dr. nirav vyas betagamma functions.pdf

Upload: ashoka-vanjare

Post on 07-Aug-2018

238 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/20/2019 Dr. Nirav Vyas betagamma functions.pdf

    1/24

    Beta & Gamma functions

    Nirav B. Vyas

    Department of MathematicsAtmiya Institute of Technology and Science

    Yogidham, Kalavad roadRajkot - 360005 . Gujarat

    N. B. Vyas Beta & Gamma functions

  • 8/20/2019 Dr. Nirav Vyas betagamma functions.pdf

    2/24

    Introduction

    The Gamma function and Beta functions belong to thecategory of the special transcendental functions and aredened in terms of improper denite integrals.

    N. B. Vyas Beta & Gamma functions

  • 8/20/2019 Dr. Nirav Vyas betagamma functions.pdf

    3/24

    Introduction

    The Gamma function and Beta functions belong to thecategory of the special transcendental functions and aredened in terms of improper denite integrals.

    These functions are very useful in many areas like asymptoticseries, Riemann-zeta function, number theory, etc. and alsohave many applications in engineering and physics.

    N. B. Vyas Beta & Gamma functions

  • 8/20/2019 Dr. Nirav Vyas betagamma functions.pdf

    4/24

    Introduction

    The Gamma function and Beta functions belong to thecategory of the special transcendental functions and aredened in terms of improper denite integrals.

    These functions are very useful in many areas like asymptoticseries, Riemann-zeta function, number theory, etc. and alsohave many applications in engineering and physics.The Gamma function was rst introduced by Swiss

    mathematician Leonhard Euler

    (1707-1783).

    N. B. Vyas Beta & Gamma functions

  • 8/20/2019 Dr. Nirav Vyas betagamma functions.pdf

    5/24

  • 8/20/2019 Dr. Nirav Vyas betagamma functions.pdf

    6/24

    Properties of Gamma function

    (1) Γ(n + 1) = nΓn

    N. B. Vyas Beta & Gamma functions

  • 8/20/2019 Dr. Nirav Vyas betagamma functions.pdf

    7/24

    Properties of Gamma function

    (1) Γ(n + 1) = nΓn(2) Γ(n + 1) = n!, where n is a positive integer

    N. B. Vyas Beta & Gamma functions

  • 8/20/2019 Dr. Nirav Vyas betagamma functions.pdf

    8/24

    Properties of Gamma function

    (1) Γ(n + 1) = nΓn(2) Γ(n + 1) = n!, where n is a positive integer

    (3) Γ(n ) = 2

    0e − x

    2x 2n − 1dx

    N. B. Vyas Beta & Gamma functions

  • 8/20/2019 Dr. Nirav Vyas betagamma functions.pdf

    9/24

    Properties of Gamma function

    (1) Γ(n + 1) = nΓn(2) Γ(n + 1) = n!, where n is a positive integer

    (3) Γ(n ) = 2

    0e − x

    2x 2n − 1dx

    (4) Γn

    t n =

    0e − tx x n − 1dx

    N. B. Vyas Beta & Gamma functions

  • 8/20/2019 Dr. Nirav Vyas betagamma functions.pdf

    10/24

    Properties of Gamma function

    (1) Γ(n + 1) = nΓn(2) Γ(n + 1) = n!, where n is a positive integer

    (3) Γ(n ) = 2

    0e − x

    2x 2n − 1dx

    (4) Γn

    t n =

    0e − tx x n − 1dx

    (5) Γ12

    = √ π

    N. B. Vyas Beta & Gamma functions

  • 8/20/2019 Dr. Nirav Vyas betagamma functions.pdf

    11/24

    Exercise

    (1) ∞

    −∞

    e − k2 x 2 dx

    N. B. Vyas Beta & Gamma functions

    i

  • 8/20/2019 Dr. Nirav Vyas betagamma functions.pdf

    12/24

    Exercise

    (1) ∞

    −∞

    e − k2 x 2 dx

    (2) ∞

    0 e− x 3

    dx

    N. B. Vyas Beta & Gamma functions

    E i

  • 8/20/2019 Dr. Nirav Vyas betagamma functions.pdf

    13/24

    Exercise

    (1) ∞

    −∞

    e − k2 x 2 dx

    (2) ∞

    0 e− x 3

    dx

    (3) 1

    0x m log

    1x

    n

    dx

    N. B. Vyas Beta & Gamma functions

    E i

  • 8/20/2019 Dr. Nirav Vyas betagamma functions.pdf

    14/24

    Exercise

    (1) ∞

    −∞

    e − k2 x 2 dx

    (2) ∞

    0 e− x 3

    dx

    (3) 1

    0x m log

    1x

    n

    dx

    N. B. Vyas Beta & Gamma functions

    B t F ti

  • 8/20/2019 Dr. Nirav Vyas betagamma functions.pdf

    15/24

    Beta Function

    Denition:The Beta function denoted by β (m, n ) or B (m, n ) is dened as

    B (m, n ) = 1

    0x m − 1(1 − x )

    n − 1dx, (m > 0, n > 0)

    N. B. Vyas Beta & Gamma functions

    Properties of Beta F nction

  • 8/20/2019 Dr. Nirav Vyas betagamma functions.pdf

    16/24

    Properties of Beta Function

    (1) B (m, n ) = B (n, m )

    N. B. Vyas Beta & Gamma functions

    Properties of Beta Function

  • 8/20/2019 Dr. Nirav Vyas betagamma functions.pdf

    17/24

    Properties of Beta Function

    (1) B (m, n ) = B (n, m )

    (2) B (m, n ) = 2 π

    2

    0sin 2m − 1θ cos 2n − 1θ dθ

    N. B. Vyas Beta & Gamma functions

    Properties of Beta Function

  • 8/20/2019 Dr. Nirav Vyas betagamma functions.pdf

    18/24

    Properties of Beta Function

    (1) B (m, n ) = B (n, m )

    (2) B (m, n ) = 2 π

    2

    0sin 2m − 1θ cos 2n − 1θ dθ

    (3) B (m, n ) = ∞

    0

    x m − 1

    (1 + x)m + ndx

    N. B. Vyas Beta & Gamma functions

  • 8/20/2019 Dr. Nirav Vyas betagamma functions.pdf

    19/24

    Exercise

  • 8/20/2019 Dr. Nirav Vyas betagamma functions.pdf

    20/24

    Exercise

    Ex. Prove that

    π

    2

    0sin pθ cos qθ dθ =

    1

    p + 1

    2 ,

    q + 1

    2

    N. B. Vyas Beta & Gamma functions

    Exercise

  • 8/20/2019 Dr. Nirav Vyas betagamma functions.pdf

    21/24

    Exercise

    Ex. Prove that

    0

    x m − 1

    (a + bx)m + ndx =

    β (m, n )

    a n bm

    N. B. Vyas Beta & Gamma functions

    Relation between Beta and Gamma functions

  • 8/20/2019 Dr. Nirav Vyas betagamma functions.pdf

    22/24

    Relation between Beta and Gamma functions

    β (m, n

    ) =

    Γ(m )Γ( n )

    Γ(m + n )

    N. B. Vyas Beta & Gamma functions

    Exercise

  • 8/20/2019 Dr. Nirav Vyas betagamma functions.pdf

    23/24

    Exercise

    Ex. Prove that

    π

    2

    0

    sin pθ cos q θ dθ = 1

    2

    Γ( p+12 )Γ(q +1

    2 )

    Γ( p+ q +2

    2 )

    N. B. Vyas Beta & Gamma functions

    Exercise

  • 8/20/2019 Dr. Nirav Vyas betagamma functions.pdf

    24/24

    Exercise

    Ex. Prove that

    π

    2

    0

    sin pθ cos q θ dθ = 1

    2

    Γ( p+12 )Γ(q +1

    2 )

    Γ( p+ q +2

    2 )Ex. Prove that: B (m, n ) = B (m, n + 1) + B (m + 1 , n )

    N. B. Vyas Beta & Gamma functions