dr. nirav vyas power series.pdf

Upload: ashoka-vanjare

Post on 07-Aug-2018

244 views

Category:

Documents


1 download

TRANSCRIPT

  • 8/20/2019 Dr. Nirav Vyas Power Series.pdf

    1/48

    Power Series

    N. B. Vyas

    Department of Mathematics,Atmiya Institute of Tech. and Science,

    Rajkot (Guj.)

    N.B.V yas−Department of M athematics, AIT S − Rajkot

  • 8/20/2019 Dr. Nirav Vyas Power Series.pdf

    2/48

    Convergence of a Sequence

    A sequence {z n}  is said to be converge to  z 0{as n approaches infinity}  if, for each   > 0 there

    exists a positive integer  N   such that

    N.B.V yas−Department of M athematics, AIT S − Rajkot

  • 8/20/2019 Dr. Nirav Vyas Power Series.pdf

    3/48

    Convergence of a Sequence

    A sequence {z n}  is said to be converge to  z 0{as n approaches infinity}  if, for each   > 0 there

    exists a positive integer  N   such that

    |z − z 0| < , whenever n ≥ N 

    N.B.V yas−Department of M athematics, AIT S − Rajkot

  • 8/20/2019 Dr. Nirav Vyas Power Series.pdf

    4/48

    Convergence of a Sequence

    A sequence {z n}  is said to be converge to  z 0{as n approaches infinity}  if, for each   > 0 there

    exists a positive integer  N   such that

    |z − z 0| < , whenever n ≥ N 

    Symbolically we write limn→∞ z n = z 0

    N.B.V yas−Department of M athematics, AIT S − Rajkot

  • 8/20/2019 Dr. Nirav Vyas Power Series.pdf

    5/48

    Convergence of a Sequence

    A sequence {z n}  is said to be converge to  z 0{as n approaches infinity}  if, for each   > 0 there

    exists a positive integer  N   such that

    |z − z 0| < , whenever n ≥ N 

    Symbolically we write limn→∞ z n = z 0

    A sequence which is not convergent is defined to bedivergent.

    N.B.V yas−Department of M athematics, AIT S − Rajkot

  • 8/20/2019 Dr. Nirav Vyas Power Series.pdf

    6/48

    Convergence of a Sequence

    A sequence {z n}  is said to be converge to  z 0{as n approaches infinity}  if, for each   > 0 there

    exists a positive integer  N   such that

    |z − z 0| < , whenever n ≥ N 

    Symbolically we write limn→∞ z n = z 0

    A sequence which is not convergent is defined to bedivergent.

    If limn→∞

    z n = z 0  we have

    N.B.V yas−Department of M athematics, AIT S − Rajkot

    C S

  • 8/20/2019 Dr. Nirav Vyas Power Series.pdf

    7/48

    Convergence of a Sequence

    A sequence {z n}  is said to be converge to  z 0{as n approaches infinity}  if, for each   > 0 there

    exists a positive integer  N   such that

    |z − z 0| < , whenever n ≥ N 

    Symbolically we write limn→∞ z n = z 0

    A sequence which is not convergent is defined to bedivergent.

    If limn→∞

    z n = z 0  we have

    (i)  |z n| → |z 0|  as  n →∞

    N.B.V yas−Department of M athematics, AIT S − Rajkot

    C S

  • 8/20/2019 Dr. Nirav Vyas Power Series.pdf

    8/48

    Convergence of a Sequence

    A sequence {z n}  is said to be converge to  z 0{as n approaches infinity}  if, for each   > 0 there

    exists a positive integer  N   such that

    |z − z 0| < , whenever n ≥ N 

    Symbolically we write limn→∞ z n = z 0

    A sequence which is not convergent is defined to bedivergent.

    If limn→∞

    z n = z 0  we have

    (i)  |z n| → |z 0|  as  n →∞(ii) the sequence {z n}  is bounded

    N.B.V yas−Department of M athematics, AIT S − Rajkot

    C S

  • 8/20/2019 Dr. Nirav Vyas Power Series.pdf

    9/48

    Convergence of a Sequence

    A sequence {z n}  is said to be converge to  z 0{as n approaches infinity}  if, for each   > 0 there

    exists a positive integer  N   such that

    |z − z 0| < , whenever n ≥ N 

    Symbolically we write limn→∞ z n = z 0

    A sequence which is not convergent is defined to bedivergent.

    If limn→∞

    z n = z 0  we have

    (i)  |z n| → |z 0|  as  n →∞(ii) the sequence {z n}  is bounded

    If  z n = xn + iyn  and  z 0  = x0 + iy0  then

    N.B.V yas−Department of M athematics, AIT S − Rajkot

    C S

  • 8/20/2019 Dr. Nirav Vyas Power Series.pdf

    10/48

    Convergence of a Sequence

    A sequence {z n}  is said to be converge to  z 0{as n approaches infinity}  if, for each   > 0 there

    exists a positive integer  N   such that

    |z − z 0| < , whenever n ≥ N 

    Symbolically we write limn→∞ z n = z 0

    A sequence which is not convergent is defined to bedivergent.

    If limn→∞

    z n = z 0  we have

    (i)  |z n| → |z 0|  as  n →∞(ii) the sequence {z n}  is bounded

    If  z n = xn + iyn  and  z 0  = x0 + iy0  then

    limn→∞

    z n = z 0 ⇒   limn→∞

    xn = x0  and limn→∞

    yn = y0

    N.B.V yas−Department of M athematics, AIT S − Rajkot

    Convergence of a Sequence

  • 8/20/2019 Dr. Nirav Vyas Power Series.pdf

    11/48

    Convergence of a Sequence

    The limit of convergent sequence is unique.

    N.B.V yas−Department of M athematics, AIT S − Rajkot

    Convergence of a Sequence

  • 8/20/2019 Dr. Nirav Vyas Power Series.pdf

    12/48

    Convergence of a Sequence

    The limit of convergent sequence is unique.

    limn→∞

    z n = z  and limn→∞

    wn = w  then

    N.B.V yas−Department of M athematics, AIT S − Rajkot

  • 8/20/2019 Dr. Nirav Vyas Power Series.pdf

    13/48

    Convergence of a Sequence

  • 8/20/2019 Dr. Nirav Vyas Power Series.pdf

    14/48

    Convergence of a Sequence

    The limit of convergent sequence is unique.

    limn→∞

    z n = z  and limn→∞

    wn = w  then

    1 limn→∞

    (zn ± wn) =   z +  w

    2 limn→∞

    czn =   cz

    N.B.V yas−Department of M athematics, AIT S − Rajkot

    Convergence of a Sequence

  • 8/20/2019 Dr. Nirav Vyas Power Series.pdf

    15/48

    Convergence of a Sequence

    The limit of convergent sequence is unique.

    limn→∞

    z n = z  and limn→∞

    wn = w  then

    1 limn→∞

    (zn ± wn) =   z +  w

    2 limn→∞

    czn =   cz

    3 limn→∞

    znwn =   zw

    N.B.V yas−Department of M athematics, AIT S − Rajkot

  • 8/20/2019 Dr. Nirav Vyas Power Series.pdf

    16/48

    Convergence of a Sequence

  • 8/20/2019 Dr. Nirav Vyas Power Series.pdf

    17/48

    Convergence of a Sequence

    The limit of convergent sequence is unique.

    limn→∞

    z n = z  and limn→∞

    wn = w  then

    1 limn→∞

    (zn ± wn) =   z +  w

    2 limn→∞

    czn =   cz

    3 limn→∞

    znwn =   zw

    4 limn→∞

    zn

    wn=

      z

    w (w = 0)

    Given a sequence {an}. Consider a sequence {nk} of positiveintegers such that  n1  < n2  < n3  < . . .  then the sequence{ank}  is called a subsequence of  {an}.

    N.B.V yas−Department of M athematics, AIT S − Rajkot

    Convergence of a Sequence

  • 8/20/2019 Dr. Nirav Vyas Power Series.pdf

    18/48

    Convergence of a Sequence

    The limit of convergent sequence is unique.

    limn→∞

    z n = z  and limn→∞

    wn = w  then

    1 limn→∞

    (zn ± wn) =   z +  w

    2 limn→∞

    czn =   cz

    3 limn→∞

    znwn =   zw

    4 limn→∞

    zn

    wn=

      z

    w (w = 0)

    Given a sequence {an}. Consider a sequence {nk} of positiveintegers such that  n1  < n2  < n3  < . . .  then the sequence{ank}  is called a subsequence of  {an}.

    If  {ank}  converges then its limit is called  Sub-sequentiallimit

    N.B.V yas−Department of M athematics, AIT S − Rajkot

    Convergence of a Sequence

  • 8/20/2019 Dr. Nirav Vyas Power Series.pdf

    19/48

    Convergence of a Sequence

    The limit of convergent sequence is unique.

    limn→∞

    z n = z  and limn→∞

    wn = w  then

    1 limn→∞

    (zn ± wn) =   z +  w

    2 limn→∞

    czn =   cz

    3 limn→∞

    znwn =   zw

    4 limn→∞

    zn

    wn=

      z

    w (w = 0)

    Given a sequence {an}. Consider a sequence {nk} of positiveintegers such that  n1  < n2  < n3  < . . .  then the sequence{ank}  is called a subsequence of  {an}.

    If  {ank}  converges then its limit is called  Sub-sequentiallimit

    A sequence {an}  of complex numbers converges to  p if andonly if every subsequence converges to  p.

    N.B.V yas−Department of M athematics, AIT S − Rajkot

    Taylors Series

  • 8/20/2019 Dr. Nirav Vyas Power Series.pdf

    20/48

    Taylors Series

    If  f (z ) is analytic inside a circle  C  with centre at  z 0  then forall  z   inside  C 

    N.B.V yas−Department of M athematics, AIT S − Rajkot

    Taylors Series

  • 8/20/2019 Dr. Nirav Vyas Power Series.pdf

    21/48

    Taylors Series

    If  f (z ) is analytic inside a circle  C  with centre at  z 0  then forall  z   inside  C 

    f (z ) = f (z 0)+(z −z 0)f (z 0)+(z − z 

    0)22!

      f (z 0)+. . .+(z − z 0)n

    n!  f n(z 0)

    N.B.V yas−Department of M athematics, AIT S − Rajkot

    Taylors Series

  • 8/20/2019 Dr. Nirav Vyas Power Series.pdf

    22/48

    If  f (z ) is analytic inside a circle  C  with centre at  z 0  then forall  z   inside  C 

    f (z ) = f (z 0)+(z −z 0)f (z 0)+(z − z 

    0)22!

      f (z 0)+. . .+(z − z 0)n

    n!  f n(z 0)

    Case 1:  Putting  z  = z 0 + h  in above equation, we get

    N.B.V yas−Department of M athematics, AIT S − Rajkot

  • 8/20/2019 Dr. Nirav Vyas Power Series.pdf

    23/48

    Taylors Series

  • 8/20/2019 Dr. Nirav Vyas Power Series.pdf

    24/48

    If  f (z ) is analytic inside a circle  C  with centre at  z 0  then forall  z   inside  C 

    f (z ) = f (z 0)+(z −z 0)f (z 0)+(z − z 

    0)2

    2!  f (z 0)+. . .+(z − z 

    0)n

    n!  f n(z 0)

    Case 1:  Putting  z  = z 0 + h  in above equation, we get

    f (z 0 + h) = f (z 0) + hf (z 0) +

     h2

    2!f (z 0) + . . . +

     hn

    n!f n(z 0)

    Case 2:  If  z 0  = 0 then, we get

    N.B.V yas−Department of M athematics, AIT S − Rajkot

    Taylors Series

  • 8/20/2019 Dr. Nirav Vyas Power Series.pdf

    25/48

    If  f (z ) is analytic inside a circle  C  with centre at  z 0  then forall  z   inside  C 

    f (z ) = f (z 0)+(z −z 0)f (z 0)+(z − z 

    0)2

    2!  f (z 0)+. . .+(z − z 

    0)n

    n!  f n(z 0)

    Case 1:  Putting  z  = z 0 + h  in above equation, we get

    f (z 0 + h) = f (z 0) + hf (z 0) +

     h2

    2!f (z 0) + . . . +

     hn

    n!f n(z 0)

    Case 2:  If  z 0  = 0 then, we get

    f (z ) = f (0) + zf (0) + z 2

    2!f (0) + . . . +

     z n

    n!f n(0)

    N.B.V yas−Department of M athematics, AIT S − Rajkot

    Taylors Series

  • 8/20/2019 Dr. Nirav Vyas Power Series.pdf

    26/48

    If  f (z ) is analytic inside a circle  C  with centre at  z 0  then forall  z   inside  C 

    f (z ) = f (z 0)+(z −z 0)f (z 0)+(z − z 

    0)2

    2!  f (z 0)+. . .+(z − z 

    0)n

    n!  f n(z 0)

    Case 1:  Putting  z  = z 0 + h  in above equation, we get

    f (z 0 + h) = f (z 0) + hf (z 0) +

     h2

    2!f (z 0) + . . . +

     hn

    n!f n(z 0)

    Case 2:  If  z 0  = 0 then, we get

    f (z ) = f (0) + zf (0) + z 2

    2!f (0) + . . . +

     z n

    n!f n(0)

    This series is called  Maclaurin’s Series.N.B.V yas−Department of M athematics, AIT S − Rajkot

    Laurent Series

  • 8/20/2019 Dr. Nirav Vyas Power Series.pdf

    27/48

    If  f (z ) is analytic in the ring shaped region  R  bounded by

    two concentric circles  c1  &  c2  of radii  r1  &  r2  (r1  > r2) andwith centre at  z 0, then for all  z   in  R.

    N.B.V yas−Department of M athematics, AIT S − Rajkot

    Laurent Series

  • 8/20/2019 Dr. Nirav Vyas Power Series.pdf

    28/48

    If  f (z ) is analytic in the ring shaped region  R  bounded by

    two concentric circles  c1  &  c2  of radii  r1  &  r2  (r1  > r2) andwith centre at  z 0, then for all  z   in  R.

    f (z ) = a0+a1(z −z 0)+a2(z −z 0)2+ . . .+

      b1

    (z − z 0)+

      b2

    (z − z 0)2 + . . .

    N.B.V yas−Department of M athematics, AIT S − Rajkot

    Laurent Series

  • 8/20/2019 Dr. Nirav Vyas Power Series.pdf

    29/48

    If  f (z ) is analytic in the ring shaped region  R  bounded by

    two concentric circles  c1  &  c2  of radii  r1  &  r2  (r1  > r2) andwith centre at  z 0, then for all  z   in  R.

    f (z ) = a0+a1(z −z 0)+a2(z −z 0)2+ . . .+

      b1

    (z − z 0)+

      b2

    (z − z 0)2 + . . .

    where an =  1

    2πi

     Γ

    f (ξ )dξ 

    (ξ − z 0)n+1,  n = 0, 1, 2, . . .

    N.B.V yas−Department of M athematics, AIT S − Rajkot

    Laurent Series

  • 8/20/2019 Dr. Nirav Vyas Power Series.pdf

    30/48

    If  f (z ) is analytic in the ring shaped region  R  bounded by

    two concentric circles  c1  &  c2  of radii  r1  &  r2  (r1  > r2) andwith centre at  z 0, then for all  z   in  R.

    f (z ) = a0+a1(z −z 0)+a2(z −z 0)2+ . . .+

      b1

    (z − z 0)+

      b2

    (z − z 0)2 + . . .

    where an =  1

    2πi

     Γ

    f (ξ )dξ 

    (ξ − z 0)n+1,  n = 0, 1, 2, . . .

    Γ being any circle lying between  c1  &  c2  having  z 0  as itscentre, for all values of  n.

    N.B.V yas−

    Department of M athematics, AIT S−

    Rajkot

    Laurent Series

  • 8/20/2019 Dr. Nirav Vyas Power Series.pdf

    31/48

    If  f (z ) is analytic in the ring shaped region  R  bounded by

    two concentric circles  c1  &  c2  of radii  r1  &  r2  (r1  > r2) andwith centre at  z 0, then for all  z   in  R.

    f (z ) = a0+a1(z −z 0)+a2(z −z 0)2+ . . .+

      b1

    (z − z 0)+

      b2

    (z − z 0)2 + . . .

    where an =  1

    2πi

     Γ

    f (ξ )dξ 

    (ξ − z 0)n+1,  n = 0, 1, 2, . . .

    Γ being any circle lying between  c1  &  c2  having  z 0  as itscentre, for all values of  n.

    ∴ f (z ) =∞n=0

    an(z − z 0)n +

    ∞n=1

    bn

    (z − z 0)n

    N.B.V yas−

    Department of M athematics, AIT S−

    Rajkot

    Laurent Series

  • 8/20/2019 Dr. Nirav Vyas Power Series.pdf

    32/48

    If  f (z ) is analytic in the ring shaped region  R  bounded by

    two concentric circles  c1  &  c2  of radii  r1  &  r2  (r1  > r2) andwith centre at  z 0, then for all  z   in  R.

    f (z ) = a0+a1(z −z 0)+a2(z −z 0)2+ . . .+

      b1

    (z − z 0)+

      b2

    (z − z 0)2 + . . .

    where an =  1

    2πi

     Γ

    f (ξ )dξ 

    (ξ − z 0)n+1,  n = 0, 1, 2, . . .

    Γ being any circle lying between  c1  &  c2  having  z 0  as itscentre, for all values of  n.

    ∴ f (z ) =∞n=0

    an(z − z 0)n +

    ∞n=1

    bn

    (z − z 0)n

    N.B.V yas−

    Department of M athematics, AIT S−

    Rajkot

    Note

  • 8/20/2019 Dr. Nirav Vyas Power Series.pdf

    33/48

    If  f (z ) is analytic at  z  = z 0  then we can expand  f (z ) bymeans of Taylor’s series at a point  z 0

    N.B.V yas−

    Department of M athematics, AIT S−

    Rajkot

  • 8/20/2019 Dr. Nirav Vyas Power Series.pdf

    34/48

    Singular Points

  • 8/20/2019 Dr. Nirav Vyas Power Series.pdf

    35/48

    A point at which a function  f (z ) ceases to be analytic iscalled a   singular point   of  f (z )

    N.B.V yas−

    Department of M athematics, AIT S−

    Rajkot

  • 8/20/2019 Dr. Nirav Vyas Power Series.pdf

    36/48

  • 8/20/2019 Dr. Nirav Vyas Power Series.pdf

    37/48

    Singular Points

  • 8/20/2019 Dr. Nirav Vyas Power Series.pdf

    38/48

    A point at which a function  f (z ) ceases to be analytic is

    called a   singular point   of  f (z )

    If the function  f (z ) is analytic at every point in theneighbourhood of a point  z 0  except at  z 0   is called   isolatedsingular point  or   isolated singularity.

    Eg. 1   f (z ) = 1z  ⇒ f (z ) = − 1

    z 2 , it follows that  f (z ) is analytic at

    every point except at  z  = 0 , hence  z  = 0 is an isolatedsingularity.

    Eg. 2   f (z ) =

      1

    z 3(z 2 + 1)  has three isolated singularities atz  = 0, i,−i

    N.B.V yas−

    Department of M athematics, AIT S−

    Rajkot

    Singular Points

  • 8/20/2019 Dr. Nirav Vyas Power Series.pdf

    39/48

    If  z  = z 0  is a isolated singular point, then  f (z ) can beexpanded in a Laurents series in the form.

    N.B.V yas−

    Department of M athematics, AIT S−

    Rajkot

    Singular Points

  • 8/20/2019 Dr. Nirav Vyas Power Series.pdf

    40/48

    If  z  = z 0  is a isolated singular point, then  f (z ) can beexpanded in a Laurents series in the form.

    f (z ) =∞n=0

    an(z − z 0)n +

    ∞n=1

    bn

    (z − z 0)n

    N.B.V yas−

    Department of M athematics, AIT S−

    Rajkot

  • 8/20/2019 Dr. Nirav Vyas Power Series.pdf

    41/48

    Singular Points

  • 8/20/2019 Dr. Nirav Vyas Power Series.pdf

    42/48

    If  z  = z 0  is a isolated singular point, then  f (z ) can beexpanded in a Laurents series in the form.

    f (z ) =∞n=0

    an(z − z 0)n +

    ∞n=1

    bn

    (z − z 0)n  (1)

    In (1)

    ∞n=0

    an(z − z 0)n

    is called the regular part and

    ∞n=1

    bn

    (z − z 0)n  is called the   principal part  of  f (z ) in the

    neighbourhood of  z 0.If the principal part of  f (z ) contains infinite numbers of terms then  z  = z 0  is called an isolated essential singularity of f (z ).

    N.B.V yas−

    Department of M athematics, AIT S−

    Rajkot

    Singular Points

  • 8/20/2019 Dr. Nirav Vyas Power Series.pdf

    43/48

    If  z  = z 0  is a isolated singular point, then  f (z ) can beexpanded in a Laurents series in the form.

    f (z ) =∞n=0

    an(z − z 0)n +

    ∞n=1

    bn

    (z − z 0)n  (1)

    In (1)

    ∞n=0

    an(z − z 0)n

    is called the regular part and

    ∞n=1

    bn

    (z − z 0)n  is called the   principal part  of  f (z ) in the

    neighbourhood of  z 0.If the principal part of  f (z ) contains infinite numbers of terms then  z  = z 0  is called an isolated essential singularity of f (z ).

    N.B.V yas−

    Department of M athematics, AIT S−

    Rajkot

  • 8/20/2019 Dr. Nirav Vyas Power Series.pdf

    44/48

  • 8/20/2019 Dr. Nirav Vyas Power Series.pdf

    45/48

    Singular Points

  • 8/20/2019 Dr. Nirav Vyas Power Series.pdf

    46/48

    If in equation(1) , the principal part has all the coefficientbn+1, bn+2, . . .  as zero after a particular term  bn  then the

    Laurents series of  f (z ) reduces to

    f (z ) =∞

    n=0

    an(z − z 0)n +

      b1

    (z − z 0)

     +  b2

    (z − z 0)2

     + . . . +  bn

    (z − z 0)n

    i.e. (Regular part) + (Principal part is a polynomial of finite

    number of terms in  1

    z − z 0

    N.B.V yas−

    Department of M athematics, AIT S−

    Rajkot

    Singular Points

  • 8/20/2019 Dr. Nirav Vyas Power Series.pdf

    47/48

    If in equation(1) , the principal part has all the coefficientbn+1, bn+2, . . .  as zero after a particular term  bn  then the

    Laurents series of  f (z ) reduces to

    f (z ) =∞

    n=0

    an(z − z 0)n +

      b1

    (z − z 0)

     +  b2

    (z − z 0)2

     + . . . +  bn

    (z − z 0)n

    i.e. (Regular part) + (Principal part is a polynomial of finite

    number of terms in  1

    z − z 0The the singularity in this case at  z  = z 0   is called a  pole   of order  n.

    N.B.V yas−

    Department of M athematics, AIT S−

    Rajkot

    Singular Points

  • 8/20/2019 Dr. Nirav Vyas Power Series.pdf

    48/48

    If in equation(1) , the principal part has all the coefficientbn+1, bn+2, . . .  as zero after a particular term  bn  then the

    Laurents series of  f (z ) reduces to

    f (z ) =∞

    n=0

    an(z − z 0)n +

      b1

    (z − z 0)

     +  b2

    (z − z 0)2

     + . . . +  bn

    (z − z 0)n

    i.e. (Regular part) + (Principal part is a polynomial of finite

    number of terms in  1

    z − z 0The the singularity in this case at  z  = z 0   is called a  pole   of order  n.

    If the order of the pole is one, the pole is called  simple pole.

    N.B.V yas−

    Department of M athematics, AIT S−

    Rajkot