted to quantities (Sdq0) referenced to the rotor.

This conversion comes through the K matrix.

0

1

0

dqabc

abcdq

SKS

KSS

13/2sin3/2cos

13/2sin3/2cos

1sincos

2/12/12/1

3/2sin3/2sinsin

3/2cos3/2coscos

3

2

1

qq

qq

qq

qqq

qqq

meme

meme

meme

mememe

mememe

K

K

13/2cos3/2sin

13/2cos3/2sin

1cossin

2/12/12/1

3/2cos3/2coscos

3/2sin3/2sinsin

3

2

1

qq

qq

qq

qqq

qqq

rr

rr

rr

rrr

rrr

K

K

where

or

(MIT’s notation)

(Purdue’s notation)

c

b

a

abcq

d

dq

S

S

S

S

S

S

SS ,

0

0

Page 52: DQ Theory

Voltage Equations (1)

abcabcSabcdt

dλiRv

0

1

0

1

0

1

dqdqSdqdt

dλKiKRvK

0

1

0

1

0

1

dqdqSdqdt

dλKKiKKRvKK

0

1

0

1

0

1

0 dqdqdqSdqdt

d

dt

dλKKλKKiKKRv

0

1

000 dqdqdqSdqdt

d

dt

dλKKλiRv

100

010

001

sS RR

For stator winding

Under motor reference convention for currents

(i.e. the positive reference direction for currents is into the machine):

Page 53: DQ Theory

Voltage Equations (2)

We derive the derivative of K-1:

Then, we get

000

00

001

r

r

dt

d

KK

00

0

dt

diR

dt

diR

dt

diR

v

v

v

s

rdqqs

rqdds

q

d

03/2sin3/2cos

03/2sin3/2cos

0sincos

03/2cos3/2sin

03/2cos3/2sin

0cossin1

qq

qq

qq

qq

qq

qq

rr

rr

rr

r

meme

meme

meme

medt

dK

dt

d meme

q

And for voltage, we get

2

P

dt

dmme

rr

q

Page 54: DQ Theory

Dynamical Equations for Flux Linkage

000 iRv

iRv

iRv

dt

d

s

rdqsq

rqdsd

q

d

The derivations so far are valid for both linear and nonlinear models.

0

0

q

d

dqλ

00 iRv

iRv

iRv

s

rdqsq

rqdsd

V

Let

we haveV

λ

dt

d dq0

Page 55: DQ Theory

Flux Linkage vs. Current (1)

The next step is to relate current to flux linkage through

inductances. For salient pole rotor, the inductances can

be approximately expressed as

cccbca

bcbbba

acabaa

abc

LLL

LLL

LLL

L

3

22cos

3

22cos

2cos

q

q

q

meBAlscc

meBAlsbb

meBAlsaa

LLLL

LLLL

LLLL

Note: Higher order harmonics are neglected.

or:

3

22cos

3

22cos

2cos

q

q

q

rBAlscc

rBAlsbb

rBAlsaa

LLLL

LLLL

LLLL

2

qq mer

Page 56: DQ Theory

Flux Linkage vs. Current (2)

3

22cos

2

1

2cos2

1

3

22cos

2

1

q

q

q

meBAcaac

meBAcbbc

meBAbaab

LLLL

LLLL

LLLL

Note: Higher order harmonics are neglected.

or:

3

22cos

2

1

2cos2

1

3

22cos

2

1

q

q

q

rBAcaac

rBAcbbc

rBAbaab

LLLL

LLLL

LLLL

2

qq mer

Ref: 1. A. E. Fitzgerald, C. Kingsley, Jr., and S. D. Umans, Electric Machinery, 6th Edition, pages 660-661.

2. P. C. Krause, O. Wasynczuk, and S. D. Sudhoff, Analysis of Electric Machinery and Drive Systems, 2nd Edition, page 52,also pages 264-265.

Page 57: DQ Theory

Flux Linkage vs. Current (4)

This matrix can be transformed into dq0 form and used to

find flux linkage.

PMabcabcabcabc λiLλ

PMabcdqabcfdq λiKLλK

0

1

0

1

PMabcdqabcdq KλiKKLλKK

0

1

0

1

0000 PMdqdqdqdq λiLλ

PMabcdqabcdq KλiKKLλ

0

1

0

where

)3/2cos(

)3/2cos(

)cos(

q

q

q

me

me

me

PMPMabcλor:

2

qq mer

)3/2sin(

)3/2sin(

)sin(

q

q

q

r

r

r

PMPMabcλ

Page 58: DQ Theory

Inductance Matrix in dq0 Frame

Therefore, we get the following inductance matrix in dq0

frame:

0

1

0

00

00

00

L

L

L

q

d

abcdq KKLL

where

)(2

3

)(2

3

BAmq

BAmd

LLL

LLL

ls

mqlsq

mdlsd

LL

LLL

LLL

0

and

From

00 iL

iL

iL

ls

qqq

PMddd

0000 PMdqdqdqdq λiLλ

0

00

PM

PMabcPMdq

Kλλ

Page 59: DQ Theory

Dynamical Equation in terms of Current

dt

d dq0For linear model from

VLi

1

0

0 dq

dq

dt

d dynamical equationin terms of current

00 iRv

iRv

iRv

s

rdqsq

rqdsd

V

and

where

qqq

PMddd

iL

iL

0000 PMdqdqdqdq λiLλ

0

0

00

00

00

L

L

L

q

d

dqL

0000 /)(

/)(

/)(

LiRv

LiLiRv

LiLiRv

i

i

i

dt

d

s

qPMrddrqsq

dqqrdsd

q

d

For Y connected winding, since , only need to consider the first two equations for id and iq.

0)(3

10 cba iiii

Page 60: DQ Theory

Power

Electrical instantaneous Input Power on Stator can also be

expressed through dq0 theory.

0

11

0 )( dq

TT

dqabc

T

abcccbbaain ivivivp iKKviv

0022

3ivivivp qqddin

200

010

001

2

3)( 11 KK T

Page 61: DQ Theory

Torque

0022

3ivivivp qqddin

00

0

dt

diR

dt

diR

dt

diR

v

v

v

s

rdqqs

rqdds

q

d

From

we have

)(22

32

2

32

2

3 00

2

0

22

dqqdm

q

qd

dqdsin iiP

dt

di

dt

di

dt

diiiiRp

Copper Loss Mechanical PowerMagnetic Power in Windings

Therefore, electromagnetic torque on rotor

)(22

3dqqd

m

meche ii

PpT

m echp

qqq

PMddd

iL

iL

qdqdqPMe iiLLiP

T )(22

3

Page 62: DQ Theory

Dynamical Equations of Motion

mm

dampLem

dt

d

TTTdt

dJ

q

where

qTqdqdqPMe iKiiLLiP

T )(22

3

For round rotor machine, qd LL qPMe iP

T 4

3

mmdamp DT Dm is combined damping coefficient of rotor and load.

dqdPM

q

eT iLL

P

i

TK )(

4

3 torque constant

PMT

PK

4

3