dtic - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic...

111
:'iWSl.ijrjlHU.--P.!! «'»*"'«! .1*ipii,-,-«!. = »«UP«»«.«»»««--'^^! 1 '- 11 - 1 -IWP '" I « J».!!.. il.lJ-i.t['.L.ll' .!> ' Hi»i»ii.'.LI!^gw-<*'^'"»" _ . pi, | B ILL« P a. m j i!. n |. | ii i. ii pj nt! i m ma y^ AD-769 495 ANALYSIS OF CONTROL SURFACE AUG- MENTATION IN HIGH-PERFORMANCE AIRCRAFT BY THRUST VECTORING Deas r . Warley, III Air Fo^ce Institute of Technology Wright-Patterson Air Force Base, Ohio March 1973 DISTRIBUTED BY: KfiTl National Technical Information Service U. 3. DEPARTMENT OF COMMERCE 5285 Port Royal Road, Springfield Va. 22151 ! " - : —• - -" " l **" T '' " *** ! I * II ' '-

Upload: others

Post on 24-Jun-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

■ :'iWSl.ijrjlHU.--P.!! «'»*"'«! .1* ipii,-,-«!.■= »«UP«»«.«»»««--'^^!1'-11-1-IWP ■'"■ I «■J».!!.. il.lJ-i.t['.L.ll'■.!>■' Hi»i»ii.'.LI!^gw-<*'^'"»" ■_ ■■. pi, | B ■ ■ ILL« P a. m j i!. n ■ |. | ■ ii i. ii pj nt! i ■ m ■ ma

y^

AD-769 495

ANALYSIS OF CONTROL SURFACE AUG- MENTATION IN HIGH-PERFORMANCE AIRCRAFT BY THRUST VECTORING

Deas r . Warley, III

Air Fo^ce Institute of Technology Wright-Patterson Air Force Base, Ohio

March 1973

DISTRIBUTED BY:

KfiTl National Technical Information Service U. 3. DEPARTMENT OF COMMERCE 5285 Port Royal Road, Springfield Va. 22151

!■■■■■ "■- :—• - -"■■ "l**"T'' " ■—■***■■! I ■ * II ' '-

Page 2: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

in i.»: i I i. in ."I ■ — =— ii-.—J,.,I i. ii —I,;J.I.. |i i ■ ., .Li ii immw ■-—p- .- m«- i IJ.JIIUU I I mppm l-UWW-W '-■ ,mmB^~. I I JIJIIJWLPII

•'

V

^

V

OS

Oi CO i>

ANALYSIS OF CONTROL SURFACE AUGMENTATION IN HIGH-PERFORMANCE AIRCRAFT BY THRUST VECTORING

THESIS

GAM/AE/73-14 Deas H. Warley III Second Lieutenant USAF

( Approved for public release; distribution unlimited.

■•produced by

f NATIONAL TECHNICAL INFORMATION SERVICE

U S Deportment of Commerce Springfield VA72131

III fc'iUh-^ffMMM'nri-i-1 ! --- - - -■-■^---■^■'»■*''i''^--^~i^ ' -■• * •■■ -- -- ■ ->■■ • ---^■■-=■->*—-—-"- -■ ■ -M«Mai-^aw.« rtH^r-infl-tmi-ii^-iiiii«*..-™ ■"-^3^-.üSS?üJLiijaii

Page 3: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

?

WßBmaxmmtm&BPUl Mfffiüisi ."-.■"■■' ,'■■ ';">ji!iiiiw^,ipiJB!|ijp!iHM

UncJ a i.; ü i i I ed SlM llJltV I l.f.- ill, Itl.-Il

**a. ,t«Ä ■ ■».

DOCUMENT COHTKOL DATA • K & D iritv das vi/icfllit«n of r/f/i , ?■.■■/»' »>f ■ ./> T.n f ,i»i-* trnM *</!.*• ,imi.»MfiV>r rrtisi N irf<rr;' II7M*M thf ovt-rutt r* /">rf Js cttt^hHtoeti

T7«, M!."üi*i '.i'.c.'jiinv CLASSIMCAFKN t Ufll 3 IN A TINO AC T I VI T Y f {'orpot^fo author)

Air Force Institute of Technology (AFIT-F.N) Wright-Patterson AFß, Ohio 4 5433

ünclaacifled *b. G'-'OUf

REPOBI 1.ILI.

Analysis of Control Surface Augmentation In Iligh-Pcrforraaacc Aircrux'f. by Thruat Vectoring

* OE^tmi'iivi: NO'iiflVr \il ropuri .uij (nc/usiii

A FIT Thesis (:s) AuTHORiSi (Fitst nut w, nmlJIc initial, last ri«in>cj

Deas II. Wnrley III 2d/Lt U3AP

c REPOK r L»A TC

Harch 1973 f.«. CONTRACT Of< GKAN* NO

b. PROJGC T NO.

7(1. TOTAL NO. OK PAGES

£kM Ib. NO OK REt S

29 9«. O RIGIN A 1 QR*$ F\£PQR1 NUMDC^fS)

GAII/AE/73-14

'Jb. OT"-n>< RFPORT NO'S) (Any of/icf numbers f/ta( nmy />e assigned this f« port)

IS. OISTRI L 1JTION sr»TtM(.Sr

Approved for public releace; distribution unlimited

'AfjjarbVfiriüi'/Pöü'fie ralease; tAvV APR IPO'-il?* cr-iOP"N0 M,U'TAHV 4CT,v~,y

7-SMto '■ ■'. nIX, Cai/iai.i, USAF 'Oirei-. or of Information

Air Force Flight Dynamics Laboratory Wright-Patterson AFi>, Ohio

i? AfMi'. r<.-.c

The feasibility of engine thrust vectoring for lateral control of aircraft in the high angle-r^f-utfcack rogine uas investigated for an airplanes vlfch F-Ill churae'.criatice. Ine technique uaj ^oua.i to be effective in increasing tiu: unglu-of-nttaeü; at vhich departure occurs* The ,;'.::;hi3d used au effective cynawic directional ntabillty parameter to recount for ehe thrnoc ex fact alteration of the static lateral etability parameters C_„ ^ad C- ceuld not be uned to

"3 KP,dyn predict departure in Che model etudied, it was useful in evaluating the uffectiveneaa of the fchruot vectoring conccpta.

»./ fCU Unclassified

: -^^T-> ■ IHM *-—■

Page 4: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

>wiwiMP«ii.inm'.wn. i. .«I.M.II ■MwpMlglllpgMiiMB^IiaBfWWWWWBglBgilgBjiBP1 PWgiPBBIiPPWPi '" """'Jl " IWPM»1-- II'1-IHU...II IIIPM I I ■! '""| ■'" | | M

tftnriww ti fcc '$r>77ü^-

KEY WORDS

Thruat vectoring

Control augmentation

Departure pruvoution

li Unclns.si.f i cd ■'■'"Ulllv C'l.l'.slll

. .,....,. rii^i'^ i • ' -.i~~. ...... v.

Page 5: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

■--■»■—, .- .-,

i njn.iiii wniiiimii,.ijj,t.u.—. iil.I LimiJ. ill 1.1 11.1 li.Jii. I JiilU-Mi ,i«im

c ANALYSIS OF CONTROL SURFACE AUGMENTATION

IN HIGH-PERFORMANCE AIRCRAFT 3Y THRUST VECTORING

P

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

by

Deas H. Warley III, B.S.E.

Second Lieutenant USAF

Graduc:e Aerospace-Mechanical Engineering

March 1973

Approved for public release; distribution unlimited.

«Is

— ■ - fif I,

Page 6: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

J'W^^tM^.B.w.in.-Jjw?^U.->-, ■ mm*m WWW«. l J L^^llllllJ.'ISffWSIiWJPiB W.l.)JJIMH-W IPI#BW

8

o

(;

G

***::.. ■ ■■ —' -M

GAM/AE/73-14

Preface

Poor high angle-of-attack stability and control characteristics of

most high-performance aircraft costs the Air Force, millions of dollars

annually through loss of control accidents. Even the newest o£ the

operational fighter aircraft with their collection of strakes, slats,

fences, boundary limiters, sophisticated flight control systems end

enormous vertical tails, continue to experience loss of coatrol. The

report of the Stall/Post-Stall/Spin Symposium makes it apparent that

scientists, engineers, and officials of the Air Force and other related

agencies were aware of the need for an improved control technology on

which to base design, development, and testing of future aircraft and

to solve the problems of current operational aircraft. One possible

improvement is the use of thrust generated control moments and forces

to augment the aerodynamic forces in the high angle-of-atttvck regime.

It was my intention in this study to determine analytically the feasi-

bility of thrust control augmentation. If substantially Improved

handling and departure characteristics in the tiodel coul , be demon-

strated, they would serve as a basis or incentive1 for f cure studies

of actual hardware. I was also interested in improving the digital

computer program that solves the non-linecr equations of motion to

make it easier to understand and use, simpler to modify, and to have

better printed and plotted outputs.

I want to express my gratitude to my thesis advisor, Lt Col

Frederick F. Tolle, Associate Professor and Deputy Head of the Depart-

ment of Aero-Mechanical Engineering, for his interest, assistance, and

encouragement. I wish also to thank Capt Donald C. Eckholdt and the

ii

- • ■MifijMnriiBMi

Page 7: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

uHPLsiuHHi 'i'1 ■ nmmmmi " " ■ ■■ ■ - "«' '■-•"•|"" ' .im..«. . .■ — . ......... :__.,_iu.,i...i» ' u

GAM/AE/73-U

personnel of the Aircraft Dynamics Group, Air Force Flight Dynamics

(" 'N. Laboratory. I am forever indebted to Capt Eckholdt for his willing

and enthusiastic guidance, counseling and ideas, and his enduring

patience. For my wife, «.here are no words to adequately express my

» appreciation for her patience, encouragement, understanding, and good

coffee during our past four years in AFiT programs.

Deas H. Warley III

I 1 c, I

iii

L. mil firriBM.. i in - , ■ *.rr.it i mii v ■■>*■ «i — ■'»■-—-. I --■-- --—-■- -^-■- <■..-.-i.--- m-■--.— ■■ — -.^.:^-.,^^.u^,-..— ._ ■ ■--j..--^ ,-■:, - gül

Page 8: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

SJluUJiLPHMMWWPJiiLi,. I •■-"■- PWPP '■ ■UiaiPiftiiiiLpiLi.BiiMI'^.qwPB^BiiBiljiBiBlWpi

GAM/AE/73-1A

O

o

r

Contents

Page

Preface it

List of Figures , . vl

List of Symbols vii

Abstract xi

I. Introduction 1

Background 1 Approach and Scope 3

II. Development of the Model , 5

Aerodynamic Loss of Control 5 Model Equations of Motion 5

Engine Exhaust Deflection 7 Auxiliary Thrusters ..... 7 Programmed Equations of Motion 9

Control System ..... 11

III. Simulation Test Plan and Evaluation 13

Phase I -. 13 Phase J.I . . . . , 15

IV. Results 17

Phase I 17 Phase II 23 Overall Results 25

V. Conclusions 26

Conclusions , . 26 Recommendations 26

Bibliography 28

Appendix A: Aircraft Model Data 31

Appendix B: Equations of Motion 41

Appendix C: Simulation Results 45

u iv

-■ ■ ■■• - '■----'-■ ■ i ■■■■ ■-■■-■ ■ - .-.

Page 9: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

:»mi,uii;i,i..»Hiin-ii!.i«n;pu 'mimiyu.-i.j-i.iipm ■ .i»mewwMmp»m»w>ni.wmmwini"-iiii njmw,f ijiimnim.'«.-' mfaammmnmmmH* WHWWMIP ""* I

GAM/AE/73-14

O

(..)

Page

Appendix D: Computer Program 70

Appendix E: Aircraft Modifications for Improved Directional Stability 92

Vita 96

Page 10: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

r Liffwispw, mm-.-* ■ "■?-"■ M ■"■'■!»'■ '■ju.f--,...,w.-l..w,,.w,.w.y?iT?,M.^-,F^. ,»■-,—. .,«„,.. ..-™— ., i.-•.««.. I . i.qiW ■ i W>»«*-"...-...:!" i !. »>.!. i 1 ■ ."-~ *>--W-i.. Ml U.Jl..LMJ!,l|(S3^|

GAM/AE/73-14

O Figure

1

3

4

5

6

7

8

List of Figures

Page

Comparison of Stability and Lift Characteristics for Two Configurations 6

Definition of Thrust Augmentation Position and Angles x 8

Thrust Augmentation Authority Limits . . 12

Lateral Stability Characteristics 18

Lateral Stability Characteristics , . . . . 19

Lateral Stability Characteristics 20

Lateral Stability Characteristics , . 21

Lateral Stability Characteristics 22

U

0

vi

•-^--^■-^.-^■^^..; ,^..-,.u..^^--^,....*£....--■= ^-i^.-.^. ^^^^.^JU.,,^^^^ ,_^1_^.._^—^_...-_J, ... _. .. ._... -..

Page 11: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

o

""" .1 ..■■^.■i.ijiij.i» - * ■-■T-M.I T-*-"T-' -•?■' - -Win ,!,■■■■■ I..I.IH.-I-... 1..L.. i.: m^^n.i '■"■■«■■ ■.^Mn.jWHiWffM^W^lWW»'^' *r»««!Rf"w™'WT*!TO!«^^ .>Wi.«-7^T«nTq..«i4.«i.j |ii .,!)'■■ .*'.'!I!!".B.>'-W?™»™w « ..HIN wi._. in IIIP-*.*--I.

GAM/AE/73-14

List of Symbols

A aspect ratio, non-dimensional

b wing jpan, ft

c mean aerodynamic chord, ft

(L lift coefficient

C.,C. non-dimensional rolling moment coefficient 0

C non-dire.isional pitching moment coefficient m

C ,C non-dimensional yawing moment coefficient n no

C non-dimensional longitudinal force coefficient

C non-dimensional lateral force coefficient y

C non-dimensional vertical force coefficient z

g acceleration due to gravity, ft/sec2

h altitude, ft

I engine rotor moment of inertia, slug-ft2

I moment of inertia about longitudinal body axis, slug-ft2

ü

C

I moment of inertia about lateral body axis, slug-ft 2

I moment of inertia about norroal body axis, slug-ft z

I product of inertia, slug-ft2 xz

K. control gains (i - 1,2,3,...)

L rolling moment, ft-lb

Lj—.L- rolling moment due to thrust, ft-lb

M pitching moment, ft-lb

vil

Itef! H ■■■■■ .i. n.lfc! .l..Mt*^. —•■■-•-• —■--■ -—- ■■.-■.-..^- -J- ^^—ää****—****-***^*.^-,,---,-!! r|---.-, ) , - ^ , J-.>.^„.,^. ^ ..... ■,-L~^.: ^l----.:. I»:-. .. , j , rüfM jMlmAJ^J^U

2

Page 12: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

w"-^w mwii'.'-y pjM ifpBjyfiww gpgifj |W iwwmwp"" ■!■.' w ^ »«'■ ■, ■' I™ H »W jffBI ■ ^«B»*"■ r . .■i.ji.m .„ Hiii,jL.BL»ji!imj»iii P.inpwtwiui.^;,jw^.fj^*.ji.'im-mi"..i'!wf^wf ji.M.w..<a ^* "■""■■■ ■" . -P^IPgrgppiBiWl

GAM/AE/73-14

O M^.Hj

c

KWT,NT

P

q

r

s

Tl

T2

u,vvw

W~ »W_

X

h

*WT

Y

yT

z

ZT

a

pitching moment due to thrust, ft-lb

aircraft mass, slugs

yawing moment, ft-lb

yawing moment due to thrust, ft-lb

rolling rate, rad/sec

pitch rate, rad/sec

yawing rate, rad/sec

wing area, ft2

left engine thrust, lb

right engine thrust, lb

linear velocity components along the X, Y, and Z body axes, respectively, ft/sec

velocity, ft/sec

wingtip thrust forces, lb

body axis longitudinal force, lb

body axis longitudinal force due to thrust, lb

auxiliary thruster position length, ft

engine nozzle position lengths, ft

body axis lateral force, lb

body axis lateral force due to thrust, lb

body axis vertical force, lb

'jody axis vertical force due to thrust, lb

angle of attack, deg or rad

vertical thrust deflection angle, rad

viii

, i gEJMlf"MMi ... ~V,---^ ■>,-.:-—-i_ . I ~.JdM

Page 13: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

"!■»* yw" ■**■!. "J"-J-PC-V*-^ -■»»»ii-wr*

GAM/AE/73-14

n 111. T.umiipw -i^t. iip J ..ii niw ■ ^i"i i am.» i bin wmi ■ i mm wmiiv*9?:MMm.v*>m ■ WMWIUIIMI ' p mgawpBHip'"""-' ■ WWBIPlfWPllW|^

1

o

(

0

e

6

angle of sideslip, deg or rad

lateral thrust deflection angle, rad

aileron deflection, positive when trailing edge of right aileron is down, deg

stabilatoz deflection, positive when trailing edge i;; down, deg

rudder deflection, positive when trailing edge is down, deg

6 angle of pitch, rad

p air density, slugs/ft3

$ angle of bank, rad

i> heading angle, rad

to engine rotor angular velocity, rad/sec

The aerodynamic coefficients and derivatives, and the moments of

and product of inertia, are with respect to a body-fixed system of axes.

A dot over a variable signifies the time derivative of that variable.

Aerodynamic Coefficients

C " n n6 90

*ß w

C o Q cos a 0,dyn l"ß

~ C sin a x 0

O

ix

w ,-.-.. --..- tan Ma —;■ -.^■■■- -■-

Page 14: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

Ü

GAM/AE/73-14

PUppiMÜPlBpiUffPBimPli B Bjpps m immmmmm »II-. i' nAß.^n... m •tw*-^^.^.^^^^m^-^ntm'^mmmnAMiAj\ >xvum»\^

o 3cl 2 » —-

P 2V_

C_ -—r 3C n aEk

2V

3C c - —Jf> yp 32k

P 2V_

e 3ci

2V n

3C _ n aik

2V_

?c __y. 3ik

2V_

3C,

'1. 36 6a

3C

nx 36 6a a

3C

*« 96<

3C. 2 B =■

1* 36 6 r r

3C

"tu 36 6r

3Cy V 36

6r r

3C in

mq 3ä£ 2V

3C _2 36

3C z 36

«M

3C in

r "SB"" e

■■ - •■*"iitiri,«iii""'irfii ■i»Mt'ni,iriiiii-i"iii r i ^"-■—Mfc^—- --■--■- ^^^--^ -^ -- -^ .

Page 15: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

.... HIIIH-.I |lll(«lll,l«™fm ..IJiJUIIiLJiLIH.

( J

GAM/AE/73-14

o Abstract

The feasibility of engine thrust vectoring for lateral control of

aircraft in the high anglc-of-attack regime was investigated for an

airplane with F-lll characteristics. The techniqi..■> was found to be

effective in increasing the angle-of-attack at which departure occurs.

The method used an effective dynamic directional stability parameter to

account for thrust effect alteration of the static lateral stability

parameters Cno and CfcQ. Although the effective Cno _, could not be p P PfCyn

used to predict departure in the model studied, it was useful in eval-

uating the effectiveness of the thrust vectoring concepts.

G

xi

MBMfc— mi iwir ■ ■■-- I -"-•■■■ -uarFmm«

Page 16: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

mmmpHNHPfiBIP WP " PPIB1? * ""■■ ™wM-wiw^uiiraiMiiMWjijLp.. ■ " »"« w-'-., "■■" ■■»■■■■ 1HBHBW . .*» i pupprgp« w^™vr-*w^'»""«' in«-- «■■W.J» I'.-W -II 111 flip.« W.L.I ..,fc^l4.lMll«...4..Ll I »■■"! Ml 1.11,1^111]

GAM/AE/73-14

o ANALYSIS OF CONTROL SURFACE AUGMENTATION

IN HIGH PERFORMANCE AIRCPAFT BY THRUST VECTORING

I. Introduction

(

Most modern high-performance aircraft when flying at high angles-

of-attack exhibit poor lateral-directional stability and contvol r

characteristics which can lead to inadvertent departure or loss of

control. The problem is to maintain control of the aircraft after it

has lost aerodynamic lateral-directional stability until the classical

stall angle-of-attack has been exceeded.

Background

Loss of control (departure) normally occurs when a pilot uninten-

tionally exceed? the normal flight envelope boundaries while performing

a maneuver. The situation is particularly probable and critical in

maneuvers such as landing, air-to-air combat, and precision weapons

delivery because of extreme pilot workload and stress level. Severe

loss of control may lead to operational restrictions which reduce the

mission effectiveness of the weapons system.

Air Force safety records indicate tha,- accidents dua to loss of

control account for almost 25% of all aircraft losses and almost 60%

of all aircrew fatalities. The cost of these losses is estimated to be

more than 40 million dollars annually (Ref 23). As of September 1972,

at least 10 of the 22 F-lll accidents (aircraft destroyed) were

attributed to loss of control. At an estimated unit cost of 20 million

dollars, the price tag for the F-lll loss of control accidents is a

staggering 200 million dollars.

• - 1 i ,-iifrVil

Page 17: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

GAM/AE/73-14

o

c

In. the late 1950's (Ref 29) the consensus among contractors and

the military was to trv to solve the problem by more fally exploring

the spin characteristics of each aircraft, and by teaching pilots

proper spin recovery techniques. Subsequently, it has been found that

most high-performance aircraft have a myriad of complex spin modes,

several of which are non-recoverable. The loss of control accident

trend of recent years and the complexity of the spin problem'led to

the expected shift apparent at the 1971 Stall/Post-Stall/Spin Symposium

(Ref 5). Emphasis is now placed on either preventing the spin by elim-

inating the possibility of departure or controlling the spin by develop-

ing and installing spin recovery devices.

Despite advances in analysi.s3 synthesis, development, and testing,

aircraft frequent .y reach the fully operational status before departure

problems are discovered. At that points the expense of a complete

research and development program or a large scale modification program

usually leads to a less than optimal solution. The corrective action

has been to train the pilot or limit him by regulation in order to

avoid the problem, or make minor configuration modifications in order

to mitigate the problem.

Several examples of modifications to the alrframe, control system,

or both are described in Appendix E. Few of the modifications imple-

mented to date have appreciably improved the directional stability

characteristics of the aircraft. Additionally, all of the devices

discussed have at least one of the following drawbacks:

1. The effectiveness cf the device is limited to a particular

flight regime.

2. Margin-of-safety zones created at the performance limits deny

^M. »■■^.J^l llllll fc" .!■!. II *—***■•*•■■ ■ -- — — I • --■ —

Page 18: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

vnnnflnpiff •'■■.*

GAM/AE/73-1A

full use of the maneuver envelope.

( v' 3. Pilots object ctrongly to any devices which limit cr override v

their control of the aircraft.

Spin control by using spin recovery devices is an excellent con-

cept but is linuted by the fact that there is insufficient reliable

spin data to evaluate thoroughly such a system. Data acquisition is

costly in both time and money, is complicated by the existence of

several unique spin modes for each aircraft configuration, and the

extensive flight testing required could lead to further aircraft losses.

These facts lead to the conclusion that airciaft must be designed

to be directionally stable at angles-of-attack up to and just beyond

the classical stall. Directional stability and control can be achieved

by careful kfcrodynamic design of r.he external geometry of the airframe.

/- - end control surfaces, by the addition of nonconventional control sur-

faces or forces, or by using advanced active flight control systems.

Directional stability through aerodynamic design alone has beer, achieved

on only one modern high-performance aircraft, the Northrop F-5/T-38.

Since the majority of high-performance aircraft do not have aerodynamic

directional stability, the only alternative that will provide stability

without sacrificing maneuverability is to provide lateral-directional

control by non-aerodynamic devices.

Approach and Scope

The objective of this study was to investigate the feasibility of

using thrust generated yawing Troments and side forces to augment the

aerodynamic lateral control at high angles-of-attack. The study Was

limited to a single aircraft, the F-lll, which has directional stabil-

ity characteristics typical of many modern high-performance aircraft.

3

(

■ !-■- - ÜMB --• - ■ -- -<■ - w&äaämsm ■■■ ■n..-™-*»-^---■■-—~* „-„^v.^^..^«■a- ^an- .-.-ü»^.^.^.-^-»*..

Page 19: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

GAM/AE/73-14

o

f

A computer program was developed (Appendix D) to model the air-

cr™'t using a six degree-of-freedom, non-linear formulation of the

equations of motion. It was based on a similar program developed at

the Air Force Flight Dynamics Laboratory (Ref 6). The non-linear

aerodynamic data obtained from NASA was based on wind tunnel and model

flight test data modified to match the performance characteristics of

the F-lll. While the computer program car. be used for spin analysis,

the data is valid only up to departure; therefore, this study is limited

to investigating the application of thrust vectoring to prevent depart-

ure.

The approach is to determine lateral stability criteria as a

function of angle-of-attack arid sideslip, and to evaluate the influence

of thrust cctrol augmentation on this criteria. This permits an

analytic demonstration of the feasibility of thrust control. A dis-

cussion of methods of implementing thrust control and a short synopsis

on the state-of-the-art is presented; however, actual hardware design

is not included.

C

i i il^—i ■ ■ r i^ i ■ .

Page 20: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

W*IM«-'fM.«l JH.:l.iitJ.'.IW*?H

.0

(i

GAM/AE/73-14

II. Development of the Model

Aerodynamic Loss of Control

The boundary of the aircraft maneuver envelope can be defined by

the angle-of-attack that corresponds to either maximum lift or zero

dynamic directional stability. Configuration A shown in Figure 1

maintains positive dynamic directional stability at all angles-of-

attack. The aircraft will stall in the classical sense when the angle-

of-attack of maximum lift is exceeded, and will not experience uninten-

tional departure or loss of control. In contrast, configuration B will

depart from controlled flight when the dynamic directional stability

parameter (Cn„ , ) approaches zero prior to the conventional stall

point. Since this departure occurs at an angle-of-attack that is often

considerably less than that of maximum lift, the result is the loss of

a large portion of the high angle-of-attack maneuvering capability. It

is in this angle-of-attack range that the forces and moments generated

by thrust can be used to augment those of the control surfaces whose

effectiveness has been diminished due to adverse air flow character-

istics.

Model Equations of Motion

The system is modeled by the boJy axis, non-linear, six-degree-of-

freedom equations shown in Appendix B. The forces (X, Y, and Z) and

the moments (L, M, and N) are expanded as functions of the aerodynamic

and thrust effects. Two general categories of thrust control augmenta-

tion are considered. The first deals with cases where the augmenting

thrust system produces or exerts both control moments and control

forces on the aircraft such as that produced by deflection of the

Page 21: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

ili|l..l»IMUail.iwm.r^..i»M^mn»-|..uWjiii.i.i]ui^n>J1. ._ , , , n |«I_. RH. p |. | i m|iMiL,i.. ■ »MUM. 11 lllll.l... j .,«, i.m im^nnj.juilig»

c:

GAM/AE/73-14

2.0-

1.5

CL i.o

/ / Configuration

0.5- / / A / / // // // /

O.OI c > 5 10 15 20 25 30 35 40

<2T (degrees)

.04-.

.03- /

.02- .____/

Cn oi- >*,dyn

o.o- ^^Zz -°

-.01-

0 5 IO 15 20 25 30 35 40

CC (degrees)

FIGURE 1. Comparison of Stability and Lift Characteristics for Two Configurations.

t.

-■■■,■■■«-„«■.■ *.,..-—-*.^..^—.^.■...^.-,.---..I„^^J^^i(ltrtirlr m.iV..-..,.,..^^=.-... ^

Page 22: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

—. jppK ■ *1?WIIII*J.«IM " PÜ «i ■ IHBHWIMU»! I...I...I.! ,1.1— p p. i Ij-J

GAM/AE/73-14

O

r

engine thrust. The second category applies to cases where the augment-

ing thrust system produces only control moments.

Engine Exhaust Deflection. The model assumes that engine exhaust

can be deflected by scheduling the exhaust nozzles for asymmetric

closing or by flow separation induced by injection of bypass or bleed

air at the nozzles. Although the actual hardware is not discussed,

the technology exists and is currently being applied to VTOL aircraft

(Ref 3, 8, and 26). Engine thrust is assumed to be an external force

acting on the aircraft at the nozzle position. The lengths x„, yT, and

s_ define the location of each nozzle in the body axis reference frame.

T, and T„ are respectively the left and right engine thrust forces.

Defining cu to be the thrust vector sngle with respect to the x-z

plane and ß_ to be the thrust vector angle with respect to the x-y

plane, the thrust can be expressed at any general angular position.

Maximum thrust vector angles are restricted to within the thrust

deflection limits (15° maximum) achievable by ai- injection techniques.

Resolving the forces and -loments from Figure 2,

Xj - (I1 + T2) cos aT cos BT (1)

*T - (Tx + T2) sin ßj (2)

ZT " " (Ti + V sin °r (3)

LT " (T1 " V yT Sin °T " (T1 + V ZT Sin &T (A)

Mj - - (Tx + T2) xT sin aT + (^ + T£) z^ cos aT (5)

NT - - (Tx + T2) ^ sin ßT + (Tx - T2) yT cos 0T (6)

Ü Auxiliary Thrusters. Using a rpaction control system (RCS) util-

izing high pressure compressor bleed air or small rockets in coupled

,.■ ■■-■'■■'• ,,- —-i-- ■-■- - - 1-_t^aäiä. [»■Hl Ifc I ' I ii ■ - - ■ - - -■•

Page 23: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

IUL»^._._LII,»,.,.,.,., ,,.,K, „Li« .,..,.;„.. . ^..mm-

O

GAM/AE/73-1A

WTI

WT./

^/VT

Engine Thrust

Auxiliary Thrusters

FICUBE 2. Definition of Thrust Augmentation Position and Angles.

( v

-.11^ I ■!■■! > I I II II- ■■ - II MhlMlilB» | | ||,r ■ -• • ■■■■ ----

Page 24: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

. ..U. .. .11. Ulli" Ulli. J-WIIW ,WWii*^JiJ»imi^l^.*-WM.t^.'l«WW"»ia^W-«»''i!U..ii<iiii»g^jt^

o

GAM/AE/73-14

pairs (for example: four nozzles located in opposing pairs at each

wingtip and aligned parallel to the x body axis), control moments can

be generated without the presence of translation producing forces.

Assuming the auxiliary thrusters act only in the x-y body-axis plane,

the result from Figure 2 is the yawing moment equation,

Nwr " (wTl " V V (7)

Programmed Equations of Motion. Equations (1) through (7) are

combined with the non-linear equations developed in Appendix B. The

aerodynamic quantities are expressed as non-dimensional coefficients

and derivatives that fit the data package (Appendix A). The resulting

equations of motion to be programmed are as follows:

• ov2<? u « -g sin e + rv - qw + ^^-^ (C + C Se) ° ^ 2m x Xr oe

( ) + £ (Tx + T2) cos ccT cos ßT (8)

■ OV2<5 v - g c6s 9 sin <j> + pw - ru + -t—- (C + C 5a + C 6r)

2m y ^a ?&v

+ £S(CyP+Cy° + m(Tl + T2) sin3T (9) 7p Jr

• pV2S w ■ g cos 0 cos * + qu - pv + ■'- (C + C 6e)

Zm z Zf oe

(

" m (T1 + V sin aT (10)

*.*,-**.*, ,....,, r~~.——_^„ ., .—■-«*■■-■■»—jMWM—aii^toMtitiwaMni ... — .. .. ._ ....-,-.. ..- „.

Page 25: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

tlvmm9mvwwtmmri tmrmmrm* B —| jppjBjipj ,n .I. i. .^.HP». i ..ifp... ngjpag. i-wjm ■!■ a — ■,»IIJI'-- ■'» ■«' "W^iqw

GAM/AE/73-14

o I I - I * x z xz

^z pV2Sb [C + C 6a

+ C. 6r +^r (C„ p + C. r)] hr 2V p v

+ Iz [(^ - T2) yT sin (Xj. - (^ + T2) Zj sin ßT

I *z ^,2 pV2Sb [C + C 5a + C 6r

l6a n 6r

O

(..

+ 2V(Cn" + Cnr" + I« K^ - I,) yT cos 6T P t

" <T1 + V *T Sin BT] + Xxz \ - V *WT

+ (I - I +1)1 pq + (I I - i - I z) qr x y z xz r^ y z z xz n

+ 1 I q W xz r * r

f PV2SC (Cn + C 6e + Iv C q) öe q

- (T1 + T2) x^ sin aT + (T^ + 1^ z^ cos cT

+ I (r2 - p2) + (I ■ - I ) rp - r Ir „r

r - v 4 pV2Sb [C + C 6a + C 6r n n 6a *6r +2V (CnP+Cnr)]+(Tl-T2) yTcosßT

P r

" <T1 + V Sln *T + \ - WT2> *WT + Xxz (P

(11)

(12)

qr)

+ dx - iy) pq + q ir wr)

The Eulcr relationships are developed in Appendix B.

(13)

10

-raw, ■■■in i -. -...■■ ■■-^_J.._... . ^_..■-.--- .- : ; .^-:^,._ .■■

Page 26: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

PWBJBW^W—WWW ^BHiBnaLiwWPffWff1 WH

o

r. V /

L

GAM/AE/73-14

Control Svstem

A key objective of this study is the comparative evaluation of

the response of the aircraft model to control surface deflections with

varying degrees and types of chrust augmentation. For this reason,

the influences of the F-lll self-adaptive flight control system and

the dynamics of pilot response are purposely removed from the control

loop. A simple, closed-loop, feedback control law based on yaw (ß),

yaw rate (r), and roll rate (p) is used to command aileron and rudder

control surface deflections.

«a - \ P (14)

6r - K2 r - K3 (0 - 3cofflmand) (15)

The control gains are purposely kept at the minimum values necessary to

maintain wings-level at low angles-of-attack. The low gain levels will

not inhibit departure or stall in the high angle~of-attack re^me by

inadvertent over-control. Maximum control deflection angles are

specified in Appendix A.

Thrust augmentation authority limit3 (TVA'J) shown in Figure 3 are

used to schedule both the engine exhaust deflection system and the

a* »ciliary thruster system. Since control augmentation is necessary

only in the high angle-of-attack regime, the authority is scheduled as

a function of angle-of-attack, rudder deflection angle, and a maximum

specified thrust control moment. The engine exhaust nozzles are

assumed to lie in the x-y plane and the thrust deflection is restricted

to produce only yawing moments and longitudinal and lateral forces. To

facilitate comparison between the two systems, the maximum moment

Q produced by the auxiliary thrusters is identical to that produced by

engine exhaust deflection.

11

in. iiuir "-"

Page 27: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

r

qigggMffirB-lW-if"" .'-' - papg ^J)"""1 in i ■ ip.iPWL I.H..MN mmmqmzm&mmm

GAM/AE/73-14

(

(

TVAU i.o-

o-

—c»* TVAU

'"X .__

* s. - -.0005

-.0010

-.0015

•*■— /

/ /

/ / /

/

-i 0 1 > 0 10 20

a 30 40 50

(degree« )

60 70

i.

FIGURE 3. Thrust Augmentation Authority Limits

(C_ of Model for Comparison) n6r

L 12

■a.--*.,-W. ;-M .-..-_ -^■,..^.--v^-ll|.-

Page 28: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

GAM/AE/73-14

c III. Simulation Test Plan and Evaluation

The simulation and evaluation of results are divided into two

phases. The first phase is run solely to generate dynamic stability

parameters for co-.Farative evaluation of each configuration. The

second phase consists of several "flights" of each configuration at

high angles-of-attack using various flight control parameters to pro-

duce maneuver envelopes based on criteria to be defined.

Phase I_

One simulation is run for each of the following configurations:

a. Basic configuration with no thrust augmentation

b. Engine exhaust deflection augmentation

(1) 50% authority limit (6° maximum deflection).

f (2) 100% authority limit (12° maximum deflection)

c. Auxiliary thruster augmentation

(1) 50% authority limit

(2) 100% authority limit

To provid» a basis for comparison, the authority limits and algorithm

for the auxiliary thrusters are designed to produce moments equal to

those developed by the engine e ;haust deflectors without the force

effects.

Evaluation of each simulation in this phase will be based on the

static lateral stability parameters (Cng and Cj^g) and the dynamic

directional stability parameter (Cn„ , ). The derivation of Cn„ , J r S.dyn "ß.dyn

can be found in Reference 19. This report and others (Ref 5 and 28)

show good correlation between divergence characteristics prrdJcted by

Cn« . and actual aircraft divergence characteristics. The method

13

M ■■■--

Page 29: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

TZZSXM* „,, ., .„....,-. ...n.,.:^L,,,.H1^jW, .... ,. >«.i>><m!.. M-P« ii-i -~..i.. i ji, m\ ifiiii mtmmt'-m»»r- ...nmiumw

GAH/AE/73-14

for determining these parameters is different than the normal method of

/' extracting CQQ and C^g from wind tunnel data and then calculating a

CJJO . . Since thrust effects do not appear in the characteristic

equation used for the derivacion of Cno . , terms are defined to com-

bine both the aerodynamic and thrust effects as one parameter. The

elevator control will produce a gradually increasing angle-of-attack up

to stall or departure. Aileron control will be used to minimize roll

and maintain wings level. The rudder and thrust augmentation devices

will be driven by a sinusoidal commanded sideslip angle. The resulting

motion is large sinusoidal oscillations in yaw and yaw rate with a mini-

mum of variation in the other states.

An effective C and Cp is calculated at each time interval (0.1

seconds) in the simulation with the thrust effects included.

O C, - Ct ♦ Ji Lthrust (16) eff o pV Sb

21 C - C + IT. . (17) n ., n „,,2C, thrust eff o pV Sb

CJJ, and Cn are interpolated values calculated in the computer simula-

tion based on the data (Appendix A) and exclude the effects on the

rolling and yawing moments produced by roll and yaw rates.

The change in sideslip (Aß) is calculated for the same time incre-

ment and the static lateral stability parameters are estimated by

h -IT11 (18) Ycff A0

i Ar ACneff (19)

o S.eff* Aß

14

- I JM —

Page 30: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

r

- '----—■-•■ - ■"»■ MILI.IILJ, ■■■ .i ii i I ■ II -i -J imrn^i

GAM/AE/73-14

and the dynamic directional stability parameter Is estimated by

O i. C - C cos a - — C. sin a (20) ne,dyn n3,eff Xx %HLZ

The values of effective Cno, Cj,„, and Cno . are determined and P P p»cyn

plotted as a function of angle-of-attack. The results are an indica-

tion of the combined aerodynamic and thrust effects on the stability of

the system.

Phase II

For each simulation in this phase, the aircraft configuration is

flown to departure or stall. To provide variation in departure atti-

tudes, sideslip command (3C) in the rudder control (Equation 15) will

be set at a different value for each simulation. Several simulation

runs are made for each of the following configurations:

a. Basic configuration with no thrust augmentation

b. Engine exhaust deflection augmentation

(1) 50% authority limit

(2) 100% authority limit

c. Auxiliary thruster augmentation

(1) 50% authority limit

(2) 100% authority limit

d. Engine exhaust control with rudder fixed at neutral

.(1) 50% authority limit

(2) 100% authority limit

In the final sets of simulations (Part d), the rudder will be

fixed at ?-ero deflection and the deflected engine thrust will substi-

(' tute for the rudder as a lateral control device. The authority for

15

■-ji-ifii-.-««.,-. -■ -..*,,~.-, -...

——- ■ —-■*■■»■« — ■■- ■■_--^^.,.-. .._,_^ ,.„.r__

Page 31: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

>-! i I PVP«MMIIIV|IMHni!mHHBIpnpM«pqC|

GAM/AE/73-14

(

each of tl _se configurations will use the limits indicated for all

angles-of-attack. The thrust control will be maintained at full

authority limits for all angles-of-attack. The purpose of the simula-

tions in Part d is to provide soino comparison of the control effective-

ness of rudder alone versus thrust alone.

To evaluate and compare the resulting time histories of each

simulation, divergence boundaries are established based on two

different criteria. The first compares the sign of the first and

second time derivatives of beta (8). If each is of the same sign (both

positive cr both negative), the time and aircraft attitude is recorded

and a departure condition is defined. The series of departure condi-

tions recorded for each configuration are plotted on a graph with

angle-of-sideslip (ß) as the ordinate, and angle-of-attack (a) as the

abscissa and labeled the "Beta Condition Departure Envelope". The

second criterion of departure is the completion of 20° of spin; when

this occurs, the aircraft attitude and time at the 20° point are re-

corded. The results are plotted in ct-ß coordinates and are labeled

"'Spin Condition Departure Envelope".

It is important to realize that these envelopes are not the

"maneuvering envelopes" defined in the flight manuals. Both are simply

diagnostic tools for comparing the effectiveness of each thrust aug-

mented configuration.

16

-•'-"—-• -•-"• *-" - - T -;- ..,-, ..i-g ■■_-iajä--:irfg_. -

Page 32: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

,uLl, >i<i»|iip. i|. LI j.» ii^ .unu» 11. ..I« immmmmmmmmmmmmm mmmm wmytmimm wm*mm ■"■ ■"-«■-■»-'■'-Iü .«!»"*-■■ ■**!

o

GAM/AE/73-14

IV. Results

Phase I_

The first simulation of this phase shown in Figure 4 was run with-

out thrust ajgmentation. The resulting Cn , was compared with

previous results (Ref 19 and 22) and provided baseline data against

which to evaluate the effectiveness of the thrust augmented control.

Correlation was limited to angles-of-attack less than 35° which was

the maximum angle-of-attack in the previous calculations. The present

method gave surprisingly good agreement and established confidence in

the method used in the computer program for calculating an effective

Cjv, j directly from the simulation. The remainder of the Phase I

simulation results are shown in Figures 5 through 8. The apparent

flattening of the curves in Figure 5 is due to a scale change.

The most significant effect of thrust augmentation was the exten-

sion of the angle-of-attack boundaries of departure. The fact that

simulations did not depart when the calculated CnR , became negative

was probably due to the .simplified control system used. As shown in

Table 1, both the sign change CJ. CUR , and the maximum attained angle-

of-attack are improved with the thrust augmented configurations.

Since the authority limits; for thrust control were based on the

rudder effectiveness (Cn* ), it was noted that the lower limit selected

occurred right at the Cnfi crossover. At this point, the authority

limits were altered to allow the thrust augmentation to begin at an

angle-of-attact. of 20° and reach full authority at an angle-of-attack

of 40°. The simulations were run again and the results (Appendix C)

indicated decreases in the anglc-of-attack where the sign of the

17

kjuiif iud

Page 33: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

GAM/AE/73-14

P.DP t.ao it.m u.m x.w *o.po 4».w M.OO M.DO TC.DO ALPHA - DEG

UJ / i

K luv «J-

/' ♦

/

•V

*'/

0.0P ».00 If.OO t4.00 lt.00 40.KJ 4».00 K.00 M.P0 «.00 fllTHfl - DEC-

m*

*s* Ref 19 data

.00 (.00 If.00 Ct.00 St.DO 49.00 41.00 K.O0 »4.00 7 .00 flLrnfl - DEC-

HUN NUrtBEK «147

FIGURE 4. Lateral Stability Characteristics

(No Augmentation)

18

■■■——■ : ■-■■— .„..._ ■-^—-^■■-.■:.■:■■* . -

Page 34: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

ii.i .»"im mjM.i-11 .], um u.H- iiiji.LilJH.-li-ll.!i»tU, HHIL.IUI III" ■»■« i.lHWimWlJM^IJ . ■lW»"ll|4lll|»IIIIW»I..I.I.IIH.IIUIIIl.ll. HI —^1^^

GAM/AE/73-14

(' .

(,

I CD r 3« *1

'D.OD >.0D If.DO 14. PO St.PO 49.P0 4».DO K.DO M.D0 Tt.PO ALPHA - OEfr

fa»* ■

u.» III" I a o1

it ^

/

/v * *

--/'

*+«♦

D.OD ».00 ic.oo M.w «.Po 40.OP «.DO w.ro H.PO Jt.ro

D.OD 1.00 IC.DO tl.W «.00 40.00 RLrnfi - OE&

ic.ro H.ro M.po rt.ro

nun Nimocn •431*6

FIGURE 5. Lateral Stability Characteristics

(Exhaust Deflection with 50% Authority Limit)

19

_ ..■■■....- ^ ^.-..^-l:. mM^tM,tl

, ■ Ü-. i i im-m

Page 35: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

fmvmmrm ■'■'•*' i..p>.—ni:"'"l.'l. ...WII.W.1-U.IL-II ■'1^

GAM/AE/73-14

O

P

<■ s m

♦ ♦ B ♦

. D • -^« ♦ o» A ^ ♦r ♦

Ejo

♦ ♦

l Ny J B V ♦ u« x ♦♦ E«» V 5T"

\ k

******

B ^ f

'DIOD «loo ii.ro ti.ro Jt.DO 40.00 4J.P0 se.ro f4.ro 7t.ro RLPHfl • • DEC

^ ■> •H

V

-k

D /> ̂ a t> / \ b» / \ «•* / V ■

/ \ w» t >k

U-D- i f **♦♦ ♦. * kj' j * ♦♦ i / ♦ «

K k*

1 Uln

if V ♦ k. -. «* *

♦ ♦ ♦ ♦♦♦♦*

4.

V. E «»a

'P!OD »!OD ii.ro «.pa St.00 40.00 19.00 «.oo f4.ro 7t.ro ALPHA • ■ DEC

„ •« w •

* • ♦**♦. T ♦ *» at r

4 h. • *

?--. ■ 4 * X«» * * >- 0

• ^v**0*****^^

1 ^■■'- « 1 ^ I» o ». 1 ^

0* V A X f

1

s iV/ /

B 1 ^"^ 1

'oloo i'.OO if. 00 14.00 3t.ro 40.00 4f.oo ff.ro f4.ro 7t.oo ALPHA - DEC

RUN KUHtiCH -43145

c FIGURE 6. Lateral Stability Characteristics (Exhaust Deflection with 100/.;Authority Limit)

20

-«111«*!

Page 36: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

i iiii«iiiii,nimii^wKipp-«wi.ji).iiii>iTjLi aWHyyj—W^B^BWWpiggpppi H"'-'v L«i!lilf.l,^,.ii.ipp.|(i»i,i!. ji,»jiiiii.W!>«

GAM/AE/73-14

o

o

1 m m »" V ♦ ♦♦♦♦

♦ \

Ml /♦ ft -♦-w /♦

Uje»

m$ in*" % ^% ♦ ♦

1 ct ^ ♦ ♦ •— v ♦* Us X, A ?• v 1 4* \ k /**

J B ^/

f

'oloo »'.00 ii.ro J4.ro St. 00 ALPHA -

40.00 DEC

41.00 K.OO «4.00 7t.ro

.* V v"

A o / i L . V / \ b» / \ 1 ** m z V J*; ^ j ^ ♦

tu 1 J / V* 1 / % * K t— Ult;

'.«»■ \ ♦** <%' X U

6 ♦

***4» 'ploP »loO li.DO C4.P0 3«.W 4o.ro

DEC 4s.ro sc.ro C4.ro '(.00

» f w~ \

. • ♦ **n. 2*j

» 1 «V **

/ it. 4»

V?, < a:» *> >- o i 1 ♦/ «_ -~J/**^ S __ ♦

0v

•**w^^ ^ si S* -tr»/ x f 3

1

f

6 'pioo »lap ii.ro ci.ro Jf.PC

Pi.rHfi - 49. DO 0CG

4».00 ».00 H.ro »e.ro

• PUN NUnBCK -4JH5

Ü FIGURE 7. Lateral Stability Characteristics

(Auxiliary Thrusters with 50% Authority Limit)

21

—■'-—■ ■-■ ■---■- - - IIMfMhlll llll I MM

Page 37: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

■-*. '—-..*4f ■!,.!- ■!»-i.. m i -nuitB nnww^ttgwBBip^iiw'^JwiFwwp^wii - ' .in-..i.. i 'Piwpi

GAM/AE/73-14

O

G

C7

♦ ♦ *

i.oo ii.ro ».00 Jt.w «oTöö 4>.oo «Too u.oo it.oo ALPHA - DEC

I et

a»« ■ t \

/

A ♦ ♦ ♦ 4

P.OP ».00 l«.P0 14.CO it.DO 40.00 4f.P0 K.00 (4.00 U.00 flurMO - DEO

m

"mo •

u.

*•» >- o

1

2E- 1

* *

099 X f 5

e :\/ f

1, P.00 (.00 t*.00 C4.00 JC.00 «.COO 4*.00 5«.00 M.W »t.00

BLrMP - DEC

RUN NUtlBER ■43145

FIGURE 8. Lateral Stability Characteristics (Auxiliary Thrusters with 1007.Authority Limit)

22

Page 38: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

TO.ii.wi.i.^.jmLiB

;,i iBjpiSgpi .LW.il UW.I! 'i'iwgi'nW

GAM/AE/73-14

o effective C„„ , became negative. This indicated that rather than an

"p, dyn

increase as expected, the lateral stability of the thrust augmented

configuration had decreased. For verification, the simulations were

again run with complete time histories and the departure angle-of-

attack for each thrust augmented configuration with the 20°-40°

authority limits was approximately 5° lower than that of the 30°-50°

authority limits. Since the original authority limits with initial

thrust deflection at 30° angle-of-attack and maximum thrust deflection

at 50° angle-of-attack had produced satisfactory rasults, it was

decided to proceed to Phase II with the authority limits unchanged.

c

TABLE 1

Summary of Phase I_ Simulations

Configuration

Maximum Deflection Angle(des)

0

Angle-of-Attach

of Si,dyn Sign Change(deg)

30.4

Anj at

»le-of-Attack Departure

(deg)

No Augmentation 50.0

Exhaust Deflection 0 31.7 55.6

Exhaust Deflection 12 30.7 61.5

Auxiliary Thrusters * 6 30.7 55.6

Auxiliary Thrusters *12 30.8 61.5

* Equivalent in moment to exhaust deflection of maximum angle indicated.

i (

Phase II

The intent of this phase was to provide an alternate method of

evaluating the effects of thrust augmentation, independent of the

23

\M\*mammam*i ■--■■■

Page 39: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

F..-.! IF! I ■ ■«-«

i nimm.! '^HIJI MI.I.JWH..II.

GAM/AE/73-14

method used in Phase I. The rationale for this method arises from the

( \ apparent relationship which exists between angle-of-attack (a) and

sideslip (3) at the time of departure. The idea was to select 3 and

increase a until departure occurs over a wide range of sideslip in

order to form an envelope which would describe the non-linear nature of

their relationship at departure. Unfortunately, the procedure proved

to be time consuming and costly in relation to the value of the results

obtained.

The key to defining the envelope was the development of proper

criteria to accurately determine ehe departure condition. Using the

first criterion, the first and second time derivatives of sideslip, it

was found that departure occurred in the first seconds of simulation

while examples of the full time histories shown in Appendix C show the

s~- departure occurring at times of 20 to 30 seconds. Several variations

in the method of calculating the rates and applying the test were tried

in an effort to improve the criterion. For example, minimum magnitudes

of 3 and 3 or minimum elapsed times were imposed as conditions required

before the test could be applied. None were successful; the computer

program indicated false departure immediately after the imposed limits

were exceeded.

Similar difficulties were encountered using the developed spin

condition. Since the angles-of-attack and sideslip oscillate violently

and rates are unpredictable once the spin has developed, it was diffi-

cult to predict how far to backtrack from the test point to the actual

departure point.

Examination of the time histories did not indicate why these

methods failed. The correct criterion for defining departure will have

24

(

_;j,..^ ■ ■-■■■ -- — -- ----- ■■■- ■■-•■--■-.-- -..■+. -f ti.tmSitMiahlMäm*. Mttnaaiimm mi mir

Page 40: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

.,"—.„■-.,- '-- -i-T—■"■ --I-— :-■■ ■■-, .-i- .... - - .,■,!!-.~I.-.I. ^- L.I...IH..III ...i ..I., i J i-.JniUM.IllHIIBIIIIH 1 II» ■ I I I , 11 l|N| I irj|TO1|TJTTOWpn|WH1—I

GAM/AE/73-1A

to be based on several of the simulated states due to the non-linear

( \ nature of the problem.

Overall Results

Sample time histories of simulation runs for some of the configur-

ations are shown in Appendix C. With the control law used, the model

in each case increases in angle-of-attack until departure occurs.

Examination of full time histories indicated that with thrust augmenta-

tion, the maximum angle-of-attack reached before departure is increased

by 5° to 10°. There is little apparfr ': increase in the g loadings; all

are well within pilot tolerances.

Surprisingly, the use of lateral thrust control with the rudder

held fixed provided controllability nearly equal to that of the rudder

alone. Obviously, the vertical tail and fixed rudder have a signifi-

v , cant stabilizing effect. This simulation does not infer the use of

thrust in place of the rudder, but suggests that thrust deflection

could provide emergency control device if the use of the rudder is lost.

a condition quite possible during or after combat engagement.

Time histories for some of the simulations used in Phase I aie

also shown in Appendix C. The magnitude of the sinusoidal sideslip

command ($ ) is unrealistic for a real aircraft, but provides a suitable

and simple method for extracting C , C« and C . nß B 3,dyn

25

--■ ----■• ._. - i ■ ■ i. jjMi»MimMii i r i ■! ii

Page 41: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

.i, ^iJ.ji»iLyji.i«(Pi«™i!Ä!»piMLii!i«ii!w*ie^!Mi»«iiw« ii m<mmmm**w*i*e^*mrmmmm9*m^mmtm*m0nmBm]wmi!mMib.m

(

GAM/AE/73-14

V. Conclusions and Recommendations

Conclusions

The results of the Phase I simulation indicate that both the

engine exhaust deflection and the auxiliary thrusters are effective

lateral control augmentation devices. The maximum angles-of-attack

attained prior to departure using either of the augmented configura-

tions were up to 11.5° greater than those of the conventional model.

The calculation of an effective Cn , compared well w.-'th values

from a previous study (Ref 19) for the same aircraft configuration.

Although it could not be used to predict the exact departure point in

the model used, the effective C-. , was a useful tool for selecting

the thrust control law authority limits.

The presence of side forces and the slight reduction in longi-

tudinal thrust present with the use of exhaust deflection had little

effect on the response of the model. The predominc^ control factor

was the moment generated by either augmented configuration.

Thrust deflection alone was shown to be an effect device for main-

taining control in the event of rudder control loss.

Recommendations

The following recommendations are made regarding the use of thrust

control augmentation in high performance aircraft.

1. An appropriate follow-up to this study would be to investigate

the hardware aspect in detail to determine:

a. expense of implementation

b. time responses of various control hardware (considerable

work has been accomplished in the areas of thrust control on V/STOL,

26

Idhllll t liWiTllMllii»-"-''-"-'"-"-' ^—■■•— -^-~^i--~.^-.-^ -.,---:. |,|||-i,-.,rMMi^iilÜ|fci*aaMITi -Jfcijfl*-' .J-.-..^-:-^^T_1-^.^.,^J.^J-. ■ ^_;.:..^_,-^_ ^„.„^ , ...^ -:-_.,.,..,,...,.,..... ... ........

Page 42: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

n.J. UI.L".."WWJJ.ii- pai ■ ) 'lM-^P-"Jlipj,U Uli.» Ll.^ l.L I) .III ,l|ll!) a".?'1 ■-:"W-Jtt''ja.-*^l'"l^'Wa»M'Wl'.>

t \

4

( •

GAM/AE/73-14

aircraft and RCS rockets on re-entry vehicles).

2. The use of augmented control by thrust vectoring should be

applied to other multiple and single engine aircraft with histories of

lateral-directional stability problems at high angles-of-attack.

3. A suitable criterion for determining the. departure point in

the six-degree-of-freedom, non-linear simulation needs to be established.

This would allow the calculation of an a-8 maneuver envelope from the

computer simulation.

27

., -.v,,^-.-.^.,-.,...,-.-.... . ■—-.^^.^.^^.t^i;.,^-. _„. ...... ^.-...i^^,, iwüüünufc'Mgw-TiiB 11 ■—i i to ■■--'— '- — älüMM■"•*-■

Page 43: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

-i-i iFie*!,iiiiu.w."iftu ii.i...m Um HBÜWBDH

GAM/AE/73-14

(

Bibliography

1. A Proposal For A Stall Inhibitor And Automatic Departure Prevention Device. CAL Proposal #3362. Buffalo^ New York: Cornell Aero- nautical Laboratory, Inc., October 1971.

2. Adams, William M., Jr. Analytic Prediction of Airplane Equilibrium Spin Characteristics. NASA Technical Note D-6926. Washington: National Aeronautics and Space Administration, November 1972.

3. Advisory Group for Aerospace Research and Development. Fluid Dynamics of_ Aircraft Stalling. Conference Proceedings #102. North Atlantic Treaty Organization, France: AGARD, April 1972.

A. Aeronautical Systems Division. Ad Hoc Team Report on F-lll Stall/ Post Stall/Spin Prevention Program. Wright-Patterson Air Force Base, Ohio: ASD, August 1970.

5. Air Force Flight Dynamics Laboratory. Stall/Post-Stall/Spin Sym- posium. Wright-Patterson Air Force Base, Ohio: AFFDL, December 1971.

(

6. Bowser, D. K. and T. J. Cord. Post-Stall Transients Computer Program. Wright-Patterson Air Force Base, Ohio: Air Force Flight Dynamics Laboratory, September 1972.

7. Burk, S. M., Jr. Exploratory Wind-Tunnel Investigation of Deploy- able Flexible Ventral Fins For Use As An Emergency Spin Recovery Device. NASA Technical Note D-6509. Washington: National Aero- nautics and Space Administration, October 1971.

8. Carlson, N. G. Development of Flight-Weight Deflection Device Ana Actuation System For TF30-P-:-. Engine. i'WA-3266. Harcford, Connecticut: Pratt and Whitney Aircraft Division, United Aircraft Corporation, December i967.

9. Chambers, J. R. and E. L. Anglin. Analysis of Lateral-Directional Stability Characteristics of A Twin-Jet Fiahter Airnlane At Hii'h Angles 01" Attack. NASA Technical Note Ü-5361. Washington: al Aeronautics and Space Administration, August 1969.

Nation-

10. Chambers, J. R.; E. L. Anglin; and J. S. Bowman, Jr. Effects of A Pointed N£se On Spin Characteristics Of A Fi ghter Airplane Model Including Correlation With Theoretical Calculations. NASA Technical Note D-5921. Washington: National Aeronautics and Space Adminis- tration, September 1970.

11. Convair Aerospace Division. F-lll Loss of Control Characteristics. GD Report /'FZE-12-392. Fort Worth, Texas: General Dynamics, CAD, August 1972.

28

Page 44: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

*MW^^^W»-. ■ in n

GAM/AE/73-14

O 12. Convair Aerospace Division. F-lll Stall/Post Stall/Spin Prevention

Program. GD Report #FZE-12-366. Fort Worth, Texas: General Dynamics, CAD, July 1971.

13. Convair Aerospace Division. Reduction in F-lll Stall Accidents Through Stall Inhibitor and Landing Configuration yarning. GD Report. Fort Worth, Texas: General Dynamics, CAD, July 1972.

14. Dynamics of the Airframe. Navy Department Report #AE-4 II. Washington: Bureau of Aeronautics, September 1952.

15. Eckholdt, D. C. and M. S. Dittrich. Performance, Stability and Control. United States Air Force Academy, Colorado: Department of Aeronautics, 1967.

16. Etkin, Bernard. Dynamics of Atmospheric Flight. John Wiley and Sons, Inc., 1972."*

17. Gilbert, W. P. and C. E. Libbey. Investigation Of An Automatic Spin-Prevention System For Fighter Airplanes. NASA Technical Note D-6670. Washington: National Aeronautics and Space Administrations, March 1972.

18. Grafton, Sue B. and Ernie L. Anglin. Dynamic Stability Derivatives at Angles or Attack From -5° to 90° For A Variable-Sweep Fighter Configuration With Twin Vertical Tails. NASA Technical Note D-6909. Washington: National Aeronautics and Space Administrations, October 1972.

19. Greer, Douglas 11. Summary of Directional Divergence Characteristics of Several High-Performance Aircraft Configurations. NASA Technical Note D-6993. Washington: trations, November 1972.

National Aeronautics and Space Adminis-

20. Hancock, G. J. Problems of Aircraft Behaviour At High Angles Of Attack. AGARD-OTAN DPP/16A/67. North Atlantic Treaty Organization, France: Advisory Group for Aerr-pace Research and Development, April 1969.

21. Klinar, W. J. A Study By Means of A Dynamic-Model Investigation of The Use of Canard Surfaces As An Aid In Nocovering From Spins As A Means For Prcv/ntin-": Directional Divergence Near The Stall. NACA Research Memorandum L56323. Washington: National Advisory Committee For Aeronautics, May 1956.

22. Libbey, C. E. and J. S. Bowman. Radio-Controlled Free-Flight Spin Tests Of A 1/9-Scale Model of The F-111A Airplane. NASA Technical Memorandum SX-2008. Washington: Administration, May 1970.

National Aeronautics and Space

29

" -"-trtt. |

Page 45: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

r fflvppmi Li.«.." «.. ■ ■■■I . t.LmiMVM.UK ■*■.■■ Jll

GAM/AE/73-14

C

23. McElroy, C. E. and P. S. Sharp. An Approach To Stall/Spir. Devel- opment And i'er.t. American Institute of Aeronautics and Astro-

nautics Paper #.71-772, July 1971.

24. McKinzie, G. A.; J. H. Ludwig; E. N. Bradfield; and W. R. Casey. P-1127 (XV-6A) VSTOL Handling Qualities Evaluation. AFFTC Tech- nical Report No. 63-10. Edwards Air Force Base, California: Air

Force Flight Test Center, August 1968.

25. Moore, F. L.; E. L. Anglin; M. S. Adams; P. L. Deal; and L. H. Person, Jr. Utilization Of A Fixed-Base Simulator To Study The Stall And Spin Characteristics Of Fighter Airplanes. NASA Tech- nical Note D-6117. Washington: National Aeronautics and Space

Adminstration, March 1971.

26. Morello, S. A.; L- H. Person, Jr.; R. E, Shanks; and P.. G. Culpepper. A Flicht Evaluation Of A Vectored-Thrust-Jet V/STOL Airplane During Simulated Instrument Approaches Using The Kestral (XV-6A) Airplane. NASA Technical Note D-6791. Washington: National Aeronautics and Space Administration, May 1972.

27• Program Management Plan, Advanced Development Program, Stall/Spin. PMP RCS: DD-DR&E(AR)637. Wright-Patterson Air Force Base, Ohio:

Air Force Flight Dynamics Laboratory, March 1972.

28. Weissman, Robert. Criteria For Predicting Spin Susceptibility Of Fightcr-Tyne Aircraft. ASD-TR-72-48. Wright-Patterson Air Force

Base, Ohio: Aeronautical Systems Division, June 1972.

29. Wright Air Development Center. Airplane Spin Symposium. 57 WCLC- 1688. Wright-Patterson Air Force Base, Ohio: WADC, February 1957.

( .

30

.. ^■---■^-.._J_--„^^„. Jjma^,- if Uliil lillilir'ir " ' — -■'<•■-■ ■"■ J-^--*»tJM"'iit^.w-^.:„-^:1^^^ ■,.--■..-.>- .-.a..

Page 46: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

>, , ..«.I—^.>l>—l W 1 ! ■ ■ ■'■ m '" - "I.- m ■- HUPBW

GAM/AE/73-14

Appendix A

Aircraft Model Data

(Ref 20 and 23)

A three-view of the F-111A modeled for this evaluation is shown

in Figure A-l. The non-linear aerodynamic coefficients and derivatives

are prssented in Table A-l. The following are the aircraft model

general parameters.

Overall:

Length 72.13 ft

Height 17.12 ft

Weight 50,000 lbs

Wings:

Span 63.0 ft

Area 525 ft2

Sweep 26c

Mear Aerodynamic Chord 9.04 ft

Aspect Ratio 6.97

Inertial Terms:

50,000 ft2 - slug

315,200 " "

xz

,351,500 "

. 0

. 0

u

31

"' -■ "'m mi 1 MMdMJMT , |^i,- >,„,----■

Page 47: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

.■t-.j^K^fii .1.1}mmipp. . ■ -■■ .■■iiinuui.j-wiiii. 'iwii'Mi BW|WWgiHiPWIWWIgfllWWPBPIPtWWWPWBPi

"1 GAM/AE/73-14

Maximum Control Surl'ace Deflections:

C)

(

6e 10, - 25 deg

6 a ±15 deg

6r ±30 deg

32

..-^.^.^■-~^ ^-■^-^:,J-J^-E,^i^ -- - ■■ ■ >.—, ^^^^ü^^— >,

Page 48: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

ij**Mj AJiIU-.-WVIT ».i■. '■■ njijtjgy»'■■nff.w.iPJffBm,JIMmh*"r- >i..w.H»*'BWW!I-""W.'. I.IIUMin P.wwi. ipi■ im,!, uwwii,w«....n,i,■■■! »u..Ljjipi-^m «Pvi.m ■■-■. i !»i^ i PII im nm läppWWIIH HUBS WWü.wuPW J | tmmmmm^^^m'^^'m^vimm^mmmiif!m^r^^mm^^^nr^

GAM/AE/73-U

C

FIGURE A-l. Three-View of the Aircraft Configuration.

33

'■--""- ■■-■'- ■■ -- —■i^--* ^-■■■■-^ -^- ■ -■■■■■ ■■ '-•"--■■^--—■-'•*--■ ■■■^■- f.-,,- ,-~-^ at —„„...-—

Page 49: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

r

mmmmxmmm -" ii i in» i i W«™W"1I i .. .u.iJltH

GAM/AE/73-14

( ooooooooooooooooooooo OOOOOOCOOOOOOOOOOOCOO «l-J-JWONHCO-J^CMJMninMflOHNHrl OOOOrHCMcn-*r\OrHmc>encMrHOOOOOO

o

"8 u

ooooooooooooooooooooo ooooooooooooooooooooo t^r^t^t>-COeM\Dr»COCOCOCOvOa\lMOrHrHrHrHrH HHHHHNNNNNHOHOiBOHHHi-IH

I I I I I I I I I I I I O I I I I I

( >

*o « O o o o o o o o O O o o O O o o o o o o o

u I-l O o o o o o o c O c o | ^ o O o O o o o c o r*> CM en \D en r-\ o n m o ON Cl CO CC T—1 r-~ ON CO rH CN o vO

o i-l rH IH rH o o <r o CM r» CM rH r» ̂ O CM <r rH o o rH rH

o rH •H 1 CM CM 1 1 w

W *J C <U •H u «H «4-1

rH 0) O 01 < O o O o o o o o O O o o O o o o o o o O O o A rJ O o O o a o o o o o a c c o o o o o en O o

w o* <r C\ ON \D CO cc o 00 ^C CO m c I-- LO r^ m o o en <r m ►J u CJ h r-t I-l rH rH rH r—', iH rH CM en in O in -3- CM rH rH rH rH rH rH

§ 1 a , 1 1 1 1 1 1 1 1 I I 1 1 1 1 1 1 1 I , 1 H 8

& o u <

<fl O o o o o o o O o o o o O o O o o o o o o Pu U O o o o o o c o o o o o O o o o o o o >—s o

c I-l rH rH rH rH o rH 0> ^c CO o v£ o <r rH r-- m m ̂ ** <r m o rJ o o o o o o o rH rn m ̂ T r^ rH rH cn <r o rH o o o

I I I I I o I I I I I I

«0 P. U

5n u u V a

ooooooooooooooooooooo ooooooooccocoooocoooo envocMo>en-j-env.ocr>'^vO<no^3-<'Coo^3'CCr-Hen OOrHrHCMCMCMCMCMCMmCMr^inrHrHOOinvDr^

HHrl I I

I momomomomo'nomomomo

rHrHCMcMencn«3-vjmmvDvcr>r»oücX3o\

V,

J

Page 50: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

"1 GAM/AE/73-14

id «o

o

60

n 0) p.

ooooooooo\oooooN<jNO>o>o>r^voir>in«3-mv£>mcM ooooooooooooooooooooo ooooooooooooooooococ. o oooocoooooooooooooooo I I I I I I I I I I I I I I I I I I

«a «o e

60 V TJ

u <u p.

OOOOOCOOOCOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOO

I I I I o

60

u

OOlHOOiH'HrHi-lr-'CNrHOOi-imfOCSfvJCMC^ ooooooooocoooocoooooo OOOOOOOOOOOOOOOOOOOOO

i * r r i r r r

n «j

• g 4J •H C U o •H o i»-l «*^ »»./ >U 60

0) (U fH o n 'O

1 u «o <! c* VJ

o o Q>

3 1 3 •a

o

60 <U

u •a o

c u u 0)

a.

OOOOOOOOOOOOO OOOOOOOOOOOOO OOOOOOOOOOOOO

MWHOOOHN OOOOCOCO O C O o c o o c oooooooo

o O O I I

T-lrHlHr-liH^r-liHO T^vOvOvCvO^CvOvDvDvp oooooooocc

OOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOO

I I I I I I I I I I I I I I I I

u 60

u 4)

lf|<JWHO\ONnN<MT|^OvrHOin-*lftOLlOO «nrof^roP'inrOr-irncNrgr-ii-i-.tr-ioCOOOC OOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOO

I O I

Jd 60 (X t)

33 o »n r-( I

I

Oi/"i©"">oiriOiAciriomomoinomo i-iH<NCMmfnv3-<j-inirivo^of^.r«.ccooc>

35

— -

Page 51: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

*——"«'■'— ■ < ■-.—

GAM/AE/73-14

c O 0)

0*

ooooooooooooooooooooo OOOOOOOOOOOOOOOOOOOOO «tf«4<rcMaifir^O<NOcni-iOOCOOOOOO oo©«tff»cs\or^r^<rivoooooooooooo

N(NNNNCMNnn'*'Cf<'H I CO CM I I H N I I I I I I I I I I I I I I I I I

00 o>

U 0)

"tM<10flNO<OHiON>»<JN<*00000 voo\OOOrHrvi«crr-.vOTH<Tr^i-|cot-i>*'<f<-«a-«j-

©oooooooooooooooooooo I I I I I I I I I I I I I I I I I I I I

to 01

o» -a «o

N M U 01

Oi •w

ID 4J

/•""s c • o> *J •H fi O o •H o U-< /-N v-/ IK 00

01 0) H o 01 *o

1 u «o < X n

u O 01 M 1 p. ►4 V-*

§ a) I •a 0

01 <

Ninifi^-*incoo>jio(M»o>jNoo>ooootsN lHt-li-lr-li-li-li-tCNrMCNCMr-l.-^iHi-tCi-lf-HOOO OOOOOOOOOOOOOOOOOOOOO

I I I I I I I I I I I I I I I I I I

rHmOminvor^oococMr-tmrooomr-.cNOCM^Oi-i vciiri-jnMrioCnNn-jvt-j-ctiAioininvo OOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOO

I I I I I I I I I I I I I

ooooooooooo^ovrcMocNoovi-oo OOOOCooocor^-crimONCO<rc'ja>f*">cy>G'>

I IrHHrHtMCMrHrHiHrHrHr-lrHr-liHrHiH I I I I I I I I I I I I I I I I

o

OOOvooo.-it-it-iooomr-vJ-SNi-^vToou-ir^cvifM

OCNJMCMO^fi^CTvONr^-jOf^fOmcoromvj^-^- OOOOOOOOOOOOOOOOOOOOO r r r ,•••••■ ° •

,C 60 0. 0)

O u-i o I

m oinoinomo^noinomomomo Hr-tr>4cMnmsr«3'inm\c>\or^r>.(»ooo>

3G

■■-_■- -^ ... ■ n i it I nt ■ r

Page 52: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

wnm '"" ■"" ,™,u,..j.i, . ■J.wiii«

GAM/AE/73-1A

ooooooooooooooooooooo

ooooooooooooooooooooo I I I I I I I I I I I I

OOOC OOOOQOOOOOOOOOOOO O soi^^vccNvoooooiricosrr^r^eocMOooocir»» ei nncinciNOHNNnciHOHM<nflNH ooooooooooooooooooooo

I I I I I I I I I I I I I

ooooooooooooooooooooo CM nnnrtnNOHNnnNONHONNHOO

ooooooooooooooooooooo I I I I I I I I I I

ooooooooooooooooooooo \Ov£>mmv£>CMLO>£)>-tr~i-(nrTl^a3CX3i-HvCt^<-00 HHHHHHOONMNHOrivfnMOOOO ooooooooooooooooooooo

I I I I I I I

c o u

4: M i

0>

o I co

■ •rl Ü

•H «n **-! cu o o CJ

1

o rH

I

o CM

I

ooooooooooooooooooooo ooooooooooooooooooooo oooocoocooococoocoooo ooooooooooooooooooooo ooooooooooooooooooooo

ooooooooooooooooooooo NNMNNHOOMNNHHPl-}>JNOHHrl ooooooooooooooooooooo

I I I I I I I I I I I I I I I I

ooooooooooooooooooooo N^NCn-j-jH^mTOCmoonnNir, <r iy\ ooooooooooooooooooooo I I I I I I I I I I I

o

< o CO

I

ooooooooooooooooooooo •j^stnnciONnNr, rirtOHsiionMHO ooooooooooooooooooooo

o oooooooooooooooooooco <-<j-nnro^joMfvJ'-ftnsTfOfn<rr->p^u-inmf-j ooooooooooooooooooooo r i* r r r r ,••■••••

It 60 U 0)

33

I lOOiOOiOOi/^. o

r-< i-( CM CM CO Cl vj omomomoino ioio>j3vor^r»-ooooa>

i

L 37

■MM

Page 53: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

-i ..J.-II.. < iiii.iu. ■ II ill i II. II lll.JIUJI.ipi ■"» ■""" I. '■"■'■ I —^WWH^^<^li—«^P*^W^^»^"WW

GAM/AE/73-14

o

s u

OOOOOOOOOOOOOOOOOOOOO OOK10CC!J<HN«03hONfl»TvOOOOMiON(0

• fOONinMJvOWOsf-*>OMCOCCCOi3iW(MPOV O OOOOOOrHOOOOOOOOOOOOOO

* o {\ i* r r r r r r r r r r r r r r r r

ooooooooooooooooooooo • h'JvtUlNHOOlNCN^N'^ffiONCIrt-JUl

O t~<ocN<j'vot^.r^u"i«.l-roc>-s-iriOvOf-»r~.f-^r"-r>»r-- ci ooooooooooooooooooooo

f i* r r r i r r r r r r r r r r r r r r

OOOOOOOOOOOOOOOOOOOOO • '«fNNWiCMCOHinNM'IOiflHNnNOHM

O ooNn-j-a npiHHHNn-jiriinininunom es ooooooooooooooooooooo

f r r r r r r r r r r r r r r r r r r r

ooooooooooooooooooooo sriONHn^no\oc rooMONOoor-*voo^or-» OOHNNCMNHHOCOHHNNCJHOON ooooooooooooooooooooo

i r i r r r r r r © r r i i i i i o r r

ooooooooooooooooooooo o? ooooooooooooooooooooo w o ooooooooooooooooooooo

<*». ooooooooooooooooooooo ' I

*J ooooooooooooooooooooo G CO 0 4J o c

•H H o • ooooooooooooooooooooo

1 «rl O r-lrOOOf^OOCTsvOr^vCr^mfNCOCOOr^OI-^^CS < «M iH OOOHMNHHOCCCOrNMNMNNM

<H I OOOOOOOOOOOOOOOOOOOOO W <u : ►J O III

§ o

ooooooooooooooooooooo C O <J^NO<rOn^Nin(0<r!OCMNNN5iff\0 >> <N OON<t>j>JMHrtHOHnininnLiir, >i<Mfi

"O I OOOOOOOOOOOOOOOOOOOOO o U I

• OOOOOOOOOOOOOOOOOOOOO O r-frirrivo00omr~-o>nf**ir~tnoorvJ'>jrorvlc>j(vl «*> r-locN<-vov£>>ß«crcici:^r'->or-.r~-.i-»r-.r>»r^.r--.t^ I ooooooooooooooooooooo

II*'

• ooooooooooooooooooooo O o>H-<tt-ivov£)vou~iLnr~icoor-Ha>r^-r-(tNninmv£) •» i<iHNifliNai!rii^vOinnvD^cocoov5\Cimc\a>

I ooooooooooooooooooooo I I

momou">omoinou"iomou">oi/"io"">o I i-t<HCNf>4rorosr<i-u-iuivOvor^.r-.coeOai

(0 00 4J <u <u •a m ^

rt ^~\ X 60 tu <u H "O

38

Page 54: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

r GAM/AE/73-14

O

«NOOOOOOOOOOOOOOOOOOOO • o\vDo<oeoMCi\OHirnotsn<fin^OMOOin-J

«* Ht^srsrvj-fOforosi-invrMoor-isTi^ooot-ftN ' l' l' i' I'HH'H

I I I

o CO

©oooooooooooooooooooo

HcNCMCMt-iooooooooot\isrr-»a>rHmsj-

I I I I I I HrlH I I O

OOOOOOOOOOOOOOOOOOOOO • COVßl^.vOOU~lrHrHr^f^Otnr-|CMC-|Ovr><^OOCN|CM

O «*coH«Nc*iHCMvo<rr-i<rvOCT\oocor»-oa>ocMrv fN CNHi-lOOfMrorofr)fOmcso>-<<yisJ-r~a\fOirivo

I I I I I I I I I I I I I I I I I

I u V

o

OOOOOOOOOOOOOOOOOOOOO H\omO{Ncoci,-ir~cMc7NOr^cc\ioorgoor-inro o^r-voinvocsiooorrirHr-)inO'HOO<rrHaiOCT\<r

I I I I I I I I I I I I I I

OOOOOOOOOOOOOOOOOOOOO a>ronr~-oooo<jr-it-ic\ror-vDr^romro>oi»c>-3' csr»»vr>c")«.-rrHocor")r-»Ot-ir--i<roOLrir-ic^i-ir>.

o

4J Ö m o *J O ti w <U

•H H o

1 ■H «5 <4J

«4-1 W OJ ■J o Sq u

I I I 1 I I I I I I I I I I I I I

• OOOOOOOOOOOOOOOOOOOOO O ^c^HiHcNc^r^c^ror^roin^rinoomooc^^-r-ir-i

i i r i i i i i r r r r r i' H pi H H I I I I

1 O

3

OOOOOOOOOOOOOOOOOOOOO cs oimf-'roe^f-ic^cMcNco^rr^r^^i-icMcMccr^voo I HrHiHOOtNfsirOrOc-4^JrHiHcM-*vDOOOf*"l'ni~~

I I I I I I I I I I I I I I I I

OOOOOOOOOOOOOOOOOOOOO tn*tfvocjor-rHrooocMcsjro<r.-Hc*inr~r^cQLnco HNNNHOOOOHHOOHNinNO>Hn>J

I I I I I I I I I

• OOOOOOOOOOOOOOOOOOOOO •» «-(cncN4iHt-<r~c^ioocrifrioo<rr>.c>jooa>rHvDoror^

I I I I I I I

(0 60 *J <U <D -o pa \~*

H) /-v x. 60 a <V

SI

U1 I

o m o i/ioiooiAo»/'tOirio«no rHCMCNmm«*<i-inirivtjvor»

•r. o "■> o r* oo co o\

39

Page 55: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

r ■ ■»Uli

GAM/AE/73-14

ooooooooooooooooooooo • fMrHOOi^'-<OvjDr*!-ir--c^mcvj.-tm^c»3,ma\>»

O »3-vo**iH\ocNi^r->>3-T-i<r<rrjc»ioooo»3-cMiHOO

o I I I I I I I I I I I I I I I I I I I

8 ooooooooooooooooooooo i-)rHtnr^r-o>r>.<Mnr>.vocMOO-3"-*rr>Ot^OO

I I I I I I I I I I I I I I I I I I I

OOOOOOOOOOOOOOOOOOOOO

O pJ<Noco\x>mcNOO<ri-J-oooocovoomr~r^r^ui «v| ficorocMcMpsicsiHHeMCMmcncMCMnforOfOOfo

I I I I I I I I I I I I I I I I

OOOOOOOOOOOOOOOOOOOOO ifl<*NOOo\coifiH<rijv(NcN»io«jrso<*»oeo HiHrHiHrHOOOOOOr-lrHOOOOrHiHrHr-l

I I I I I I I I I I I I I I I I I I

o 4J c n o 4-1 O C \^ CO

•n ft t)

1 •H < <♦-(

«w w (U .J o pq u

o r-i

I

ooooooooooooooooooooo ooooooooooooooooooooo OOOOOOOCOCOOOOCCOOCOO OOOOOOOOOOOOOOOOOOOOO ooddoddoooodooooooodd

ooooooooooooooooooooo incoi^.p,iOvoc\!HcriCNiav<rc>oc">o*3-r--a\Or-» HrlHHHHHHHriNNNHHHHNNnn

•a o

I

o I

ooooooooooooooooooooo •?riH*N.nt>jiriioocN<nn(n^NNvori

• ooooooooooooooooooooo O vo^r^CTifiocMOO-crtHcNr-iorNvrocmi-ivoo

• OOOOOOOOOOOOOOOOOOOOO O MOMNniOH<J-ia!NNNfl0OIOri00CMflO «» <}'COoor«-<ror~»eo.v3-r-ir>in^(rtr^rHComr-i^HCN

o (0 M 4J 0) 41 "O

.c to

33

OvAOiOOmOUIOiAOiOOmOmOiriOiOO iH i r-trH<Ncsfntn<r>3-4nir»vo>or^.f^oococTi

I

40

Page 56: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

™ ■* ^----v- ■--.-».j«Pi..ii-.«j-jlii ..■iw..i,i>jj.HVw«i>fi;iil j;j.iiij.ij.wii«iii.ii■»].,,iMi i|«BnMMM^IM!PPW^^P^^u!<*n9^WP«|mnpRnpW

GAM/AE/73-14

o Appendix b

Equations of Motion

(Ref 14, 15, 16, and 25)

Assuming

1) negligible earth rotation,

2) negligible changes in moments of inertia,

3) x-z is a plane of symmetry,

4) h is the only significant rotor term, and

5) negligible changes in the rotor term,

the force and moment equations in the body-fixed reference frame

(Euler's equations) are

X - mg sin 8 = m[u + qw - rv]

Y + mg cos 8 sin <t = m[v + ru - pw]

Z + mg cos 8 cos 4> ■ m[w + pv - qu]

L " V " Xxz (* + pq) " (Iy " V qr

M " V " X» (r2 - p2) - (I* - V *> + r W H - Itf - Ixz (p - qr) - (Ix - Iy) pq - q^u.

Rearranging the equations for use in the computer program,

u B g" sin 8 - qw + rv m

v ■ — ■*• g cos 8 sin $ - ru + pw

w ■ — + g cos 6 cos i> - pv + qu m

(B-l)

(B-2)

(B-3)

(B-4)

(B-5)

(B-6)

(B-la)

(B-2a)

(B-3a)

41

-■■"-■- ■- ■■•-■" Wj-.JJMBM^a^afa^M^^^il^Ui^B^i

Page 57: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

GAM/AE/73-14

p • (I t + I N+I (I -I +I)pq v z xz xz v x y z' ^H

C (l,ly - I22 - Ix2

2) gr + lxzIrgg)r} (B-4.)

q - \ {M + I (r2 - p2) + (Iz - Ix) rp - rl ü>r) (B-5a) y

r - \ {N + Ixz (p - qr) + (Ix - I ) pq + q^W.} (B-6a) z

Using the proper transformation matrix to obtain the Euler angle

rates from the angular velocities,

<J) «• p + q sin <j> tan 8 + r cos <j) tan 9 (B-7)

8 - q cos $ - r sin <J> (B-9)

\Ji « (q sin <(> + r cos 40 sec 8 (B-9)

To record the changes of altitude, down-range distance, and cross-

range distance, the earth surface reference frame is used assuming a

V . - flat earth approximation and positioning the origin at the initial air-

craft position.

x ■ u cos 8 cos ty + v (sin <f> sin 8 cos ^ - cos (J> sin \JJ)

+ w (cos <J> sin 8 cos i> + sin <p sin ty) (B-10)

yo ■ u cos 8 sin + v (sin 4> + w (cos <{> sin 8 sin \\> - sin <J> cos 4>) + v (sin (J> sin 8 sin t + cos 4> cos i|>) (B-ll)

z ■ -u sin 8 + v sin 4 cos 8 + w cos A cos 8 (B-12) e

The preceding equations (B-la through B-6a and B-7 through B-12)

constitute the state equations used in the computer program.

The aerodynamic angles are described in the body axis reference

frame by the relations:

a - tan"1 - (B-13;

ß - sin"1 ^ (B-1A)

42

,-■■■■ - ,»„.iä. ■ , ■ ^-- .w- ■■_>—- -,-,■ „■ nYr „- ,,a ^^^Ij^-jj^

Page 58: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

GAM/AE/73-14

Derivation of the equations for the rates of change in angle-of-

( attack and sideslip:

Differentiating equation (B-13),

• . H2 -w" (B-15) u2 + w2

Differentiating equation (B-1A),

& - V^l_ (B-16) VW -v2

where,

V-^ü + ^v+^w (B-17)

The forces (X, Y, and Z) and the moments (L, M, and N) are

separated into aerodynamic and thrust effects. The aerodynamic

effects are expanded to suit the data package as functions of angle-

( of-attack, angle of sideslip, angular velocities, and control surface

deflections. The aerodynamic force equations are:

1 „ „2 x6<

Xaero " 2 P V' S (Cx + C~- *e) <B"18>

Y - ~ P V S [C + C 5a + C <5r aero 2 y y6 yß b (B-19)

+ fv (Cy P + Cy r)l Jp JT

Zaero " 1 P V* S (Cz + Cz, *e) <B"2°) oe

Laero " 7 P V' Sb ^i + \ 5a + \ 6r + |v <C* * + H *» oa or p r

(B-21)

M .« " \ p V2 Sc [C + C 6e + §- C q] (B-22) aero 2 m m. 2v m nJ v ' oe q

N ^ ^ p V2 Sb [C + C 6a + C 6r aero 2 l n nx n. 5a 6r h (B-23)

p + C i n P r

+ 2v(Cn P + Cn r»

43

^.■j-^-i--^^... - ■-,.-,, ....-.-,-.■■ ttUfj^nmm ng

Page 59: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

.M.. . — „I ...... —""-■"-' '' ^"-Ul.i.1 .1 . i..i.!ilnw^1^!PHJiaHlWM ^WPW™MU«».I.II.....IM. i..

o

c

GAM/AE/73-M

The thrust effect equations are developed in the main report.

C FIGURE B-l

Body Axis Systen and Related Angles

44

■ iiiiT —• ii . mat -- -,,-~-~-°-|Mi^—ii

Page 60: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

■ >■ w mi i"T" Wft

1 GAM/AE/73-14

(

Appendix C

Simulation Results

o

c

45

---—^ — ■---"- - ii ^■■i|-

Page 61: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

.7M>-«»!»p* , .m... ■—■ -■■■■ ! ■ -■«-■■■., '■■'■■■■

c.

GAM/AE/73-1A

o I

»♦♦♦ ^♦♦v~:

♦♦t ♦ ♦

0.00 f.00 16.DO 14.00 36. DO 40. DO ALPHA - DEC

«.DO 66. DO «4.00 7». 00

i /

Aw ♦ ♦

..♦♦*

O.OD i.aj If.DO (4.PO JC.C0 40.00 41.00 ».DO 64.DO Jt.DO ALPHA - DEC

UJ.

T^f^K a> .»*V<

~„ *-t

0.00 1.00 If.00 «4.DO Jf.00 ALPHA

40.00 OEC

4(.DO 66.00 (4.00 7C.D0

«<UN NUMBER •43146

FIGURE C-l. Lateral Stability Characteristics

(Exhaust Deflection/TVAU - 50%/Lower Authority Ranges)

46

_ — ■

Page 62: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

GAM/AE/73-14

w*^^^mmw-»»"W"* «iJJULJi4A«M.ii

C 1

e

!- (CD

f w

I V e o

e _ o

U.D- 1

K 4~

CD»

if a

e *D

s

4*

hi 1

>-D

fe- hl

T* i°.

e

4

♦ ♦ ♦ ♦ ♦ 4 ♦ *

4

,00 10.00 tÖ.DO 3Ö.D0 40.00 (6.00 (Ö.DO TO.OO »6.00 ALPHA - DEO

1 /u; , 4 ♦ ♦ *

«0.00

.00 10.00 tO. 00 30.00 40.CO SO.DO (0.00 70.00 80.00 ALPHA - DEO

* 4

* 4 4**

4 ^ * t* 4»

<mm***i,t?+Lm. jm-*—?*** *♦ 4*»

30.00

- rV • - . 4 4

4

4

V .00 10.00 tO.TO 30.00 40.00 (0.00 (0.00 70.DO 80.00 ALPHA - DEC

RUM HUtlSER -4$lit?

S0.00

( - FIGURK C-2. Lateral Stability Characteristics

(Exhaust Deflection/TVAU ■ 100%/Lower Authority Ranges)

47

■:-—---—Ml -•*-■- --■-— tutttt ^1

Page 63: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

^■H^FWPWW^IW .in uniiLj..i..Ultimi» Hi ii i —u I I.I..I.IIL. ■■'"-»Mlll»ll|l.¥ll .1,1.1 I. ..-,

GAM/AE/73-1A

( * M

♦ a

o u. b

CO

♦ ♦ ♦

B ♦

VoB t'.OO It.00 «4.00 «.DO BLPHfl

40.DO 4f. DO «.DO 64.00 7t.0O - 0EO

Jk

o

bo ■ / V~ £"• i a >—

bin «ob

u

♦ ♦

♦ B ♦*».*-*

V öD i.ao ic.po 14.00 x.oo ALPHA

40.00 48.00 «.00 M.00 H.D0 - 0EG

-* •"

*

m

W X

i-"

CJ»-

1 ^ * ♦ •♦♦* . ***** ♦

1 *

S 1

V.OD «l00 1».DO (4.DO «.00 flLfrlfl

40.00 4».DO W.DO M.00 Tf.00 - OEG

RUM NUHBER -4314$

FIGURE C-3. Lateral Stability Characteristics

(Auxiliary Thrusters/TVAU - 50%/Lower Authority Ranges)

48

- — .

Page 64: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

M.I M.l-J-M..!.LJ!!PP*PII. <^l..iipjHi.Mll.lll .LJI,lll7 LJLIf^WWWIIMiJP»l»»WPI ■ ■.I . ■ i ■iiuiiLnuB m ni,<Mi« 9VPPPQOT

GAM/AE/73-14

o

o

c

s 1 t»!

r MM ■ wtuwpfaimgii ——■»

♦ ♦ ** t

'DlOO *.00 16.DO M.BO Je.00 tO.00 41.00 SS.DO (4.00 7C.00 ALPHA - DEO

L*

fa? i

cc

J>? ^

/ ♦t

■*^

'ajio »loo l*.0O U.D0- «.CO 40.00 49.00 SS.DO «4.00 71.00 ALPHA - 0EC

ti.00 JC.00 «.w ALPHA - 0E&

If. 00 ft.00 #4.00 7C.00

RUN HUtlBEl» -43145

FIGURE C-4. Lateral Stability Characteristics

(Auxiliary Thrusters/TVAU »100%/Lower Authority Ranges)

49

- -•■— -■- ■ - - iTimrm ......— -"--,n

Page 65: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

mi,if-.K.iji >■.!(..! nip I W.*< mti^iMiWUHJI ■ WÄPW ■ III IIIMIIHIMI ^^^^^mt ■ ■■ i IUI w^OTfM)

GAM/AE/73-14

o

/-

U

4a. w

is.ro to.oo tT.off TII1E - 5EC

3«. DO Jt.DO 4Ö.D0

B R ,', BETR COW BND

o ur °o I"..

n E

00 g

0 DEGREES

O.00 4.00 ».00 It. DO 16.00 10.VO ».00 TI(1E - 6EC

I».DO Jt.00 JC.OO 40.00

CJ©

u o

o o • 'S

a 'o,oo 4.00 1,00 11.00 Lf.PO CO.00 (4.00 tME - «EC

W.OO Jt.00 ».DO 40.00

e

o

o' t

0.00 4s.C0 •.00 lt,DO li.ro w.oo 14.00 npe -» SEC

ti.OO 3C.D0 je.oo —1 40. DO

PUN NUnBEK 101

FIGURE C-5. Simulation Time Histories

(Exhaust Deflection/TVAU =100%)

50

„f.y-..-.---.^. = -. ,—-:_, ■ ■ ._■--,-^„.^ ^ - — .^»^

Page 66: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

TV ■ ■■..' iLL.i!"'rr.n."i ■■L««-'

GAM/AE/73-14

r

ü

wv o'

ojao

■*> o.oir

iTöö Too iiröö ij.oo to.oo ei.m wiöö jelöo J».DO «o.oo TIME; - 6EC

'olöo 4TÖÖ TOD ilTöö iOö JO, DO et. DO «üöö iOö wTöö W. DO TinE - 5E.C

4.00 1.00 lt.00 IS. DO tO.OO C4.D0 V.DO K.DO 3S.00 40.DO nne - 6EC

4.00 LOB ICOO tf.00 W,M (UDO M.OC 3C.P0 3fr. CW 40.PO nne - SEC

KUN NUMBER 101

FIGURE C-5 (Cont:.). Simulation Time Histories

(Exhaust Deflectlon/TVAU =1002)

51

, -^■■^^■^ i —■ -

Page 67: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

r -■HI »p— 11 in i.i w, i ii I, mm 1^.,^, n, ,

GAM/AE/73-14

(' )

öS i oft

i

•-» or \ 5 *-B 5 • \ jj'OflO «'.00 1.00 11.00 16.00 M. 00 %i,00

Tint - sec ».00 tt.C» JC.DO 40.00

! öS A

i /\ l\ A A A Co COO LA •Al A at

S*5 v^ ^ \J \J \J \J 1

tt'o .OD i'.OD 1.00 IS. DO 16.00 tO.DO «4.00 TIHE - 5EC

tl.DO Jt.00 36.00 40.00

Of „ /\

A A A A f ^*S \ ^s 2 O V_/^ ^A AM 1

00 4.00- ».00 u.w 10.00 tP.OO t4.00 TINE - 6EC

».DO Jt.oo je.oo 40,00

^5.

• 1 v

E

OD 4.00 1.00 It.DO- tf.DO tO.PC t4.00 TipE - 6EC

tv.oo Jt.DO «.00 40.00

•r

,5- ~\

\

00 to. DO 40.00 10. DO •o.no loo.oo itq.oo DISTANCE - FT «10*

140.00 1*0.00 110.00 too.00

RUN NUnBER 101

FIGURE C-5 (Cont.). Simulation Time Histories

(Exhaust Deflection/TVAU ■ 100%)

52

»mm ■■"*■*—[ . imi JMMMI ■

Page 68: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

i.jirv ■*■*■ !JI««™I p™ W,IP»yWI^WFJWi^ll.Wl.!l|..l||ll,l.„p»W,l WWPWffWW— B -mi "vmmmmt

GAM/AE/73-14

(

(

ct v UJ

1

0a

CCfc, Of' tu

SS 0.00

-'S'

e>%. »ft

•-

«SO-

UTH-

ED' *Töö iTöö it.oo ip.oo tö. oo «.DO wTöö n.oo li.co w.uo TME -. 6EC

♦üö 1.00 lt.00 If.DO tO. 00 «.00 £0.00 »,00 ».00 40.00 TIHE - 6EC

«.DO I«.00 tO.ÜQ «.00 M.D0 «.DO If. PO 40.00 TIME - 6EC

=T"b.O0 4.00 8.00 lt.00 If.00 W.DO It.00 M.PO It.00 If.00 40.00 TinE - 6EC

£ 'o.oo to.oo W.PO fo.oo to.oo wa.oo ito.oo tto.oo ifo.oo IBO.OO toa.oo £. DISTANCE - rT »10

RUM NOnöEA 101

FIGURE C-5 (Cont.). Simulation Tine Histories

(Exhaust Dcfiectlon/TVAU «100%)

53

>-.^...-.l- --. w„... . -„„-„„nim i - | ■ - - - ■ iwii I

Page 69: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

GAM/AE/73-14

* 11

e g|

•1 X

6

A ^^V— •

¥ .00 4.00 1.00 it.w i*.w to.ro (4.W tf.OO K.00 w.oo 40.00

Ö8.

Id e

•s e

!*• ?2.

A/ \/ -NM A/ \fl A/ \

v J'D.OO 4.00 (.00 it.ro if.ro u,oo ti.ro

nne - «EC tf.OO jt.ro H.00 40.00

„', Bern CÜMPNÖ

6 U

»I MB

0 DEGREES

-^

v^ A IV V 2. *0 .00 t.OO f.00 u.ro if.oo to.ro t4.ro

Tine - SEC tf.ro x.ro jf.w 40.00

«SI

Vi a

o

_ A ^ v\ fv W 1/ ^\y ^^

« 'oloo 400 t.OO It.00 if.ro to.ro t4.co TinC - «EC

w.ro x.w Jf.00 4f.W

. 2"

u «ii

o' -Ay> vA Ai ̂ A I ^ \> ' V u\ 1

s -JO i.oo »,otr ic.ro If.rO W.W «4.« line - «ec

tt.W x.w j*.ro 40.00

HUN NUtlBEK l(K

FIGURE C-6. Simulation Tine Histories

(Auxiliary Thrusters/TVAU »100%)

54

:' ■ .. ■ W't v— _^k--

Page 70: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

GAM/AE/73-14

(

C

!

B **1

u w

*S8

u

•erf

IB.»

B

ö

»E *'

CJ

•B

Cl

«loir

0.00 4.00

/

"0.00 «Toö ÖTÖ5 lt.00 lf.00 tO.W (4.00 tf.00 JT~" ~I

nne - «EC oo s*,w «#.oo

—I ».00

0.00 4.0P (.00 IC.00 lf.00 «0. CO (4.00 tt.00 K.VO 99.V9 40.09 Tine - «c

n't.lC 4.00 1.00

ft»

nun Ntm&er lot

FIGURE C-6 (Cont.). Simulation Time Histories

(Auxiliary Thrusters/TVAU -100%)

55

-.. ^ -..--■. ...- ■

Page 71: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

"■■"■ mmmmirn wwrBwwwii w '■ > "^ '- " ■"■"■■ ! IIIIIJHtMIWI... Ill.iWHW^—.p., "StWiPW^i BBEWW m

GAM/AE/73-1A

tf 0.00

fa f *1 (u(

JLt»

M

ti # 2T"I— te 0.09

X3'

I

2?

0.00

»9

I «*

S! *D,00

1—" I «.00 0.00 It. DO u.oo tO.PO ».DO ».DO H.W ji.OO 40.DO

Tine - 6EC

A 4.00 i.00 It .00 IS.00 tO.DO (4.00 ».DO

TME - 5EC "JTDÖ Jt.00 40.00

—I 1 4.00 ».00 tt.ro I*.09 f0.ro «4.00

Tine - sec ».oo Jt.ro jf.ro 40.ro

"\

h UK-* *-^.00 4.00 ».00

ff

1*

it.ro if.ro tv.ro (4.00 TinE - cec

n.M se.w je.» 4P.ro

to.ro 40.00 »3.00 10.ro u: in itq.ro t40.ro u:.oc 113.00 tea.03 0I6TAKCE - FT «10*

idJN HünBCP lot

FIGURE C-6 (Cont.). Simulation Time Histories

(Auxiliary Thrusters/TVAU =100%)

56

■ ■ - ■ 1 ■ II «IM—I uli,

Page 72: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

V .'

GAM/AE/73-14

11

Ä —

8s *T>.00

if bJ

,- o.ca

SB

<'.ao

t.oo

«.to IC.W If.uO {0.00 «4.00 TIHE - 6EC

a.DO «.DO K.00 40.00

1.00 ic.oo I «.CO tO.DO €4.00 TIHE - 6EC

».00 «.DO ».DO 40.00

H 0.00 4.00 1.00 It.00

g

If. 00 to. 00 U.00 Tins - SEC

».00 «.00 IC.OO 40.00

lt.O> I*.DO to.« ».00 nnE - <cc

».00 K.VO ft.OO 40.00

nr+——i ——i 2 o.oo to.oo %o.m #0.00 M. 00 100.03 IfC.rO IM.OO '»O.OO liO.00 zto.oo

RUN NUMBER 10t

FIGURE C-6 (Cont,)- Simulation Tino. Histories

(Auxiliary Thrusters/TVAU «=100%)

57

'■■■" ■■■■ --- ■ -- ■- ii .ii ■ .. i ■■ ^tÜMUkii : __ ■ J_. :- .^ ..■■.,. ■ ■■ —■ ■- ■-■■■-

Page 73: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

Ww^prewB ■ -i« »■ JJ. i inmiM.iiw.| »i im »Li.. ■1>I,III„.IMII..J B m . i IM

GAM/AE/73-M

AAAAT

o

< £

0*0.00 ♦»Off ».00 11.00 .«.00 tO. 03 «.00 t».O0 X.0O Jf.00 40.00 Tine - «EC

0.00 i.00 ».00

FUN KUnaCR l«

FIGURE C-7. Simulation Time Histories

(Rudder Fixed/Thrust Control/TVAU =100%)

58

i" ■■^iM'ru

Page 74: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

».^ji^wj;wwuj.fi»iw,.iu.«i-grTwr,^|wwmt.«1.^ ■■ ■■.-' | " —^B^M

GAM/AE/73-14

D-.00

o

•) 9.00 at o: I

4.0D ».00 It.00 if.CO tO.DO (4.00 ti.DO 32.00 X.DO 40.Dv HUE - «EC

'o.oo «.00 f.OU it.ro i*. oo to.oo M.DO «.BO st.oo x.o» w.oo TIHE - «EC

« "9 ».00 »COO I«.I/O tO.W U.K TIME - 6EC

O.OO «„DO Jv-.OO «.00

RUN «unocn 103

FIGURE C-7 (Cont.). Simulation Time Histories

(Rudder Fixed/Thrust Control/TVAU =100 {';

59

- - - —- m

Page 75: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

I III II 1.1 ^■■Jl.ll—Ijp.ljl, III,, . ,-. ■ ...v-.-r-r.

GAM/AE/73-U

C if«

\ O

\ d'° .CO 4.00 t.ao it. 00 it.oc to.00

Tin? - 5£C t*.W tf.DO Jt.OQ K.00 40.00

o

0.0 rat» — •■

de C 1 Sg

*-v 00 4.00 f.00 It.OJ I«. 00 tP. DJ Tine - SEC

«4.00 ».00 «.00 K.D0 40.00

og

1

k A A A A A ( v \ 2 e

a!.

w V —/^ ^A N\l\ 1 5

.00 4.00 1.00 It.00 I«.00 to.00 Tine - sec

tt.DO tl.00 X.P0 J«.P0 40.00

»-5

5' ZZ

.00 4.00 • .00 It. 03 I*.TO to.00 Tine - «ec

<4.00 ft. 00 Jt.00 J*.0O 40.00

i 5" ~^X ZDt» •— • \ 5T> .00 to. 00 W.03 in. 00 »0.C0 103.00 Itä.OO

OUTfWCC - FT »10 (40.00 IM.00 ItO.00 too.00

KUN NUneeit 103

( , FIGURE C-7.(Conr..). Siisulation Titr.a Histories

(Rudder Fixed/Thrust Control/TVAU «100%)

60

.-i.--^.. .i-^^-i^.,-.- ....=... ii^g, | | m f w.n-^jMlMMi^^ätiijj... .... ^.■^■■-.

Page 76: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

■ !■■.....■'.- HI—|.IHU1iwyi»u.|.rW IJI ■>■■■■! H^ffBI

GAM/AE/73-14

fie

ui

«•!

o

Sv ft:" tu

>- 'o.flo

■y-w

4.00 ».SO lt.00 [«.00 tO. 00 (4.90 TIME - 6EC

o.oo Jt.Otf UTBO W.OO

t.fio f.oo it.ca «.00 tO.00 «4.03 TME - «EC

CT.00 ».DO W.W *40.W

rsi PJJ0 4.C0 ».00 lt.00 if.M tO.00 t4.O0 Tine - sec

O.M Jt.PO W.W 40.00

It. 00 tf.OO to.DO (4.00 TlflC - «EC

tt.OO St. 30 S«.00 49.00

•»'fl.OO tO.OO 40.00 «0.00 »0.00 100.9" tto.oo 140.0* tw.oo KO.OO «pa.» £ DISTANCE - r\ «IO*

*UN nunoEK 103

FIGURE C-7 (Cont.). Simulation Time Histories

(Rudder Fixed/Thrust Control/TVAU =100%)

61

i itmnf-^-- -- ■ " --'~;—'--

Page 77: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

GAM/AE/73-14

a! 'U.OD *!Öö ilüö ü.po ti.ro tö. po eToö w.W ü.oo »,w io.p TltlE - 6EC

BETP C0W1PND VPRIES

"0.00 4.00 f.00 IC.PO l*.PO tO.IV (4.PO CO.00 K.PO 3t. 03 4P.00

IP I

i'-K/v\A/W ±5. ö'ploP 4l0P .'.00 «■»> "-°°ln€™tC M-W *M ^ "•" "-W

HUN NUtlBCK -43147

FIGURE C-8. Simulation Tir.-.u Histories

(No Augmentation/Sinusoidal 3 ) c

62

Page 78: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

GAM/AE/73-14

o

( •

B i

a in

5ß »-•

I

**. 'O.OD 4.09 (.00 U..P0 l*.0O td.TO C4.00 ti.BO Jt.00 K.00 40.00

une - 6EC

B

o >AA/\,

D.00

B

UJ

o

ccCJ O 0.PU 3t OS

4.00

».00

0.00 4.00 1.00

'0.00 4.00 (.00 It. 00 It.00 W. CO (4.00 tt.PO «.00 S*.00 40.00 une - «ec

(.00 It. 00 »».00 tO.W tl.00 t(.PO 3C.00 3*.00 10.00 Tine - tec

run Kinnen -«147

FIGURE C-8 (Cont.). Simulation Time Histories

CNo Augmentation/Sinusoidal 0 )

63

■ r ■ i in 111 »■■ ■!■■ || ,1 - 1,1 I ,

Page 79: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

i. 1I.H1II..IUJ.,I.I,.I I I I -I- JHUJUWI« ■UMLUinjuiiilil, i II I ill ■>——WWg«^CT^HWBI^^»WWIIWPW^—^^W^

GAM/AE/73-14

c

c

w 5*

fc.»

o*t>.oo

bi

5« 00

4.00 9.00 it.PC lt.00 10.00 M.W 11.00 it.00 5*.W W.00 Tine - «EC

ts.eo w.oo to.oo to.oo 103.00 uu.w 110.00 1*0.00 110.00 toa.co 0UTPNCC - fT «10'

KÜN NUneCR ■43147

FIGURE C-8 (Cont.). Simulation Time Histories

(No Augmentation/Sinusoidal 3 ) c

64

tiaMäiH-- ni 1*1.11 ■■-■■- a Hi —^^ -. 1 1 ^MürMf - i -~^--

Page 80: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

GAM/AE/73-14 H ( ;

("'

fx'P.OP 4.00 l.oo it.oci

2*7 "^ 2 o.oo

"•POrt„"-l><> t«.£U> Cf.PP

Tint - 6£c K.ro x.n 40.00

£T).00 4.00 ».00 tt.ro i#.ro tp.oo M.po Tine -sec

".ro j«.oo x.po «O.PO

10.00 40.00 fo.oo fo.ro iM.oo ito.co no.oo iro.ro iio.ro eoo.ro 0I6TPNCE - FT .10

RUN NUMBEH ■43147

FIGURE C-8 (Cont.)- Simulation Time Histories

(No Augmentation/Sinusoidal 3 )

65

i ■!■ ■-iiithaiT"-''-•-*•" ■ I -•---• i i -■' -

Page 81: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

- .MI ,r,mrmimw,«ViM— ■■* M^"' psüppn^mim

C

O

R

i

GAM/AE/73-14

tt.ro is. DO 2o.ro ei.oo tJ.ro Tine - SEC

J«.DO 40.00

o iS

o D

1 £

^5 a? 'o.oo *.OO «TOO iOö tc.ro tö.oo ei. DO zi.oo jt.oo äOö w.oo tt TIME - SEC

8

BETA COWlflND VARIES

'0.00 4.00 ».oo it.ro ts.ro to.oo u.oo ZS.DO jt.oo K.OO 40.ro HUE - SEC

UJ

' ß

O 'o.OD 4.00 f.00 tt.ro tf.ro lo.oo «4.00 tt.ro it.ro sc.ro 40.00 tine - SEC

RUH NUnBER •43146

FIGURE C-9 . Simulation Time Histories

(Engine Dcflection/TVAU »100%/Sinusoidal ß )

66

■ i 11

Page 82: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

GAM/AE/73-14

-—m .... m pu i. HI . w» ■ «,-.. -»..... «-<-. i^——.. r"—••■"-*-—-»'*■ 1

n

( :

c

0.00 4.0D f.OP It.00 16,00 (0.00 ft.00 TME - 6EC

».00 «.DO 3«. 00 40.P0

40.00

HUN Nunaen -43146

FIGURE C-9 (ConL.). Simulation Time Histories

(Engine Deflection/TVAU =100%/Sinusoidal ß ) c

67

-J.^.-^Jfc>-^>.^Ji^1||-jI| -,-:--.■■....:.■■ ■ , ■■._.■

Page 83: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

r GAM/AE/73-14

■ f« ^pppppfiwpi WLI'II HI JIIII i.Ji.jlMWWWWPWi^^^g^W^*^ ni.Jiiii.-t '■■

O

o

v.,

«8 a3l

ri'D^OO 4100 ».0D H.DO 16.00 10.00 t\.0O HU» «I» 39.00 W.DO TIME - 6EC

&vw\AA/vwvA

nne - 6EC «.TO 'e.oa it.oo w.ro

10.09 «.iw w,o»> »a.!» »cc.ro itq.ro orsTPNce - FT «icr

i4a.ro tfo.oo ifo.ro -iro.ro

«UK Nir.ftER -43MÖ

FIGURE C-9 (Com.). Simulation Ti:r.e His'orics

(Engine Deflection/TVAU =1 )0%/Slnuooidal 8J

Rv.

68

i.MTii-iTfi» -•- "-iiim J-' - - •• ' ^^mutjtamum Ttmnnl -■—- mtiiiMli"'-'■■■'■-

Page 84: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

'" y..:, ,...„„w.T^?rw?.IWJ..f..^,yW,^„,.,., I,,,, ,!!■!.., , . L um?mm!mmm*fmmm.MHimmM*mwmmm!mmm* -~~.. _....,.,..„, „^

GAM/AE/73-14

(

ItJ» 16.00 to.DO ti.DO ti.DO jTÖÖ JTDO 40.00 TIHE - SEC

6n

o

& Ui _i u5 a, ■

VOO *rÖD iTÖÖ ttTÖo 16. DO to.DO «4. DO ti.DO 3C.D0 J6.D0 W. DO TIHE - 5EC

It.DO If.DO tO.DO C4.D0 «.DO Jt.DP ».DO W.DO Tine - SEC

»« o z

g 0.00 tO.W «0.00 §0.00 »3.00 103.00 ItS.OO tW5,0Cr 1*0,00 llff.00 100.00 DISTANCE - FT »ICT

tUti KUnBEK -A3146

FIGURE C-9 (Cont.). Simulation Tina Histories

(Engine Defleetion/TVAU =100%/Sinusoidal g ) c

69

Page 85: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

IIIJ! |l WP^W»^«BIMH"J««JU I

I (

GAM/AE/73-14

Appendix D

Computer Program

70

-i urn liianrrm k.*te i ■-'-" tMej^^mm^mM—--■*»■-

Page 86: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

c c

~~%

GAM/AE/73-1A

PROGRAM RESFCNS(INPUT,CUTPIT,T AFE5=I N*>UT , TAPE6 = CITFUT,PLOT,TAFE7)

C c C THIS PRCGF-Af IS Ä SIX DEGREE OF FREEDOM SOLUTION USING C THE GENERAL NON-LINEAP, 9O0Y-AXIS SYSTEM EQUATIONS CF C HOTION ANC EULEP ANGLES... C C OEAS K WJRLEY, 2LT, US AF AFIT/EN/GAM-73 C £ *«*«»* ««««««4*4««»»«*****»** **** «»»«««»*«.♦«««««.«.»««»*«***».»*****«.«

c c c C ••• OlhENSICN STATE VAF1AFLES c

CIMEN'SICN V (12), YP(12) C c C ••• COMMCN FIIES NAMED FCR SUBROUTINES ANC MAIN PROGRAM C c

( : C 1) MfIN PROGRAM ANC SUBROUTINE GENERAL PARAMETERS C

CCMHCN/C*AIN/EFCM0,AV,fiVC5,AV0T,JA,A0,PI,TCPI,TRIMCFT,NE6R, lTHRU$lfTH9L'S2,Al,A2, A 3, 01,62,3 3,T1,T 2, FEO, SIGH Cf THE C, ANGLE , 2GA»GP,GC,CE,rA,r)R»TRTl,TH'2,AL,eE,ALPHAT,STAt<T,CNEE,CLEE,VCPT, 6SFE,CFE,VR,CKCR,CNCR,CHCF,THRUS,T=»IM,BETAT,wTl,WT2,yWT,CONT,Zf'T, 7AL0T,?EDT,ALCFT,3ECPT,TCPT,XT,YT,ZT, IX, IY , IZ ,1X7; IR , W=> ,MAS S ,G ,S , eB,C*C»,C>GE, CZ,C70E,C NCKJEJCMQJRV R2,ROh,STHE,C THE, T VGAIN

c v C 2) AIRCRAFT AEFCCYNAHC COEFFICIENTS IN NCN-C1MENSIONAL FCRM

C CCMMCN/CCCEF/FCY (2 1, ° ) ,ECN (21, <9 ) ,ECL (21, <?) ,ECM ( 21, °) ,ECX (2 1) ,

lECXOF(21),Fr2CE(21),ECVCE(21),ECMQ(2 1) , ECYCP (2 1) ,EC NC? (21) ,ECLCR<2 21),ECYCA(21) ,ECNBA (21) , ECL CA (2 1 > ,ICY P ( 2 1) ,ECNP(21) ,ECLF(21) ,ECYF(2 31),ECNR(21),ECLR(21) ,ECZ(21)

C C 3) PAWMETE9S USEC BY ^LOTTING SUBROUTINE C

CCHMCN//ALFHM«<0 2),BETA<«.0 2),VEL('»02),P(««C2),LCCF,O(«40 2), IK » .0 2), ALT (fc(2),THETa (<-G2) ,PHI ( 102) , PSI (<<02) ,YC(7) , 1IME(U0 2) , 2OISTC«02) , TR AVC0 2) , AX(U02),Av f i*0?l , AZ( t»02) ,?£LE(!*02) , CELA (<<G2) , 2CELR(«*P2),TGVC.a2) »TH-ST («♦ C2), CNE (<«0 2) , CLE («<C2> »CNßEFF U02 > , «tLOP,CALF(i«C2),ALOOT(<«02),BFDOT (<402)

C c

( , EXTFRNAL GYKHES REAL 1X,IY,I2,IXZ,IR,*ASS

C C

71

~. , ^

Page 87: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

"■^iii ■'■'...l.^lWMI|-gl".-l!W.il^M?,^^|_ijal. . TU. nil. !-^w*f ■- ^■■-.M!:' -II.P»IIJI .IIH.M.. u.i, wm-mi," inmiMPpiHi mmmm

GAM/AE/73-14

o c c c c c

c c c c c c

c c c c

c c c c c c c c c c

c c c c c

••• INPUT TJ-E TRIM CPTICN (TRIMOPT), CONTROL GAINS, AIRCRAFT GEOMETRIC ANO CONTROL PARAMETERS, AIRCRAFT AEROCYNAMIC COEFFICIENTS, AND INITIAL CCNDITIONS.

NAHELIST/CMAS/TRIKDFT,GE, CA,OR ,Y0»SIGHO ,THEC,FEO,LC0P NAHELIST/GECh/IX,IY,I7,IXZ ,IR,WR,MASS,S ,C,E ,TFFlSl,THRL3 2,XT,YT,ZT NA^ELIST/CCEF/E^Y,CCN,ECL,EOM, ECX, EC7,E CXCE , ECZCE .ECMOE, E'? HO , ECY03

i,ECNOF,ECLCF ,ECY0A,ECLCA,ECNOA,ECYP,ECNF ,ECLF,ECYR,ECNR,ECLR REA0(5,CATAS) REAO(R,CECH> REAC<5,CCEF)

••• OEFINE PARAMETERS USED AS CONSTANT COEFFICIENTS IN THE STATE ECLBTICNS ANO AS ANGLE/RADIAN RATIOS.

ALPHAT=PETAT=T=0. 3 G=32.171.0 J BWGT=.1*AV $ TCPI=2.*FI ! A2sS*R/2. S B1=IXZMIY«IY + I7) { T1=TFPUS1 S TRT1=T1/THFUS $

5 PI-3.1M5926535 t AV=1B0./PI t ANGLE-PI/2. S Ai = S/(2.**ASS)

A3-S*C/2. ? REAOER=TRIM = CHCP=STARI = C. E?=IZ+IY-I7.**2-IX7»*2 ? B3=IX*IZ-IX7*»2 T2=THRUS2 $ THRUS=T1*T2 TRT2=T2/THRUS t XKT = 5e.

NEAR=0 AO=i./(2*PI) AV05=2. *AVOT HT1=WT2 = XWT=ZMT=0.

♦«» DEFINE INITIAL CONCITIONS.

0060J=1,7 60 Y(J)=YC(J)

Y(8)sTHEOJY(c.)=SIGHO5Y(10) =FEO?Y(li) =Y(12) = 0.

»♦» SELECT CESIREO TRI* OFTIONS (TRIMOPT) USING THE FOLLOWING COCE»

0. "* NC TRIM 1. ■ STRAIGHT ANO LEVEL 1. = STEADY CLIfS (WITH opQpcp INITIAL CONCITIONS) i. - STEAOY CESCENT (WITH PROPER INITIAL CONDITIONS) *. - CCOROINATED TURN

IF(TRIHCFT.EC.C) GO TC 9 IFCTR1MCFT.EC.2.) GO TC 10

••• TPIH CCNCniON FOR STRAIGHT ANO LEVEL FLIGHT, STEADY CL IHE , CS STEACY CESCENT

CALL TRIH1(Y,YF) IF(CHCF.EC.i.) GO TO 6 GC TO 9

10 CONTINUE

/2

Page 88: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

..■.. Wim«*-«--PM ! i k ,u I...WI i i ■I^HJMJPI« -..n^iiuwiwwmpBwp^n

GAM/AE/73-14

C C C ••• TRIh C0NC1TI0N FOR TURNING FLIGHT, C c

CALL TRIH2(Y,YF) IFICHCF.EC.DGO TO 6

9 CONTINUE C C •*» PRINT CLT FIXEO PARAMETERS AND INITIAL TRIMKEC CONDITIONS C

CALL FRINTlO) Y<2>=1.

C C *** THE SCLLTICN IS NCW WORKED USING THE RKGXY7 INTEGRATION C ROUTINE AND THE OESIREC AIRCRAFT CONTROL SUBROUTINE. C

0077J=1,LCCF CALL CCNTRL(Y,YP,T) IF<CCNT.EC.O.)C-0 TC 5 CALL VECTOR(Y,YP>

5 CCNTINLE 00 76 JFK=1,2G CALL FKGXYZ(f,Y, YP , 12,. 0 C5 ,.00 C 000 5, GYRATES) IF(NEAR.EQ.l) GO TC 87

76 CONTINUE C C •«• OESIREC PARAMETERS ARE STORED FOR THE PLOTTING SUBROUTINE C

GA=J CALL STORE (Y,YF)

C 77 TIME(J)=T

GO TO 88 87 LCOP=J-l 88 CONTINUE

C C ••• SUERCUT1NE CUTPLOT IS CALLEO ANO RESULTS ARE FRINTEC C AS A FUNCTION OF TIKE. C

CALL SPFVAL(Y,Y") CALL CtTFLCT

6 CONTINUE STOP END

o 73

mMmmmmtmmwm*tomja*m^*.'**im^m -^ --■-■-—■—- ■ ■-^—■■■■ - ■--■^--^..■- -^.-.-- - ■ ■--■-^j^

Page 89: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

--*«-■———, ->-.i--%-^™—'>- —- .1 ii ii. »i n pg ■■. ■!■■■ ■■ ^MW.ii.ii|Tmiii|iljll.l#p^ wuia»-!-

GAM/AE/73-14

c c c c c c c c c c

c c c c c

c c c

SUBROUTINE GYRATES (T ,Y ,YP)

••• THIS SUGRCLTINE CONTAINS THE STATE EQUATIONS USEC 6CTH IN SETTI THE T»lt* hEC CONDITION AND IN THE PROGRAM SOLUTION. DATA IS LINEARIZEC WITH RESPECT TO THE PARTICULAR AIRCRAFT ATTITLCE EA TIM'. TUS SU39CUTINE IS CALLED. IT IS CALLEC SY THE MAIN PROGRAM lit AS AN EXTERNAL BY SUDROUTINE RKGXYZ.

DIMENSION Y(12),YP(12)

C0MMCN/CHAIN/eF.CMD,AV,AVC5,A\/0T,J4,A0,PI,TCPI,TRlH0FT,NEAR t

lTFRUSlfThRlSZ,*l,A2,A3,eilE2,'J3,Tl,T2,FEC,SIGHC,THEC,ANGLE , 2GA»GB,GC,CE»CA,0R,TRTi,TRT2,AL,PE,ALPHAT»START,CNEE»CLEE,VCPT , 6SFE|CFE»VR,CYCR»CNCR,CHCF, TH°'JS ,TRIM , HET AT ,WT1, WT2 , XWT ,CON T , Z H , 7ALDT,EECT,;LCFT,3ErPT,TCFT,XT,YT,ZT,IX,IY , IZ,1X2 ,IR ,WR,MASS,G ,S , 6B,C, CX, CXCE, C2,G Z D E, C *,CKDE »CM Q,RVR2, ROH, STHE,C THE, T VGAIN

COMHCN/CCOEF/ECY(2 1T9) ,ECN ,21,9),ECL (21, 9) ,ECM ( 21,9 ) ,ECX (2 1) , 1ECX0E(21) ,ECZCE(2i),EC^CE(21),ECMQ (21) , ECYCR (21) »ECNDR (21) ,ECLCF(2 21),ECYCA(21) ,ECNOA (21) , ECLCA(21),ECYP(21),ECNP(21),ECLF(21),ECYR(2 3l),ECNR(21) ,ECL;:(21) ,£C7(21)

REAL TX,IY,I2,IXZ,IR,KASS

*«* VARIABLE COEFFICIENTS ARE OEFINEO FOR USE IN THE STATE EQUATION

VRsSQRT(Yd) »*<fY(2)»'24Y(2)**2) RCH=.0 0 237 8* « 11.-. 00 0 0 0683»Y(7 ))•♦<»• 256) RVR2=FCH*( V<?«»e) VCVR = Y (2)AR CTHE = CCS(Y (3)) IF(APS(CTHE) .LT..0001) NEAP = 1 IF(NEAR.EC.l) RETURN IF(AQS(Y(1)) .L7.1.E-2C) GO TO 53 AL=ATAN2(Y(3),Y( 1) ) GC TO 5U

53 AL = SIGN(AN'CLE,Y(3) ) 5(» CCNTINLE

BE=ASIN(VCVF) SFE=SIN(YMC)) STHE = SIN(Y (fi)) CFE=CCS(Y(1C)) SPSI = SIN(Y (9)) CFSI = CCS(Y (<?)) SET=SIN(°FTA1) C8T=CCS(:?ETAT) SAT = SIN(ALFI-M) CAT = COSULFHM)

74

— - ' -

Page 90: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

ii ■■■ii.Bja.i. ,■. . i ■ mmmmmsmom ■ ■ '■"1*i

GAM/AE/73-U

C C C c

C

c

••» AERCOYNAMC COEFFICIENTS ARE EXTRAPOLATED AS A FUNCTION OF THE AIRCRAFT ATTITUCF (ALPHA AND ?ETA>.

JAsAVC5*8L*3 je=AVCT*PE*5 IF((AL»AV),G IFUAV'AL).1 IF((AV*5£).L IFUAV'BE).G IALI=SMJA-2 ALI=I«LI 0L0S=(AV»Al_- ieEI=10*(JE- BEI^IPEI 0eL0T=(AV*eE CX-(ECX(JA*1 CZ=(ECZ(JA4i CXDE=(ECXCE( CZDE=(EC2CE( CKDE=(ECPDE( CfG =(ECHQ ( CYÜ<?=(ECYCR( CNOR=(ECNCR( CL0R=(ECL0P( CYDA=(ECYCM CNDA=(ECKCM CLOA=(ECLCM CYP = (ECYF ( CKP =(ECNF < CLP =(ECLP ( CYR = (ECYR ( CNR =(ECNR ( CLR =(ECLf? ( CYA=(ECY(J*+ CLA=(ECL(J/>4 CNA=(ECN(JA* CHA=(ECMJA4 CTAF=(ECY(jA CLAP=(ECL(J/> CNAP=(ECN(wA CHAP=(ECM,jß CY=(CYAP-CYA Cl=(CtAP-CU CK=(CNflF-CNfl CP=(CPAF-Cfö

E.<=D.) JA = 20 E.-10. )JA = 1 E.-^0.)J° = 1 J.;0.) J9=6 )

*LI>.'5. 5)

-?EI) )-ECX )-ECZ wA*l) JM1) wß+1) JA41) JUI

JA+I) ^m> ^A*l) JMD JA-H ) ..Ml) *A4l) JA+1) wA4l) J,J3) 1,J3) 1,J3) j,vl) 41,jq 41,JT ♦1,J<3 41,JT

)*C3L )*C3L )*C3L

/10. (JA))*CL0 (JA>)*CL0 -ECXCE(JA - EC Z C E {JA -ECHCE (JA -ECMC (JA - FC Y CM JA -ECNCR(j; -FCLCMJA -ECYCMJA -E0NCfl(JA -EfLTA(jA -ECYF (JA -EC NF (JA -ECLF -ECYR -ECN5 -ECL« -ECY(J£,J -ECL (J^ ,J -ECN(JA,J -FCK (J1 ,J + D-ECYU 4-D-ECHJ 4-D-ECMJ + 1)-ECMJ 0T4CYA OT4CL/J OT+CI^A 0T4Cf*A

(JÄ (JA (JA (JA

54-ECX Ü+-EC Z )) »0 L ))*0L ))*nL ))*0L ))*3L »>*0L ))*0L ))*0L ))»0L ))*0L ))*0L ) ) »0 L >)*TL ))*0L ))*DL ))*0L E))*0 E))»0 P))»0 S))*C A,J3 4- A,J3* A,J3 + A,J3 4-

(JA) (JA) C54-ECX0E C54ECZ0E C54-ECMDE CS4-ECMQ C5+ECYQR C54ECN0R C34ECLDR C54-ECYDA C5+ECN0A O^FCIDA C5+EC YP C54-ECNP C54ECLP C5+ECY«? C5 + ECNR 054-ECLR LC£54ECY( L05+ECL( L05+ECM( LC54£CM( 1))*0L05 1)) *OL05 1)) »OL05 1)>»0I05

(JA) (JA) (JA) (JA) (JA) (JA) (JA) (JA) (JA) (JA) (JA) (JA) (JA) (JA) (JA) (JA) JA,JP) ja,jp) JA,J") JA,wB) 4ECY (JA,J641) ♦ECL(JA,JR4l) +ECN(JA,J34l) ♦ ECMJA,JP4l)

C C

Q1=CX4CX9£«CE C2=CY4CYCA*CMCY0R*0P4.5»B»(CYP*YC4) 4CYfi»Y (6)) / \(R 03=CZ4C?nE»nE C<=CL4CLC.^C^4f:L0D»r:fi4.5»n* (CLF*Y(t») 4CLR*Y(6))/VR 0?=CK4CHCE"Cf 4,5»n*C^';r-Y (5 )/VD

Q6=CN4CNCA»CMC,J')R'DR4.S»PMCNP»Y(<») 4CNP* Y (6)) / VR

75

. .- -~ —■ ■-■ ■ ■■ --•■

Page 91: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

™™r^™- """"•^PiPPW

GAM/AE/73-14

(

c

c c c c c c c

c

c

c

c

c

c

c

c c

c c c

*•• THE STATE ECUATIONS FCtLOW WITH THE STATE VARIABLES DEFINEC £St Y(1)=L Y(2)=V Y(3)=W eCCY AXIS SYSTEM Y(«»>=F Y(5)=C Y(6)=R BGCY AXIS SYSTEM Y<e> = THUA Y<9)=FSI Y(10)=PHI EULER ANGLES Y(11)-XE Y(i2) = YE Y(7)=ZE EARTH AXIS SYSTEM

YP(i)=-G*STHE»Y(6)*Y(2>-Y(5)*Y(3)+Ai»RVR2*Cl*(Ti*T2)*CAT*CeT/hASS 1»CWT1*WT2)/KASS

YF(2)=G»CTHE»SFE*Y (<») *Y (3) -YC6 ) *Y( i) * (T i*T2) »SET/MASS 1*FVR2»A1*G2

YF(3)=G'CTHE*CFE«-Y(5) *Y(1) -YC») *Y(2) -CT 1 + T2) »SAT/MASS 1*"RVR2*A1*C3

YP(<»> = <I7MFVF2»A2»Q<«4 <Tl-T2>» SAT*YT-(T14T2>*SET*ZTJ *IXZ*( FVR2**2* iC6-(Ti + T2)*yl*S3T+ 'T1-T2)*YT*CPT)fB1*Y(m*Y(5)+ I?2*Y(5)*Y(6)*Y (5)*I 2R*WR*IXZ)/E3 4(WTl-VJT2)*XKT*IXZ/e3

YP<5)=(RVR2*Ä3*15-(T1+T2)*XT*SAT+(Tl+T2)*ZT*CAT+IXZ»(Y(6)*»2-Y(«(>* l*2>*(IZ"IX)*Y<e>*Y <<0«Y(e>*IR*WF>/IY

YF(6) = (RVF2»/!2*a64-(Ti-T2)*YT'CPT-(Tl4T2)*XT*SQT + IXZ»(YP('») -Y<5> *Y< 16)) + (TX-IY)*Y {U) *Y (5>4Y(S> *IR*WF)/IZ 2MHT1-WT2)*XM/I?

YF(.,) = YU>»S7l-E-Y<?>«CTH£*$FE-Y<3>*CTHE*CFE

YF(8)=Y(5)«CFE-Y<6)*SFE

YP(9) = (Y(5)»SFEtY(6) *CFE>/CTHE

YF<10)=Y(«»)4 <YF(9)*ST»-E>

YP(ll)=Y(l>*CTVE*CPSl4Y<2) * <SFE*ST HE *CPSI-CFE*SFSI> *Y (3> * ( CFE«S1KE 1»CPSI+SFE*SFSI)

YF(l2)=Y(l)»CThE*SPSl4Y(2)*(S'rE*STH£*SPSH-CFE*CFSI)*Y(3)»(CFE*STHE i*SPSI-SFE*CFSI)

»*» CALCULATICN OF EFFECTIVE CN flNO CL GE = CL*((T1-T2)»YT*SAT-(T1+72)*ZT»SBT)/(RVR2»A2) GC=CN4((Tl-T2)*rT'CBT- (Tl*T2)*XT*SBT♦(WT1-WT2)*XHT)/(RVR2* A2)

»»• CALCULATICN OF FIRST DERIVATIVES CF ALPHA, BETA, ANO VR

VCTMY(1>*YF <1HY(2>*YF<2) 4Y(3) *YP(3)>/VP ALOT=(Y(l)*YF(3) -Y(3>*YP(1))/(Y(1)**2 + Y(3)**2) eCOTs(YP(2)»VF-Y <?>*VCT)/Ol«X DLMX = VR»SCFT (VF**2-Y ( 2 ) »*2 )

RETURN END

76

I !■ !-—I ■•••■■ ■■ ■ ■

Page 92: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

GAM/AE/73-14

o c c c c c c c c c c c

SUBROUTINE ClTPLOT

THIS SUBROUTINE ^LCTS THE CESIREB OUTPUT AS A FUKCTICh CF TIME.

««««***«***««««***** »**♦»♦****** *******#**♦***************** *****

CCKMCN/CfAIN/EECMO,AV,S(6) ,TRIHCPT,SK(2 6) ,START , AA,Ee,VOPT COMMON//ALFH* (402) |BETA(fi0 2)fVEL(l»02>tP((i0 2) fLCCFiQdOZ) f

1R(«I0 2) |ALT(«fC2)»THETAH02) ,PHI («»02), FSI («»02) tYOC7) |TIME(«»0 2) f 20ISI (4C2)9TR^(H02),AX (i*C2> ,Af U02), AZ (<»Q2) tCELE <<»0 2),CELA <^C2) , 3DFLR(UC2<,K-W<<0?> »THRST (U 02), CHEt «»0 2) , CLE <U02> ,CNBEFF U02 ) f

<»LCF, CALF (<♦ C2 >, LOOK <«Q2) ,aEOOT U02) VV=VOFT*10C.MRIMOFT + 1CCOOCQ.»BECMD

CALL FLCT(C. ,-12.»-3) CALL FACTCR(.C) CALL SCALE (T m,10.,LCCF,l) CALL SCALE (ALF1-A,2.,LCCF,1) CALL SCALECBE'fl, 2. ,LCCF,1) CALL SCALE (VEL»2.,L0CF,1)

( \ 1 CALL SCALE(ALCCT,2.,LCCF,1)

CALL SCALE (EECCT,2.,LCCP,1) CALL SCALE IP,2.,LOOP,1) CALL SCALE(C,2.,LOCP,l) CALL SCALE (P. ,2.,LOOP,1) CALL SCALE(TKETA,2.,LCCF,1) CfcuL SCALE CPHi2tf LOCFtl) CALL SCALE (CELE,2. ,LCrF,l) CALL SCALE (CELR,2. ,LCCF,1> CALL SCALE (CELA,2. ,LCCF,1) CALL SCALE(A>,2.,LCOP,l) CALL SCALE (M,2..LCOP,l> CALL SCALE(A2,2. ,LCOP»l) CALL SCALE(C1ST,10.,LCCF,1) CALL SCALE(ALT,2.,LCCC,1) CALL SCALE(TRAV,2. ,LOCP,l) CALL SCALF(ThRST,2.,LCCF,i) L=LOCF+i H=LOCP*2 PHI(L)=TGV (L) = -130. PHtMJrTGV (H) = i30. CALL FLCT((. ,22.,?) CALL FLCT(17.,22,,2) CALL FLCT(17.,0. ,2) CALL FuCT(C. ,C.,2)

c CALL FLCT13. ,2.,-?) CALL FLCT(C.,17.,2) CALL ;LCT(12.,17,, ?) CALL FLCT(12.,C. ,2)

77

J

Page 93: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

r w -'-^™—1--T—T WI.J.....lHg.w,».—,,K , mm ,.,,.. .U1, ^pp^ppp „lll,,,^^^^,,, - „

c

GAM/AE/73-14

CALL FLCKC. ,0.,2) CALL SYMSOL(7.,.25,.15,10HRUN NUMBER,0.,10) CALL NUM9ER(C.5».2 5i .l5fVV |0«;-i) CALL FLCK'. ,12.«5,-3) CALL AXIS'C. ,C.,10HTI"E - SEC,- 10,10.,0 . »TIME(L),TIHE(M)) CALL AXIS(C. ,C, 11HALFHA - DEG , 11, 2. ,90 . , ALFHA ( L) , flLPHA(M) ) CALL LINE HUE, ALP HA, LCCF, 1,0,7 5) CALL FLCKC. ,-2.,-3) CALL AXIS(C.,C.,10HTIPE - SFC, -10» 10 ., 0 . ,TIHE(L) ,TICE(M ) CALL AXIS(C. ,C.,19HALFHA-DCT - CEG/SEC, 19, 2. ,9 0., ALCOKL),

lALOOT(M)) CALL LUE (11 hE,ALOCT,LCCF, 1,0,7 5) CALL FLCT(Q. ,-3. ,-3) CALL AXIS (C. ,C.,10HTIPE - SEC, - 10, 10 ., 0 . ,T 1ME (L) ,TI PE (M) ) CALL AXIS;0. ,C.,10HBETA - CEG, 1 0,2 ., 90 . , GET A (L ) ,°ET MM) > IFCSTART.EC.l.) GO TO 1 CALL SYM3CKC.2,2. C, .15,12HPETA COMMANO , 0, 0,12) CALL NUMBER(C.2,1.7, . 15,PECMD, 0.,-l) CALL SYM9CL(C.6il.7,.l5,7HCEG^EES,0. 0,7) GO TO 3

1 CCNTINUE CALL SYHECL(.Z,1.7t.l5,l9HEETA COMMAND VARIES,C*,19)

3 CONTINUE CALL LINEtTIhE,SETA,LCCF,1,0,75) CALL FLCT(C. ,-3. ,-3) CALL AXIS(C. ,C.,10HTIvr - SEC,- 10,10.,0. ,TIM£<L),TIHE<H)) CALL AXISU. ,C.,19H 9ETA-DCT- CEG/SEC , 19 ,2. 0, 9 Q . ,B ECOT (L) ,

lBECOT(H)) CALL LUEUn^EnCT,LCCF,l,0,7 5) CALL FLCKC,-3.,-3) CALL AXIS(C.,C.,10HTI*»E - SFC, - 10, 10 ., 0 . ,TIME(L) ,TIHE (M) ) CALL AXIS( C. ,C, 11HP - CEG/SEC,11, 2. ,90. ,F(L),F ir)) CALL LINEUm,P,LC9P,l,0,75) CALL FLCT<15.,-«».5,-3) CALL FLCKC. ,22. ,2) CALL FLCK17.,22.,2) CALL FLCT(17.,C. ,2) CALL FLCKC. ,C.,2) CALL FLCK2. ,2.,-3) CALL FLCKC. ,17. ,2) CALL FLCK12.,17,, 2) CALL FLCK12 .,C. ,2) CALL FLCKC. ,C.,2) CALL SYHeCL(7.,.25,.lE,lCHFUN NUMBER , 0. , 10) CALL NUMBER <c.. 5, .2 5, .15, VV,0.,-1) COLL FLCK1. ,13.5,-3) CALL AXIS(C,,t.,10HTUE - SEC, - 10, 10 . ♦ 0 . »TIME (L ) ,TIKE CP) ) CALL AXISCC. ,C.,11H0 - OEG/SEC ♦ 11, 2. ,90 . »C (L), 0 (M) ) CALL LINE(TUE,Q,LCOF,1,0, 75) CALL FLCKC. ,-3. ,-3) CALL AXIStCClOHTI^E ■ SEC,- 10,10.,0. , TIME<L) ,TIHE(M)) CALL AXISCC. »C, 11 HP - CEG/SEC , 11, 2. ,90 t ,R <L), R <H)) CALL LINE (TIKE,'.,I COP,1,0, 75) CALL FLCKC. ,-2.,-3) CALL AXIS(C. ,C.,10HTIME - SEC, - 10,10 ., 0 . ,TIME (L ) ,TI HE (M) )

78

-■■■*- TU --.r-iM r l

Page 94: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

irs .*IHP4P.J!.^!WJUW..lJ^iJ«>4u.!WiW

GAM/AE/73-14

CALL AXIS (C. ,C, 11HTHETA - OEG , 11, 2. ,90 • »TI-ETA (U, THETA(M) ) f" • CALL LINE(TIfE,THETA,LCCF,l,0,75) ^ CALL FLCTCO. ,-3.,-3)

CALL AXISCC. VG«»10HTIKE - SEC,-10, 10 ., 0 . ,TIM? CD ,TUE (P>) CALL AXISCC. ,0.,9HPHT - CEG,9, 2 .,9 0. »PHI CL) ,FHI CM)) CALL FLCTCC. , 1.0,-3) 0027J=1,L0CF NC=2 IFCJ.EC.DGO TO 26 IFCAPS(PHICJ-1)-PHICJ)).GT,50.) NÜ=3

26 XX=TIfECJ)/TirECM) YY=PHICJ)/FH1(V)

27 CALL FLCTOX ,YY, NO) CALL FLCTCC.,-1.0,-3) CALL FLCTCC. ,-2.,-3) CALL AXISCC, »CiOKTTME - SEC, - 10, 10 ., 0 . »TIME CD ,W ECM)) CALL AXISCO. ,0.,19PTU^KS APT GRAV VECT, 19 ,2 . ,90 . ,TGV (D , TG V (H )) CALL FLCTCO. ,1.0,-3) OC 13 J=1,LCCF N0=2 IF (J.ECU GC V) 12 IFCARSCTGVCJ-D-TGVC J)).GE.5C.) NO=3

12 XX^TI^ECJ) /T If-EC «) YY=TGV(J)/TG\ <H

13 CALL PLCTOX,YY,UO> CALL FLCTCC. ,-1.0,-3)

( j CALL FLCT(15.,-<».5,-3) CALL FLCTCO. ,22.,2) CALL FLCTC17,,2?.,2) CALL FLCTC17.,0.,2) CALL FLCTCC. ,C.,2) CALL FLCTC2. ,2.,-3) CALL FLCTCC. ,17.,2) CALL FLCTC12.,17.,2) CALL FLCTC12.,0. ,2) CALL FLCTCC. ,C.,2) CALL SYH9CL(7.,.25,.15,10HRUN NUMBER,0. , 10) CALL NUMPERCe.5, .2t,.15,VV ,0.,-l) CALL PLCTCl. .12.5,-3) CALL AXISCC. »ClOVTI^E - SFC, - 10,10 . ,0 . ,TIME CD ,TIMECM>) CALL AXISCC ,C, 19KELC\<AT0K 1ISF- D?G, i$ , 2. ,9 0 • ,OELE iL) ,D ELE if)) CALL LINE(TlME,f)ELf,LCCP,l,0,75) CALL FLOTCC. ,-2. ,-?) CAuL A>:T-f C. ,0.,10HTIME - SEC,-10,10.,0.,TIMECD,TIME(M))

| CALL AXIStC. ,i.,17r'! CCER TISP - OEG,17 , 2 . ,9C.,CcLRCL)»DELRCf )) I CALL LIS?cmE,3tLP,LCCF.l,0,75) , CALL FLCT( C. ,-2. ,-3) I CALL AXISCr. ,C, 10FTI"E - SEC, - 10, 10 . , 0 . »TIME (D »TIME (M) )

CALL AXISCC. ,C, HHAILESCN PISP - CE G , 1 6 ,2. sr:o . , CEL/ CL ), DE LÄ ( M !) CALL LINECTUE,')ELA, LCCF,1 ,0,75) CiV-L FLCT CO. ,-2. ,- ?)

( CALL AXISCC ,C lQtTIME - SEC,-10, 10 • ,0 • ,TIMECD ,TIr*E <»0 ) CALL AXISCC. ,C,,l7l-tfcLCriTY - FT/SEC , 17 , 2 . , 90. , VEL ( I) , VELC f») CALL LIKECTIvEt«/iL,LCCP,l, 0,75) CALL FLCTCC. ,-2. ,-?.)

79

Page 95: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

(

('',

( J

GAM/AE/73-14

CALL AXISCO. CALL AXIS(C. CALL LINECCI CALL FLCK15 CALL FLCKG. CALL FLCK17 CALL FLCK17 CALL FLCT(0. CALL FLCT(3. CALL FLCT(C. CALL PLCK12 CALL FLCK12 CM.1 FLCT(0. CALL SVH8CK CALL NU*EER( CALL FLCKi« CALL AXIS(C. CALL AXTS(0. CALL LIKE CTI CALL FLCKC. CALL AXIS(C. CALL AXIS tC. CALL LUEC1I CALL FLCT(Q. CALL AXISCC, CALL AXIS« C. CALL LTNEUI CALL FLCKC. CALL AXIS(C. CALL AXISCC. CALL LINEJTI CALL FLCKC. CALL AXIS(C. CALL AXIS(C. CALL LINKOI IFCSTAR7.NE. :ALL SCALE<C

SCAL^(C SCALF (C SCALC(C FLCKlS

CALL CALL CALL CALL CALL CALL CALL CALL CALL CALL CALL CALL CALL CALL CALL CALL L=LOP*l M=L*1

FLCK17 PLCTQ7 FLCKG. FLCK3. FLCKC. FLCK12 FLCT(12 FLCKC. SYt'GCL« NLMGER( FLCK2.

,C.,13H0ISTANCE - FT,-13,10. ,C.,13hALTITUDE - FT,13,2.,9 ST,ALT,LCCF,1, 0,75) .,-<♦,5,-3) ,22. ,2) .,22.,2) .,0.,2) tC.,2) ,3.,-3) ,17.,2) .,17., 2) ,,0. ,2) .C.,2) 7.,.25,.15,1CHRUN NUMBER,0., <=.5,.25,.15,VV,0.,-1) ,13.5,-3) iC.tlOHTIPE - SEC»-10,1Q.»0. ,C.,18HX 6CCFLEPATICN - G,18 ►E,*X,LOCP»l»Q »75) i-3.,-3) ,C.,1DHTIVE - SEC,-10,10.,0. ,C.,13HT ACCELERATICN - G,16 ► EfAYf LOCFilfO ,75) ,-3.,-3) , C, in J-TIw? - SEC»-10, 10.,0. »C.il'JHZ ACCELEP1TION - G,18 (■E,U,LOCF,1,0 ,75) ,-3.,-72) ,C.»10HTIME - SEC,-10,10.,0. ,C.,12HThfilST - L3S,12,2.,90 fE,TMRST,LCOP» 1,0,75) ,-3.»-3) ,C, <3F0ISTANCE - FT,-13,10. ,C.,16hCRCSS RANGE - FT, 16, S"J,TRAV,LCCP,1<C,75> 1.) GO TC 5 ALF,9. ,LOF,i) ^E ,<♦. ,LCF,1) LE ,<♦. ,LOP,l) rEE^F, *♦. ,LCF , 1) •, -<t .5 ,- 3 ) ,22. ,2) .,22.,2) .,0. ,2) ,C.,2) ,3.,-3) ,17.,2) .,17., 2) .,C ,2) » C ., c ) 7.,.?5,. 15,10HRUN NCMP ER , 0. , IC)

,C.,OISKL),OISKM)) 0.,ALT<L),ALKH))

10)

»TiPECDtTmrn) ,2.,C0.,AX(L),AX(M))

,TIME(L),TIKE(W)) ,2.,90.,AY(L),AY(M))

tTlPECL)vYIt'E<t'H ,2.,90. ,A2(L) »AZM))

,TIPE(L) ,TIKE<»0) .,THRST(L),THRST(M))

iC.tOISTCL) ,DIST(M)) 2. ,90. ,TRAV(L) ,TRAV(H>)

15,10HRUN NUMPtR,0., C..5, .25, .15,W,0.,-1) ,12.,-3)

80

-■-■ i -——; -a .,._ —,-.-..-

Page 96: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

GAM/AE/73-1*

i rnmemamm

CALL AX1SCQ. ,C.,11HALFHA - DEG,-11,9.»0. CALL AXIS (0. ,0., 11HCN-OETA-EFF ill»'*. ,90. CALL LINr(CALF,^SE,LCP,l,-l,3) CALL PLCT(C.,-5.,-31 CALL AXISCO. ,C.,11HALFHA - DEG ,-11,9 ., 0 . CALL AXIStC. tC* 11HCL-BETA-EFF, ll,i». ,90. CALL LINE(CALF,CLE,LCF,1,-1,3) CALL FLCTCO. ,-5. ,-?) CALL AXISU. ,C.,11HALFHA - TEG ,-11,9 ., 0 . CALL AXIS(C. id 15>CN«RETA«PYN-EFF,i 5,<*. CALL LINE( C/LF ,CNBEFF,LOF ,1,-1,3) CONTINUE CALL FftCTnRC 1.) CALL FLCT(12.,-12.,-3) RETURN END

CALF (L), CALF (P>) CNE(L) ,CNE(M>)

CALF (L), CALF m> CLE(L),CLE<M>)

, CALF (L), CALF <m ,90.,CNEEFF<L) ,CN9EFF(H)>

C

81

Page 97: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

'^r^M^-^-i'-'T^S-"-' "^"W! IUl^—> ^*»mm,,,.jmr*j.n ..,^i.Wii, j ,,M ^ ,^.w,.^ I..BJJHIIJIIP1 9H ..API ii nupwiimpjppjuji^u,

C

(

c c c c c c c c c c c

GAM/AE/73-14

SUBROUTINE SFEVAl(Y,YP)

»♦* THIS StanOL'TIN', PE~FCRHS THREE FUNCTIONS 1 1) CC^ARISCN CF THE SIGNS OF THE FIRST ANC SECONC

CER1VATIVES OF BETA FOR OETERHINAT ICh CF Tl-E CEPAUURE PCiNT

2) CHECK'S Ihb VALIE OF PSI AS A SECCNC CEPARTURE CRITERIA CALCULATION CF AN EFFECTIVE C-N-5ETA-DYKAMIC

OIMENS CCMHCN 1THPUS1 2GA,G3, 6SFE,CF 7Ai.0T,P 8B,C,CX

CCMHCN 1RU02) 20IST(i« 30ELRC« «TLCP,CA

RFAL I 110 FCRMAT

1<«X,*AL BECM=E

100 FCRMAT UX,*AL

101 FCRMAT 103 FORMAT

1»ALPHA 2* CE ?//,5X,

10«» FORMAT FCRHAT FCRMAT MAX-LC 1-0 00 2 J IF(TIV eFOOT= TEST=P IFCTES CCNTIN CCNTIN PRINT 1=1*1 Jrj4l BEOOT= TEST=G IF(I.E IF(J.L irncs

,7

105 106

1 2

20

3)

ION Y( /CPAIN ,Tl-siS GCDE, E,VS,C ECT,AL ,CXOE, //ÖLPH , ALT m 02),TS C2),TG LFUG2 X,IY,I (1H1.7 CHA»,5 ECMC (1H FHA» <<*X , I«* (in»/ - ♦

GREES* ♦ANC A (in»/ (////, (////, OF-l

si,MAX E(J) .L EECCK ECCT(J T.GT.C UE UE 1QU

l;r.OOT ( ECCT (J C.3) C O.MAX) T.GT.C

12),YO /FECMD <,A1,A CA^R, >CR,CN CFT.3E C7,CZO MV:2) C2*,TH a v'(t»0 2 V U32) ),ALOO 2,1X2, >,*J*, >,*TET

>,'J*, >,»3ET ,2«*X, ///,'tX »F10.5 ,//,9X T PETA ///, * * 9E * P

\\2) »AV, 2,A3 T°T1 C?,C CPT, E,CM

,BET EfA < ), AX ,THS TUO IR,V 12X, A*,/

12X, A*,/ E12 . ,*TH ,* ,*AT CCf

TA/" SI C

AVC5 ,AVOT,JA,AC,PI,TCPI,TRIKCr,,N'EAR, ,E1, 62,3 3, Tl,T 2, F EC, SIGH C, THE C, ANGLE , ,TRT2,AL , PE, ALPHA T, ST ART, CNEE,CLSE,V CPT, hCF, TH3US »TRIM, ?ETAT,WT1,»»T2» XWT,CON T»Z>-T, TCFT ,XT,YT,ZT, IX,IY,IZ,IXZ,IR,KR,MASS,G,S, , CHO E,CM Q,RV P2,ROH, ST HE, CT WE, T VGAIN A(«.02),VEL^02),P (UC2) «LCCF »C UO 2) , <«C2> ,°HI {«,02), PSI («4C2),YO(7) , TIMEtUO 2) , (*i02),AY («402), AZU02) ,CELE(<*0 2) ,CELA U0 2) , ST (J»C2>iCN.E(<,02)»CLE<it02> »CN3EFF (f+02 ) , 2) ,PEDOT(tt02) ASS *CEL9*,llX,*0ELCN*,llX,»CELCL*,3X,»CSeEFF*, /)

•CELE*,iiX,»OELCN*,llX,*DELCL,',3X,*CNBEFF«, /) 5),3 (UX, F5.2)> E POINT OF DEPARTURE CCCURS AT*,//,12X, DEGREES»,//,8X,*ANC BETA = ♦,F10. 5, TIME = ♦|3XtF10.5»* SECCNCS*,

^ANO = »»F10.5,* CEGREES*) NO DEPARTURE OEFINEC«) ETA-COT CONDITION') CNCITION*)

1.5.) GO TC 1 s.>-3E0CT (J-l) )*EEOOT .) GO TC 20

jmEnOT (J + 1) )*5EOOT C TO 3

GO TO 1 .) GO TC 2 0

82

■mill—■ ^ =*.-.-- --a- _,■■■.-....

Page 98: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

r i-;««*«■ ""UJI mnp

GAM/AE/73-1A

(

10

1=0 GO TO 1 PPINT 10 3,ALFhA( J) ,RETA(J> »TIHE(J) »BECMC PPINT 105 00 5 J=2,LCCF TEST=ASS(FSI IJ>*?6G.) IFCTEST.GT.lE.) GO TC 6 CONTINUE PRINT 1C<» GC TO 9 PRINT lC3,AtFHA(J> ,BETMJ> ,TIME(J) ,BECMD PRINT 106 CONTINUE PPINT 100 MAX=J-5 0FLT = 7IfE(J)-TTME(l) 1-1 OO 6 J=1,MAX IF(eETA(J).G1,5.) GO TC 7 IFC?FTA(J) .ECO.) GO TC 7 CLB=CLE(.J»/5ETA( J) CNP=CNE(J)/FETA(J) AIF=ALFHA(J) /AV CNBEFF(J) = (CNc*CCS(ALF)-(I7/IX)*CLR,rSlN(ALF)) IF{Ae?(CN5EPf (J1). GT.0.10) GO TC 10 CKBEFF(I)=CNFEFF(J> CLE(I)-CL° CKE(I)=CN6 CALF(1)=ALF**V 1*1 + 1 CCtlTINUE CONTINUE ICP=T-1 RETUPN PPINT 101,J,EECOT(J) ,CNEU),CLE<J) ,CNnEFF(J) , ALPHA (J),RETA (J) GC TC 7 ENO

L 83

mmm* ■■■ I -Tir-nfT

Page 99: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

-i-t^-v«?»^,. , .,„ ^u««,,^^ %.WfA «PJ*W.*!I!LlPiK.M|.u l^f:i. itMif. pw, jpauBpp

GAM/AE/73-14 1 C c

c c c c

c,

( •'

SUBROUTINE SKFE(Y,YP)

*»♦ DATA STCRAGE FOR PLOTTING SUBROUTINE

OIMENS COMMON iTHRUSl HGAfGB, 6SFE,CF 7ALDT,E 8e,c,cx

COMMON 1RIV02) 2DISTU 30FLRC4 M.CP,CA

REAL I J-GA AX(J)= AY(J) = A7(J)= CELECJ OELR(J OELA(J \HRST( IF(Y(c IF(Y<9 TGV(J) OIST(J TRAVCJ ALPHA( ALOOT( EFTACJ BFOOT( VEL(J) P(J»=Y 0(J)=Y R(J)=Y ALT(J) THETAt IF(Y(1 IF(Y(1 PH(J) PSI(J) CLE(J) CNE(J> RETURN END

ION Y( /CHAIN »THRLS GC,PE, E,VR,C ECT.9L ,CXCE, //ÖL^H ,ALT (4 02),TS P2),TG LF(4C2 X,IY,I

(<YF(1 ((YF(2 ((YP (3 ) = CE )sOR )=CA J)=T1* ).GT.F ).LT.- =Y(°)» )=Y(11 >=Y(12 J)=AL* J>=ALC )=°E»A J)-9EC

(C»>* AV (5)»AV (6)»AV

= Y(7) J)-Y(5 01.GT. 0).LT. =Y(1C) =Y(9)* = GB = GC

12),YP(12) /SECMD,AV,AVC5,AVOT,JA,AO,PI,TCPI,TRIMCFT,NEAP ,

2,Al,A2.A7,BlfE?,93,Tl,T2,PEO»SIGHC»THEC»ANGL?t CA,TR, TRT1,TRT2,AL ,E?, ALPHAT,STA5T,CNEE,CLEE,VCPTf

YC»,CNCR,ChCP, TH5?US,TRIH,nETAT,WTl,WT2,XWT,CCNT,ZfTf

CFT,3ECPTtTDFT,XT, YT,ZT, IX,IY,IZ,IXZ,I*,WR,MASS,G,S, CZfCZOEtCV.^OE, CM afRVR2,R0H,STHEfCThE,1 VGAIN M«.3 2»,QETA(<«0 2),VELU02>fP('«02>,LCCFtQ<«iQ2>, C2)«THFTA(iiC21 fPHI(ii02)f PSKUC2) tYC(7) tTIHE(<i02) (

fV C*0 2), AX (^C2),ftY (W02), AZ < <4 02 ) , CELE U0 2) , CELA (^02) , VC»0 2) »THRST(«»0 2»,CME(U0 2>,CLE('»0Z) |CNBEFF(U02 )f

),ALOOT(H02>,BEDOTU02>

2,IXZ, IR,f ASF

)-Y(2) »Y (6)*Y(3)*Y (5>)/G) i-STHE )-Y(3) »Y U)*Y< 1)*Y (6))/G)-CTHE»SFE >-Y(i) *Y(5HY(2)»Y <<♦)> /G)-CTHE»CFE

12 1) YC9) = Y(9)-TCPI FI)Y(9) = Y(c)+TCPI AV ) ) «V TAV \, T*AV

)"Al/ PI) Y( 10)=Y(10 )-TOPI -FI) Y( 1Q)=Y(10)+TQPI ?AV AV/360.

84

— -

Page 100: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

"'*"■"'"* J:''^ ". ' '■" -' .1 !'-■ .'UJWH.U1UJ.I imi.1 . I ».!»» I II J..L«.-. Illlll,,. U,,LH,I. Uli "<m

GAM/AE/73-14

C C C C c c

SUBROUTINE TPINl(Y,YF)

♦ #* AIRCPAFT OR OESCE

(DIMENSION Y( CCMMCN/CfA IN

iTHRUSl,Tt-FlS 2GA,GP,GC,0E, 6SFE,CFE,V°,C 7AlOT,EECT,H 8B,C,CX,CXCE,

CCHMCN.'CCCEF 1ECXCF(21>f£C 21),ECYDA(2l) 31),ECNF(2l>,

REAL IX,IY TI 100 FCRMflT(lFl) 101 FCRMAK22H 1

1E12.5,6H CCC 102 FORMAT (* AIR

1IGHT*,/,» *, 103 FCRMAT (23M 1QU FCRMAT C6H C 105 FCRMAT ( 9> 106 FORMAT (°H T 108 FCRMAT (51- E 109 FCRMAT (9H V

PRINT 100 PRINT 102 T=0. AL=ATAN2(Y(3 CCUNTER=0, Y<*0=Y(5» = Y(

7 CONTINUE CCUNTER=CCLN Y(8)=AL CALL GYRATES 0E=-fCPMTl + HPITE (6,10«« CALL GYRATES DESC7=-((G*C WRITE (6,1C5

2 CONTINUE IMJA.LT.l.C IF<EC?(JA),E IF (ECZ(JA). JACC=C IF (FCZ(Jfl). IFCECZ(JA).t JA=JA*JACC WRITE (6,1C8 GC TO 2

IS TRIMMEO FCR STRAIGHT AND LEVEL, r.LIMEING, KING FLIGHT

12),YP(121 /PE:10,AV,AVC5,AV0T,JA,A0,PI,TCPI,TRIM0FT,NEAR, 2, «1, A 2, 0 2,81, E2,3 3,T1,T2,FEC,SIGHC,THEC,ANGLE i CA,T?,TRTl,TRT2,ftL , °E, ALPHA T, START, CNEE,GLEE, VCPT,

KK,CNC9,CKF,THSUS»T:»IH,qETAT,WTl,WT2,XWT,C0NTtZr'Tl

CFT,^ECPT,TOFT,XT,YT,ZT,IX,IY,IZ,IXZtIR,V.R,MASS,G»Si CZ,CZDE,CMtCMnE,GMQ,RVR2fROHfSTHE,CTHEfTVGAIN /ECY(21,5> ,ECN (21,9),ECL(?1,9) »ECM(21,9),ECX(2 1), 2CF(21),cCMCE(21), EC^n (2 i) , ECYCP (21) ,ECNDRf _'1> ,EClCP(2 ,ECNOA (21) ,FCLCA(21>,£CYP(21) ,£CNP(21) ,EC'.t-,(21 ),ECYR(2 ECtR(21) ,FC7(21> 7,IXZ,I9,MASS

5 ITERATIONS ON TRIM,/IX »7HUCCT = ,E12.5,8H WOCT = , T = ,E12,E) CFAFT IS TRIhMED FOR STRAIGHT ANC LEVEL CR CLIPRUG FL «3(1H* ),////) TRIM CZ NOT 03 TAIN ADLE,/1<*H DESIRED CZ = ,E12. 5) E = ,F5,1) CESCZ = ,F7.?> I-RIS = ,E12.5) CZ (, 12 ,*th) = , E12. 5) F(l> = ,E12.5,SH YP(3) = ,E12.E,9H YP(5) = ,E12.5)

>,Y(1>)

n-Y (9) = Y(10)=Y(2) =0.

TE5+1.

<T,Y,YF) 12)*ZT/(RVR2*A3»MASS))/CMOE ) CE (T,Y,YF) CS(!\L) /(^VR2*A1)) + CZDE»0E) ) c*:sc?

R.JA.GT.21) GO TO 5 C.CESC7) GC TO 3 CT.OESCZ.AND.ECZUAU) .LT.OESCZ) GC TO 1

CT,TESC7) JACOM 1.CESC7) JAOC=-l

) JA,EC7(JA)

85

Page 101: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

II.JIBJ.H-I J » i III , L.I.I I. I.. _; ... .JIB.!,.! I I . I .1.1 IJUIIWIIW^JJIII

GAM/AE/73-1A

v. *

CONTINUE AL=(JA-3)/£VC5 GO 70 <♦ CONTINUE AL-(UA-3)-(tC2(JA)-CES07J / (EC Z (JAU ) -ECZ (J A) ) ) /*V05

60 TO «♦ CONTINUE WRITE (6,1C3) CESCZ CH0P=1. RETURN CONTINUE

Y(1)=S0PT(CVR/(1.*TAN (AL)»»2)> Ym = SCRT(CVF-Y(l) **2>

Y(8)«AL CALL GY9ATPS <T,Y,YP5 THRUS=(G*SH <R)-RYR2*A1*CX+CX0E»0E) »MASS

Tl=TRTl*TH*Ui T2=TRT2*THRIS WRITE (6,106) THRUS CALL GYRATES (T,Y,Y«=) IF (CCINTEF.CT.13.) GC TC WRITE (6,1C=> Y»tl)tYB(j' YPC?) SttSs«"«».«^..^ .«S<YPC3».GT.*..C.

,APS(YP(5J).GT ..01)

8

1 GO TC 7 RFTUSN CCNTIME WRITE (6,101) RETURN ENO

Y»(i)tYF(3)fYP(5)

86

H-ilrti'■■ -äüMIIW I ■---■■'-—- -■'- J

Page 102: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

<wm-*mmmmm i.ii .ui Mi i... .**>? i*tww*m*m..*nm •. ■ .■iiHiUPMP

GAM/AE/73-14

SUPRCU OIMFNS CCKKCK

iTHRUSl 2GA,G£, 6SFE,CF ?ALOT,P ee,c,rx

CCHMCN 1ECX0F< 2l)tEC\ 31)tFCN

REAL I

TINE T ICN Y( /OAir» ,TF»US GCiDE, Et VR,C EDT,£L ,CX0E, /CCCEF 21) |EC OA (21) R(21) , X.IYiI

PIV2 (Y 1?>, Y°

,YP) (12) ,AV

c ♦♦♦#**ENTER TUFK 7RIH h£RE »*#*♦»« C

RETURN ENO

( ;

L 87

M ■Müäffiai' gBUi rffiMrfrrriiiriiritw ajjjü ^rtiiMiMil ■^..■J.8.^.-^- ---—-.»■■, , ,-^,^i-ra ... i - ^=:.1MMi^-. ^.-<-:—.—f- --^_. .^-- ^ j ,^ i,-.itrirMi,ti,lii'aii-.ri 1

Page 103: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

---■ ILI"J "<*W.I"I-

GAM/AE/73-14

C C C c c

SUBROUTINE FRINTKY)

*»* AIRCRAFT FAR4METER* AND INITIAL, TRIHMEO CONCITTCNS ARE PRIMED

110

11

10

OIMENS CCFPO

1THRUS1 2GA,Ge, 6SFE,CF 7filOT,P 8B,c,rx

REAL I ALPE=A KRITE( TPIF=1 PRINT PRIM FORMAT

1*»,30X 2»»92X, 3*4.8,^X <»X,*MAS 5,Ell.5 EMS* 7»,92X, 86»<«X,* 9T=*,E1

1 rCRMAT

2N5 • 3*»,EU **92X, «*»- 5*,E1<*. 6*»,cl«< 7*»,92X 8/,lX,*< 9.6,«.X, 10EP ni 21X,100

7 FCRMAT RETURN END

ION Y( /CFAIK ,TFRIS GC.CE, E,V«?,C EOT,AL ,CXOE, X,IY,I L*öV 6,107) • 110,IX 111, (f (1H1 ,/ ,22H»* c, f-< * * ** •*IX2= S=*, El ,5X,««F

INERT £*H«***

RIGM 3.7,<<2 (

**,31X .8,'>>, »***,/ Ö.22X,

,<♦(-*«»

«A1LE» SFLACE (IF»), (5H U

12) /EECH3 ,AV,AVC5 S,A1,A2» A2,ei, [ö,DR, TRT1,TRT <rCS,CNn!',CHCF, CFT,^ECPT,TCPT CZ»CZQF»O,CF0 2,IXZ, IR,fßSS

,AVOT,JA,AO,PI,7CPI,TRIFOFT,NEAR E2,T3,Tl,T2,FF.C,SinHC,THEC,ANGLE 2,AL ,RE,ALPMAT,START,CNE5,CLEP,V TH'-?US,TRIM,3ETAT,WT1,M2,XWT,CCN ,XT, YT,ZT, IX, IY,I2|IX2,I«J|HRfMAS S,CMQ,RVR2,R0F.,STFE,CTFE,TVGAIN

» » CPT , T,ZM, S,G,S,

Y(l) ,Y(3) ,ALPc

,IY,IZ tJ),J= ///, M * AI ,/),ix ♦>E1<*. 1.5,t»X «*♦*,/ 1A = *,E ,',1X, EhGPIE >,<<H**

?2X,«*H

*V(3) = ,1*,<«H

«FFI(0 *,/,lX = 2X,UH CN ni«

/),1H1 = »El

»IX 1,6 IX, FCR ,<*F

e,6 »*w »IX 12.

Z,MAS ) ,TFE tUOd AFT »#* *t

X,<*h* ING A

e,^x,

S,S, C,FE H*) , FARA *X,* ?**.

REA= '»»9 »FP£

»E 12.6 ,3(/,lX,<»H

,15X

C,9,IR C,SIGH /) »Ml METERS IX=*,E /»IX,'» •tEll. 2X,<*H* OUENCY HGINE

»9 »

»MR, C,Y ( X,«+H

It». 8

5,*»x ***

= *,E THRU %/, 2X,t4

T1,T2, 7),CE, **** f9

*»,3CX ,<«X,*I *»9?X, ,*CHCR /,1X,<+ 12.6,2 STSt IX ,t*H»

THRUS CA,CR 2X,<«H , **H*» Y=*,E UH»**

C = ',E

M,<*H LEF

**»,2 »3(/,

*,E1 #* » #

»/»l )=*, ,UF* ** ** FLAC »E 1* ) 2.5/

3 (IX

,5X, X, M Em. ***» >/>l E*FN .3,5

IX, <♦

*P(0

8,W £X,* X,t,H T = *, 3X,t+

***,92 W(0)=» )=*,F1.

,*PSI< IMTIA

E m. s,

30X,31 X,*»H**

,Ei^,8 i».8 ,MX

Q) = *,E L ALT! X,*ELE

/,3(1X

I-»»*

*»,/) ,22X, ,»G(C /,1X, 1««.3, TLCE = VATOR

IN ,1X,

)--*,

mx, SEI

CIS /,1X «» g

»**♦,/) **»/»3( l<t.8,t»X *»/»ix, 11.5, t*X ,5X,*PO ••♦»»/» T EK:IN '.XJ'TCT IX,100(

ITIAL

•*,/»ix E1^.8,U **,5X,»

w.8,56X PLACEMZ

2X,^H»*

,lX,Uh** 1X , <■ F « * • ♦IZ=»,E1

t*c FAf = * TAFY IE« 1X,«»F*** E = * ,E 12. AL TFRLS 1H*)) )

ccKcnic 5X,»L(C)

x,*«; (C) = TFETA (0) ,1X ,t)K»» j k F « • • * , KT8*VE1(« ,5X;";L: *»,/) ,<♦(

,?H H = ,E12.5/,5H A = ,E12.5)

88

Page 104: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

■■'.(!- .-" ■"' "—■"«-'—■ '«■"-T „_i,, iij gwp^ispHBWilwpwBiBü-JMMM.IJ^I.=UM^IHW.-UHWJPW- MJIJ^P».>-I...IIIJI.IU'"H msym^wmt * WWWW " ^1

GAM/AE/73-1A

1 30 2 3 I»

6 7 8

9 10

20

21

22

23

2*»

11

12

13

1W 15 17

18 19

•AESCHJ) 1,1,3

SUBROUTINE FkGXYZ( X,Y,F3,N »HX, EMAX,F) CIMENSICN ^ (15>fY0(i5> ,YT( 15), YPU5) ,P0 (15) ,P1 (15) , F2 (1<3>, F3(15)

X0=X X=X*0X H=Q.5* (X-XC) H = H*H IFCAES(X-XC) DC t* 1 = 1,N Y0(I)=Y(I) H7 = H XT=X0 00 5 1=1,N YT(I)=Y0(I> ASSIGN t 7C X GO TO 20 CO 7 1 = 1,N YF(I)=Y(I> HT=0.5*H ASSIGN 9 TC * GO TO 20 CC 10 1 = 1, N YT(I)-Yd) XT = X0*>-T ASSIGN 11 TC K CALL F(XT,YT ,F0) 00 21 1 = 1,N Y(I) = YT(I) +C ,5'HT*F0(I) CALL F(XT + C.5*H.T,Y ;Pi) CO 22 1=1.N Y(I)a\t(IHM'(i 2071 C 6761* F0(I) +.292893 21?«P1<I)) CALL F(XT*0.E*HT,Y,P2) 00 23 1=1,N Y(I)=YTII)4H«(.7 0710€7 81» (P2(I)-Plt I)) ♦P2(I1) CALL F(XT4t-T,Y,P3) OC 2«» 1 = 1,N t<I) = YT(I>*FlM°0CI»*.E857e6«»3 8*Pl(IM3.*iit21356'P2(I>*P3( I)) /6.0

GO TO X, (6,<=,11> RKAX=G 00 12 1=1,N R=AGS( (0.0 3* (Yttt-YPIT)) )/Y(I> ) IF(APS(Y(I)) .LT.1. 1AX)R = AGS (10. 0 3MY(I)-YP(I)))/EfAX)

RVAX=AHAX1 (F ,mx) Y(I)=Y(I)MY (I)-YP (I) )/l5. 0 IF(R^AX-Ef-AX)13, 13,17 XC=X0+h IF(XO-X)15,1^,13 RETURN IF(RHAX-0. C3'FfAX)30,3:,2 H=HT XT = X0 OC 19 1=1,N YF(I)=YT(I) YKI)=YC(I) GO TO 8 ENO

89 J

Page 105: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

«*«-■■ • «■' 'I' i!'.«.t. «!>. ---m i |_| .. . uq|Ma9W

UP. ifc.i ■■—« UIMU.HIHIII

GAM/AE/73-14

('

C c c c c c c c c c c

SUBROUTINE CCN'TRl.(Y,YP,T> DIMENSION V( lc), YP(12> CCMMCN/rMAIN/FECHD,AV,AVC5»AV0T,JA,'»0,PI,TCPI,TRIM0FT,NEAR »

lTHPUSl,THRLS<,ßltA2iÄ3»Bl»E2,33,T1,T?,FEC,SIGHO,THEC,ANGLE» 2GA,6BfGC,D5,CAt"3:?»TPTl,TCT2,AL,PE|ALPMAT,STfl';TfChEEiCLEEiVCPT» 6SFE|CFE,VP-,CHCRf GNCRjCHCP, THRU S »TRIM , PE TAT , WT 1» W T 2 , XWT ,CCN T , 2 H » ?ALOTfPEOT,ALCrT,9ECPl,TCFT,XT,YT,?T,IX,IY,TZ,IXZ»IP,WR,MASS,G »Sf 8B,CfCX|CXCEiC2iCZOF,Ct'tCfOE,CMQf1VR2iROH,STHEfCTHE,TVGAIN

REAL 2XvZY|X2flXZfiR,fASS CCWT=0. IFCT.LT,3.»RETURN

*** SPECIFY CONTROL PCCEt

VOFT=C. CONTROL SURFACES ONLY VOFTrl, THRIST VECTORING VOFTS2. HOHENT THRUSTERS

ANO SFECIrY THRUST CONTROL GAIN. TVGAIN= */. CF RLOOER ANGLE

•• SPECIFY BETA CONMANC IN DEGREES. TVGAIN=0.2 VCFT=0. BECFO-C. CCNT=1. 0E=-2S. OPMX=30. 0AMX=15. 3EC=IECMC/AV G1=.C5 G2=.5 G3=.0«5 T1=T2=1CCCC. OE=DE-T+3. IF<OE.LT.-25.) 0E=-25. BEC=BEC^C/AV DR-(G1»Y(6)-G2*(TE-PEC )) »AV OA=(G2*YU)MAV IF(APS (0 A) ,G1.CAMX)OA=CA«OAMX/A*S(OA1 IF(ABS'.C°) .G1.CRMX)ORsCR*0RMX/ABS(CR) RETURN END

( '

90

Page 106: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

HP—,!-»**——.-f.". HOT» i>ll|IH..i<« mw^.m« m ■ i« -■■ •»■■>««-p|..<:

GAM/AE/73-14 1

g?

SUBPO OIHEN CGMKC

1THRUS ?GA.GP 6SFE,C 7ALDT, 8B,C,C

REAL IFCVO AlOEG IF(AL IF(AL IF(AL IF(\C IF(VC BETAT IF(V0 OR=0. RETUR CCNTI ORMX= HT1 = H AKG-T HTMX = HT=TV IF(DR iFtcn RETUR END

ITXNE

ts/C^ß 1,THR »GC i C F£,VP FECT, X,CXC IX.IY FT.EQ = fll*A DEG.L CEG.G TEG.G FT.EC FT.EC = TVGA FT.EC

N NUE 30. T2 = 0. VGAIN CT1 + T Al»V«T .LT.Ö .GT.Q N

VECTOR« Y,YF) Y ( 12),TP(12) IWE>ECMQ,A\l,AVC5,AV0T,JA,A0,PI»TCPI,TRIM0FT,hEAR, LS2tAi|A2|A3teif e2,3 3,Tl,T?,FEC,SIGHC»THECfANGLE , EfCetTJ.TRTltTCTS^LjEEiALPHAT.STAKTjChEEfCLEEtVCFT, ,C^C3, CUR, CFCP, THRU S,TRIM,RET AT, WTl,KT2,XWT,CCNT,ZKTt ALCr-T,nECPT,KPT ,X'T, YT.ZT, IX,IY, IZ,IXZ,IR,WR,MASS,G,S, E,CZ,^üE,C*,CH)E,CMQ,RVR2,ROH,STHE,CTHE,7VGßIN ,I3,IXZ,IR,"ASS

) RETURN .0 V T. T. T.

20.)TVAU=C. JO TVAU = (£LCEG-30.)/20. !C.) TVAU=1.

.2.) GO TC eg

.3) TVAUal, IN«TVAU»rR/flV •It) RETURN

*CCMX/AV 2) «*T*SIN(ANG> /XWT ^X'AES(QF/CRfX) .) *Tl=WT .) VT2=WT

91

1 '■■ —

Page 107: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

■ - !»-«■!**« ■ . ||IJ,1I|.W^1J11.,^ ■ 1 . -«™ I .1-1 I- ■ ■ ...."-!' -—-.—— -,. •■«■i.i.ii pmmmmfimmtn* W.» ''llim\iyi fI" ■-«■■-'■■-«?T-JJUMl_.IJ.lMWt

GAM/AE/7J-14

r

Appendix E

Aircraft hodificntions For Improved Directional Stability

The majority of the high-performance aircraft built to date has

experienced directional stability problems which failed to surface prior

to aircraft reaching fully operational status. As previously discussed,

the corrective action is normally to impose regulatory limitations on

the crew in order to avoid that portion of the flight envelope vulner-

able to departure unless the severity of the problem necessitates minor

and/or major configuration modifications. The following are examples

of modifications to the air frame, flight control system, or both.

Air frame. Configuration Changes

One of the first problems to surface stemmed from roll inertial

coupling. The corrective modification applied to the F-86 and F-100

was to extend the vertical tail by more than a foot in length. The

same technique was attempted when later aircraft developed directional

stability problems and in severaj. cases, the increased tail size was not

only ineffective, but proved to be destabilizing in the high angle-of-

attack regime (Ref 9 and 19).

There has been considerable research conducted to determine the

effects of various wing modifications on directional stability. Drooped

leading edges were found to increase both directional stability and lift

characteristics at high angle of attack f>r certain wing-body combina-

tions (Ref 9). Although drag consideration precluded their use on high

subsonic aircraft, the concept led to the retractable leading edge slat

such as that used in the F-4 Agile Eagle program. Conversely, there are

several examples in Reference 19 of configurations vising leading edge

L 92

, ^ :

Page 108: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

U, ij.1^H'JW»W.'JlWW«JJIIIMm*J"W>"'|.,i4''W->W-.|U-.I.U..I.-il.lMI'|IW-M.'W.L]|ll Llll.il I ■-! j '•" ' » I "--■-» !".

GAM/AE/73-14

slats or flaps that showed little improvement in directional stability.

Fixed vertical chin canards similar to those used for Reynolds

number effect correction on drop models have been used on a few aircraft,

Their effectiveness was limited to enhancing spin recovery (Ref 3, 5, 9,

21) and did little to improve directional stability.

Nose strakes such as those to be used on the Northrop YF-17 light-

weight fighter have also been shown to improve spin recovery capability

on model tests conducted by NASA (Ref 10). This improvement was only

apparent in the oscillatory type spin and no effect was apparent in the

flat spin mode. Similarly, no evidence of improved directional stabil-

ity was apparent with the strakes added.

Control Systen Modifications

Another of the early stability problems encountered in high-

performance aircraft was the pitch-up departure of the F-101. The

pitch-up occurred prior to stall and was followed immediately by

departure from controlled flight. Obviously, the condition was a

totally unacceptable risk during the landing configuration. Ihe

problem was initially corrected by installing a stick-pusher and warn-

ing horn (Ref 5). The stick-pusher solved the problem; but, created

new problems in the form of limited maneuvering capability and pilot

dissatisfaction. The stick-pusher was later replaced by the Honeywell

boundary control system (Ref 5). The boundary is calculated continuous-

ly by the system as a function of Mach number and compared to pitch

rate, angle-of-attack, control surface position. A limit function

based on this comparison controls the engagement of the system which

flics the aircraft at the c-ilculated boundary unless the pilot over-

rides the system with excessive stick force or reduces the stick force

93

i-«»«ii_wwi,-i.^.riiB IffifitM

Page 109: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

(

II»>»«j-_^r' """■-"^""■■'" ■ — ■ - —J- ■ ..■..■....,..r.-,., .„„^.^»^„.nn i.ii..i,it1iu„tmu_|J_..iuai.L.uuii...j|un ,L-.u.-.linil.-IJ,>.'IW«JWMH»HIUJiii|i«li JI«ll|IIIJilll»|ill,»JlUI.-IUl^URJJt>pi[lllu.lL).l|JIJU.UIr —

GAM/AE/73-14

sufficiently to fly off the boundary, unfortunately, the boundary used

is that defined by r.he pitch-up condition which was never corrected.

The result is an artificial maneuver envelope that lies well within the

lift limited envelope. The region between the two envelopes is a

safety zone that without the stability problem could be vitally needed

in an air superiority situation. This may seem an unnecessary require-

ment for a reconnaissance/air defense interceptor aircraft; but, one

must realize, the weapon system is worthless as an interceptor if it

cannot defeat the aircraft it has intercepted.

A current example of a control system fix is the alpha-limiter/

beta-reducer departure inhibitor system to be installed on the F-lll.

The alpha-limiter senses angle-of-attöck to calculate a pitch rate for

driving the pitch damper, to reduce command augmentation gain, and to

increase stick force. Tl e beta-reducer feeds differential tail as a

function of angle-of-attack into the rudder for increased roll coord-

ination and provides yaw rate data to rudder control for sideslip reduc-

tion. The name of the system is the best statement of its limitations.

Like all control system cures for stability problems that are in u/e to

date, the alpha-limiter/beta-reducr.r creates a buffer or margin of

safety zone at the performance limits. Obviously, since departures

occur in critical maneuvers such as air-to-air combat, a portion of the

air superiority flight regime lies in the buffer zone. The loss of

this portion of the flight envelope may seriously hinder mission accom-

plishment.

Airfrainc/Control System Modifications

As mentioned previously, the leading edge slat configuration

common on many transport aircraft as a high lift device has been

94

-si^^SSi^^^^m^^-^^^^^ ,-,.... ...... .-■ ^.^g—.T^,^. ,„.., ,...,.^. _^.f,^.„-, _., . ■fj...;:^^^.;.. .,. ,- ■ ...

Page 110: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

GAM/AE/73-U

successfully used as a device to improve directional stability. The

Agile Eagle (F-4E) modification by McDonnell Aircraft Company resulted

in a major improvement in lateral-directional stability at high angles-

of-attack (Raf 5); but, is also mentioned, this modification has not

been as effective on other configurations (Ref 19).

The use of small retractable vertical or horizontal canard surfaces

had similar effects to those fixed canards mentioned earlier. While

somewhat effective in affecting spin recovery (Ref 5 and 21), they

showed little evidence of improving directional stability. Similar

results were apparent using retractable nose strakes (Ref 10).

In 1959, Cornell Aeronautical Laboratory, under contract to the

Havy Bureau of Aeronautics, successfully improved lateral-directional

stability of the F7U-3 by installing enormous vertical canard-mounted

yaw vanes (Ref 1 and 5).

The fact that strakes, fences, spoilers slats, canards, oversized

vertical tails, and grotesque, ungainly yaw vanes are required to provide

some semblance of directional stability in various modern high-performance

aircraft is sound testimony to the statement made by Harold Andrews at

the 1971 Stall/Post Stall/Spin Symposium (Ref 5), "We still do not hava

the tools to design the a.'rcraft right in the first place ....".

95

.j^^ajaafcja.y-,,,.. . .. .„ .-..,^wJJa^_^

Page 111: DTIC - y^ › dtic › tr › fulltext › u2 › 769495.pdfb wing jpan, ft c mean aerodynamic chord, ft (L lift coefficient C.,C. non-dimensional rolling moment coefficient 0 C non-dire.isional

rjwii- -HJiNP»*!»" ii.iwiiMiijBiiwii. .i. ii „I I.HIB.HPHI.W!M i ■mipni^pji i|, . J—.-.J fpappppj .■ ■■»■ IPP.P ■■■■-■■■ IM

GAM/AE/73-14

Vita

Deas H. Warley III was born

He joined the United States Air Force as an enlisted man in February,

1961, after graduating from After returning

from a Vietnam tour in 1967, he attended college as a part-time student

and completed requirements for the Airman Education and Commissioning

Program. He received a Bachelor of Science in Engineering degree

(magna cum laude) from Arizona State University in 1971. After com-

pleting Officers Training School, Lackland Air Force Base, Texas, as a

distinguished graduate, he entered the Air Force Institute of Technol-

ogy in January, 1971, as a graduate student in the Aerospace-Mechanical

Engineering program.

Permanent address:

This thesis was typed by

96

—i -rum irfmü"""-—* nil