dynamic and static analysis of turbogenerator foundation

Upload: erabhijeetanand

Post on 01-Jun-2018

278 views

Category:

Documents


5 download

TRANSCRIPT

  • 8/9/2019 Dynamic and static analysis of turbogenerator foundation

    1/120

    DYNAMIC & STATIC

    ANALYSIS

    Turbo Generator Foundation

    Rev. 1

    GERB Engineering GmbHRuhrallee 311, D-45136 EssenPhone: +49-(0)201-26604-20Fax: +49-(0)201-26604-50Email: [email protected]

    Kunde / Client:

    BUSHAN STEEL LTD.

    Datum / Date:22.06.2011

    Projekt / Job:

    MERAMANDALI 165 MW STG - UNIT 4Vibration Isolation of a Turbo Generator Set

    Aufsteller / Author:

    M. GeisDr.-Ing.

    Projekt-Nr. / Job-No.:

    E-58144-1-4 Rev. 1

  • 8/9/2019 Dynamic and static analysis of turbogenerator foundation

    2/120

    BUSHAN STEEL LTD. Page IMERAMANDALI 165 MW STG - UNIT 4

    Vibration Isolation of a Turbo Generator Set Rev. 1

    GERB Engineering GmbHRuhrallee 311, D - 45136 Essen / Germany,+49-201-2660420

    Scope and Subject of the Report: Dynamic and Structural Analysis for a spring supportedTurbine Generator Foundation

    Document number : E-58144-1-4Revision number : 1Revised pages : IIII, 2, 3, 4, 8 - 11, 1522, 25, 27, 28, 4062, 1003 - 1054Date : 22.06.2011Number of pages : I - III, 1 -62 plus Appendix consisting of pages 10011054

    Author : M. GeisDr.-Ing. ___________________________sign.

    Approved : S. GutbergerDipl.-Ing. ___________________________sign.

    Client : BUSHAN STEEL LTD.Order number : -Order date : -

  • 8/9/2019 Dynamic and static analysis of turbogenerator foundation

    3/120

    BUSHAN STEEL LTD. Page IIMERAMANDALI 165 MW STG - UNIT 4

    Vibration Isolation of a Turbo Generator Set Rev. 1

    GERB Engineering GmbHRuhrallee 311, D - 45136 Essen / Germany,+49-201-2660420

    CONTENTS

    Page

    1 S U M M A R Y ...................................................................................................................... 11.1 General ............................................................................................................................. 11.2 Building Materials .............................................................................................................. 11.3

    Reference Documents ...................................................................................................... 2

    1.4 Main System Data ............................................................................................................. 21.5

    Machine Data .................................................................................................................... 2

    1.6 Vibration Isolation System ................................................................................................. 31.7

    Discussion of Dynamic Characteristic ............................................................................... 3

    1.8 Theoretical Amplitudes ...................................................................................................... 41.9 Seismic Loads ................................................................................................................... 51.10

    Literature ........................................................................................................................... 6

    1.11

    Software ............................................................................................................................ 7

    1.12 Calculation Models ............................................................................................................ 71.13

    Determination of Cross Section Properties ...................................................................... 11

    1.14 Input Data ....................................................................................................................... 121.14.1 Input of the Calculation Model ......................................................................................... 121.14.2

    Input for dynamic analysis ............................................................................................... 13

    1.14.3 Input for static analysis .................................................................................................... 13

    2 D Y N A M I C A N A L Y S I S .......................................................................................... 142.1 Foundation and Machine Masses .................................................................................... 142.2 Results of Dynamic Analysis ........................................................................................... 152.2.1 General ........................................................................................................................... 15

    2.2.2

    Comments on the Results ............................................................................................... 15

    2.2.3

    Plot of the Mode Shapes ................................................................................................. 16

    2.3 Determination of Vibrational Amplitudes .......................................................................... 232.3.1 Excitation by Unbalanced Forces .................................................................................... 232.3.2

    Superposition of Theoretical Amplitudes ......................................................................... 24

    2.3.3 Frequency Response of Amplitudes ................................................................................ 242.4 Dynamic Element Loads due to Unbalance ..................................................................... 26

    3 S T A T I C A N A L Y S I S ............................................................................................... 273.1 General ........................................................................................................................... 273.2

    Compilation of Load Cases ............................................................................................. 27

    3.3 Description of the Single Load Cases ............................................................................. 28

    3.3.1

    Load Case 1 - Dead Load Foundation............................................................................. 28

    3.3.2 Load Case 2Machine Loads ........................................................................................ 293.3.3 Load Case 3Condenser Loads .................................................................................... 303.3.4

    Load Case 4Live Load ................................................................................................ 31

    3.3.5 Load Case 5Power Torque ......................................................................................... 323.3.6 Load Case 6Thermal Forces X ................................................................................... 333.3.7

    Load Case 7Thermal Forces Y.................................................................................... 34

    3.3.8 Load Case 8Thermal Forces Z .................................................................................... 353.3.9

    Load case 9Pipe Forces X .......................................................................................... 36

    3.3.10 Load case 10Pipe Forces Y ........................................................................................ 373.3.11 Load case 11Pipe Forces Z ........................................................................................ 383.3.12

    Load case 12 - Erection load ........................................................................................... 39

    3.3.13

    Load case 13 - Erection load ........................................................................................... 40

    3.3.14 Load case 14 - Loss of blade Y ....................................................................................... 41 3.3.15

    Load case 15 - Loss of blade Z ....................................................................................... 42

  • 8/9/2019 Dynamic and static analysis of turbogenerator foundation

    4/120

    BUSHAN STEEL LTD. Page IIIMERAMANDALI 165 MW STG - UNIT 4

    Vibration Isolation of a Turbo Generator Set Rev. 1

    GERB Engineering GmbHRuhrallee 311, D - 45136 Essen / Germany,+49-201-2660420

    3.3.16

    Load case 16 - Short circuit () ....................................................................................... 43

    3.3.17 Load case 17 - Seismic load X ........................................................................................ 443.3.18 Load case 18 - Seismic load Y ........................................................................................ 453.3.19

    Load case 19 - Seismic load Z ........................................................................................ 46

    3.3.20 Load Case 20 to 31Seismic Combinations .................................................................. 473.3.21

    Load Case 32 to 37Dynamic Loads at Malfunctional States ........................................ 47

    3.4 Superposition of Load Cases .......................................................................................... 483.5 Design Forces and Moments .......................................................................................... 503.5.1

    Design Moments due to Operational Combinations ........................................................ 51

    3.5.2 Design Moments due to Erection Combinations .............................................................. 533.5.3 Design Moments due to Emergency Combinations ......................................................... 553.6 Design of Reinforcement ................................................................................................. 573.6.1 Building materials ............................................................................................................ 573.6.2

    Calculation method ......................................................................................................... 57

    3.6.3 Required Reinforcement ................................................................................................. 583.6.4 Chosen reinforcement ..................................................................................................... 61

    4

    S P R I NG F O R C E S .................................................................................................... 62

    4.1 Spring Forces and Deflections ........................................................................................ 624.2

    Loads on Substructure .................................................................................................... 62

    5 A P P E N D I X ............................................................................................................... 10015.1 Data sheets of spring units .......................................................................................... 10015.2

    Files of Dynamic Analysis ........................................................................................... 1003

    5.3 Files of Dynamic Analysis ........................................................................................... 10035.3.1

    Input File of Modal Extraction ...................................................................................... 1003

    5.3.2 Results of Modal Extraction Analysis ........................................................................... 10395.3.3 Input Files of Forced Vibration Analysis ...................................................................... 10405.4

    Files of Static Analysis ................................................................................................ 1042

    5.4.1

    Input File of Static Calculation ..................................................................................... 1042

    5.4.2 Support Reactions for Single Load Cases ................................................................... 1051

  • 8/9/2019 Dynamic and static analysis of turbogenerator foundation

    5/120

    BUSHAN STEEL LTD. Page 1MERAMANDALI 165 MW STG - UNIT 4

    Vibration Isolation of a Turbo Generator Set Rev. 1

    GERB Engineering GmbHRuhrallee 311, D - 45136 Essen / Germany,+49-201-2660420

    1 S U M M A R Y

    1.1 General

    The present analysis deals with the design of a vibration controlled reinforced concrete foundationsupporting a steam turbine with generator.

    The SUMMARY (1stpart) gives general information and compiles and comments on all relevant

    project data including the most important results from the dynamic calculation. References aremade to the corresponding clauses of the calculation where details are shown.

    The 2nd

    part represents the DYNAMIC ANALYSIS giving evidence about the dynamic behaviour ofthe structure. Eigenfrequencies are calculated as well as forced vibrations are determined due tounbalance at operating stage. Unbalance loads are defined to be used within the structuralanalysis.

    The 3rd

    part covers the STATIC ANALYSIS considering all relevant load cases. The reinforcementdesign follows the regulations of DIN 1045-1 and DIN 4024 allowing for the below mentionedconcrete and steel qualities. Support reactions and spring deflections due to permanent loads areshown.

    Finally, as the substructure below the spring elements is not subject to this paper, design loadsare given to be used by the design engineer in charge of the substructure.

    The analysis of the theoretical model is performed on the assumption of a system dynamicallydecoupled from the adjacent structure. Accordingly the spring elements are expected to be placed

    on a relative stiff substructure, i. e. the stiffness of the supporting beams shall be at least 10 timesthe stiffness of the spring system (comparison of static deflections) acc. to DIN 4024.

    Input and output files of the computational calculation are summarized in the appendix.

    1.2 Building Materials

    Concrete: Grade (IS 456 - 2000) M 35Compressive strength fck= 35 N/mmStatic modulus of elasticity Ec= 29580 MN/mDynamic modulus of elasticity Ec,dyn= 33700 - 39600 MN/m

    Dynamic modulus of elasticity Ec,dyn= 36500 MN/m (mean value)Density of reinforced concrete = 25 kN/mPoissons ratio = 0.20

    Reinforcing Steel: Grade (IS 1786 - 1985) Fe 415Yield strength fyk= 415 MN/mModulus of elasticity 210000 MN/m

    The design was performed according to DIN 1045-1 and DIN 4024, chapter 6, April 1988.

  • 8/9/2019 Dynamic and static analysis of turbogenerator foundation

    6/120

    BUSHAN STEEL LTD. Page 2MERAMANDALI 165 MW STG - UNIT 4

    Vibration Isolation of a Turbo Generator Set Rev. 1

    GERB Engineering GmbHRuhrallee 311, D - 45136 Essen / Germany,+49-201-2660420

    1.3 Reference Documents

    SIEMENS:dwg. n 1CSD420886 sh. 1 - 6 foundation outline drawing

    dwg. n 1CYJ257586G45 sh. 1 - 2 trenches, cutouts and detailsdoc. n 1CSD420885 foundation loads and design requirements

    GERB Engineering GmbH:dwg. n E-58144-2-0 et. seq. formwork drawingsdwg. n E-58144-6-0 et. seq. reinforcement drawings

    1.4 Main System Data

    Total length: L = 25.40 m

    Total width: B = 10.60 m

    Machine weight: Gm = 4731 kN

    Concrete weight: Gf 12286 kNRatio: Gf/ Gm = 2.60

    Total spring supported weight: Gt 17017 kNVertical mode: ne = 4.2 HzRelevant operation frequencies: fm = 50 HzMean spring deflection due to dead load: u = 14.6 mm

    1.5 Machine Data

    Turbinestatic weight (incl. rotating weight): G = 1658 kNrotating weight: L = 290 kNrotating speed: fm = 3000 min

    -1

    Generatorstatic weight (incl. rotating weight): G = 2502 kNrotating weight: L1 = 460 kNrotating speed: fm = 3000 min

    -1

    Condenserstatic weight (on table top): G = 571 kN

    Total machine weight: Gm = 4731 kN

  • 8/9/2019 Dynamic and static analysis of turbogenerator foundation

    7/120

    BUSHAN STEEL LTD. Page 3MERAMANDALI 165 MW STG - UNIT 4

    Vibration Isolation of a Turbo Generator Set Rev. 1

    GERB Engineering GmbHRuhrallee 311, D - 45136 Essen / Germany,+49-201-2660420

    1.6 Vibration Isolation System

    The top deck is supported by spring elements consisting of helical steel springs.Manufacturer: GERB Vibration Control Systems Pvt. Ltd.

    For detailed information about spring elements refer to data sheets at the Appendix.

    Spring element arrangement

    column kv kh Kv Kh

    kN/mm kN/mm kN/mm kN/mm

    A1 6 17.23 12.30 103.38 73.80

    B1 12 17.23 12.30 206.76 147.60

    C1 12 17.23 12.30 206.76 147.60

    D1 4 17.23 12.30 68.92 49.20

    A2 6 17.23 12.30 103.38 73.80

    B2 12 17.23 12.30 206.76 147.60

    C2 12 17.23 12.30 206.76 147.60

    D2 4 17.23 12.30 68.92 49.20

    68 1171.64 836.40

    GP-8.8-2513/22

    GP-8.8-2513/22

    GPV-8.8-2513/22

    number

    n

    spring rate total spring rate

    spring element type

    total spring rate

    GPV-8.8-2513/22

    GP-8.8-2513/22

    GP-8.8-2513/22

    GPV-8.8-2513/22

    GPV-8.8-2513/22

    Total spring rate Kv = 1171.6 kN/mmKh = 836.4 kN/mm

    For loadings on sub-structure refer to clause (4.2)of this paper.

    1.7 Discussion of Dynamic Characteristic

    Modes 1 to 6 represent the rigid body natural frequencies. Higher modes depend on the elasticityof the structure only. They are virtually decoupled from the rigid body modes.

    Evaluation of the results in respect of DIN 4024, 5.3.2:

    1. f1= 3.2 Hz 0.80 fm = 0.80 50.0 = 40.0 Hzf6= 6.2 Hz 0.80 fm = 0.80 50.0 = 40.0 Hz

    2. a) f14= 46.3 Hz 0.90 fm = 0.90 50.0 = 45.0 Hzf15= 47.0 Hz 0.90 fm = 0.90 50.0 = 45.0 Hz

    1.10 fm = 1.10 50.0 = 55.0 Hz

    The requirements of DIN 4024 are not fulfilled in regard of the natural frequencies.

    For this reason DIN 4024 prescribes a more precise assessment of vibration behaviour bydetermination of dynamic amplitudes (ref. to clause (1.8)).

  • 8/9/2019 Dynamic and static analysis of turbogenerator foundation

    8/120

    BUSHAN STEEL LTD. Page 4MERAMANDALI 165 MW STG - UNIT 4

    Vibration Isolation of a Turbo Generator Set Rev. 1

    GERB Engineering GmbHRuhrallee 311, D - 45136 Essen / Germany,+49-201-2660420

    1.8 Theoretical Amplitudes

    Theoretical amplitudes are calculated due to unbalance caused by the machine at normaloperation. The unbalanced forces are calculated acc. to DIN ISO 1940. Vibrational amplitudes

    from the single-force excitation at the bearing points are determined by using the SRSS-method(for details refer to clause (2.3)).

    Acc. to ISO 10816-2 the limiting value of the effective vibration velocity for a operating speed of3000 min

    -1is recommended as :

    veff= 3.8 mm/s (Zone A/B)

    For a balance quality grade of G6.3 the maximum velocities at the operating speed

    (f = 50 Hz 5%) have been calculated to

    max veff= 1.2 mm/s < 3.8 mm/s at 47.5 Hz

    The corresponding half-peak amplitudes result to:

    s = veff* 2 / (2**fm) = 5 m

    The requirements for the limitation of vibration velocities and amplitudes recommended in ISO10816-2 are fulfilled.

  • 8/9/2019 Dynamic and static analysis of turbogenerator foundation

    9/120

    BUSHAN STEEL LTD. Page 5MERAMANDALI 165 MW STG - UNIT 4

    Vibration Isolation of a Turbo Generator Set Rev. 1

    GERB Engineering GmbHRuhrallee 311, D - 45136 Essen / Germany,+49-201-2660420

    1.9 Seismic Loads

    Site of MERAMANDALI is located in seismic zone III as defined in the Indian Standard: 1893-2002.

    The design value of horizontal seismic coefficient Ahshould be computed as given by the followingexpression:

    Ah = Z I Sa/ ( 2 R g ) * = 0.16 1.75 2.50 / 2 * 0.80 = 0.280

    Note:The ratio I / R shall not be greater than 1.0! It follows:

    Ah = 0.16 1.0 2.50 / 2 * 0.80 = 0.160 < 0.200

    where

    Z = 0.16 (seismic zone factor depending upon the seismic zone acc. to table 2)I = 1.75 (importance factor depending upon the category of structure

    acc. to table 2 & table 5 of IS: 1893 - part 4)Sa / g = 2.50 (spectral acceleration coefficient as read from fig. 2 (response spectra) for

    rock and soil sites for 5% damping)R = 1.0 (response reduction factor for building systems acc. to table 7; for spring

    supported systems R = 1.0)

    = 0.80 (correction factor for 10% damping)

    For any structure with natural period T 0.10 sec., the value of Ahwill not be taken less than Z/2.

    According to the Indian standard the vertical seismic coefficient should be taken as two-thirds ofthe horizontal value.

    In the present static analysis the seismic loads are considered in a quasi-static way by using a

    horizontal acceleration factor of 0.200g as well as a vertical acceleration factor of 0.133g !

    Note:

    For loadings on substructure it is allowed to set the response reduction factor R = 3.0 (acc. to

    table 7 of IS 1893-2002). As a result the design value of horizontal seismic coefficient Ahamountsto 0.093. Design loads at top of plinth in horizontal direction should be taken as 9.3% of thepermanent vertical load.

  • 8/9/2019 Dynamic and static analysis of turbogenerator foundation

    10/120

  • 8/9/2019 Dynamic and static analysis of turbogenerator foundation

    11/120

    BUSHAN STEEL LTD. Page 7MERAMANDALI 165 MW STG - UNIT 4

    Vibration Isolation of a Turbo Generator Set Rev. 1

    GERB Engineering GmbHRuhrallee 311, D - 45136 Essen / Germany,+49-201-2660420

    1.11 Software

    The Dynamic and Structural Analysis of the foundation is performed by the program system'STARDYNE' from Bentley Systems Inc. based on the finite-element-method.

    To idealize the structure plate elements with five d.o.f. per node are used.

    The calculation model is created using 'FEMAP', a finite-element modelling and postprocessingsystem by Siemens PLM Software GmbH.

    The determination of the eigenvalues and eigenvectors in the Dynamic Analysis is made using the'LANCZOS Modal Extraction'. The LANCZOS procedure was first described by C. Lanczos (1950)with error analysis added by J. Wilkinson (1965). It was successfully demonstrated in large finiteelement programs by I. Ojalvo and M. Newman (1967 - 1970). The description of the method canbe found in NASA document CR-2731 (1976).

    The nodes of the structural model are determined by supports, loading points and cross sectioncuts.

    On the next pages the numbering of nodes and elements of the analysis model is shown.Furthermore the geometry is controlled by graphical plots.

    Software vendor:

    1.12 Calculation Models

    The Finite-Element-Model consists of the top deck and the spring elements. The machines arerepresented by single masses which are connected to the plate by rigid bars.

    The global x-axis is parallel to the rotor axis, the z-axis is the vertical axis.

    The model is shown by plots on the following pages.

  • 8/9/2019 Dynamic and static analysis of turbogenerator foundation

    12/120

    BUSHAN STEEL LTD. Page 8MERAMANDALI 165 MW STG - UNIT 4

    Vibration Isolation of a Turbo Generator Set Rev. 1

    GERB Engineering GmbHRuhrallee 311, D - 45136 Essen / Germany,+49-201-2660420

    Element Thickness

    XY

    Z

    V2

    C1

    G3

    Calculation Model

    XY

    Z

    V2

    C1

  • 8/9/2019 Dynamic and static analysis of turbogenerator foundation

    13/120

    BUSHAN STEEL LTD. Page 9MERAMANDALI 165 MW STG - UNIT 4

    Vibration Isolation of a Turbo Generator Set Rev. 1

    GERB Engineering GmbHRuhrallee 311, D - 45136 Essen / Germany,+49-201-2660420

    Calculation Model without machines

    XY

    Z

    V2

    C1

    G1

    Node Numbers

    X

    Y

    Z

    1 2 3 4 5 6 7 8 9 10 11 12 13 1415 16 17 18 192021 2223 24 25 26 27282930 31 32 33 34 35 3637 38 39 404142 43 4445 46 47 48 49 50 51 52

    53 54555657 58 59 60 61 62 6364 65 66 676869 70 7172 73 7475 76 77 78 7980 81 82 83 84 85 86 87 8889 90 91 92 939495 9697 98 99 100101102103104

    105106107108109110111112113114115 116 117118119 120 121122123124125126127 128129130131132133134135136137138139140141142 143144145 146147 148149 150151 152153154155156157158159160161162163164165 166 167168169 170 171172173174175176177178179

    180181182 183184185186187188 189 190191192193 194195196197

    198199 200201202203204205206207208209210211 212213214215216217218219 220221222 223224

    225226 227228229230231232233234235236237238239 240

    241242 243244245246 247 248249250251252253 254255256257258259260261 262263264 265266 267268 269270271272273 274275276277278279

    280281

    282

    283

    284

    285286287288 289290291292293294295 296297298299300301 302 303304 305306307308309310311312 313314315316317 318319

    320321322 323324325326327328

    329

    330331 332 333334 335336

    337

    338339 340 341342343344345 346347348349350351352353354355356357358359 360361362363 364365366367 368369370371 372373374 375376 377378379380381382383384

    385386

    387

    388

    389

    390391392393 394395396397398399400401402403404405406 407408409

    410 411412 413414 415416

    417418419 420 421 422423424425426427428429430431432433 434435436437438 439440441442443 444445446 447448 449450 451452453454455

    456457458 459460461462 463464465466467 468469470 471472 473474 475476477478479 480 481482483484485486

    487488489 490491492493494 495496497498499 500501502 503504 505506 507508509510511 512513514515516517518519520521522 523 524 525

    526527528529530 531532533534 535

    536537538 539540541542543544545546547 548549550551552553554555

    556557558 559560561562 563564565566 567568569 570571 572573 574575576577578579580581582583584585 586587588589590591592593594595596 597598599 600

    601602603 604605606607608609 610611 612 613614 615616 617618 619620621622623624 625626627628629630 631632633634635636637638639640641642643644 645646647648649650651652653654655656657658 659 660661 662663664665666667 668669670671672673674675676677678679680681682 683 684 685

    686687688689690 691692693694695696697698699700701702703704705706 707708 709 710 711712713714715716717718719720721 722723724725726727728729730 731 732733734 735 736737738 739740741742743744 745746747748749750751752753754755756757758759760 761762 763 764 765766767768769770771772773774775 776777778779780781782

    783784785786787 788789790791792793794795796797798799800801802803 804805 806807 808809810811812813814815816817818 819820821822823824825826827 828 829830831 832 833834

    835836837838839 840841842843844845846847848849850851852853854855 856857 858 859 860861862863864865866867868869870871872 873 874875876 877 878879880881882883884885886

    887888889890891 892893894895896897898899900901902903904905906907 908909 910 911 912913914915916917918919920921922923924 925 926927928 929 930931932933934935936937938

    939940941942943 944945946947948949950951952953954955956957958959 960961 962 963 964965966967968969970971972973974975976 977 978979980 981 982983984985986987988989990

    991992993994995996

    997

    998

    9991000

    1001

    1002

    1003

    1101

    1102

    1103

    1104

    1105

    1106

    1107

    1108

    1109

    1110

    1111

    1112

    1113

    1114

    1115

    1116

    1117

    1201

    1202

    1203

    1204

    1205

    1206

    1207

    1208

    1209

    1210

    1211

    1212

    1213

    1214

    1215

    1216

    12173022 3025 3028 3031 3034 3037

    V5

    C1

    G3

  • 8/9/2019 Dynamic and static analysis of turbogenerator foundation

    14/120

    BUSHAN STEEL LTD. Page 10MERAMANDALI 165 MW STG - UNIT 4

    Vibration Isolation of a Turbo Generator Set Rev. 1

    GERB Engineering GmbHRuhrallee 311, D - 45136 Essen / Germany,+49-201-2660420

    Node Numbers (selected nodes)

    X

    Y

    Z

    1101

    1102

    1103

    1104

    1105

    1106

    1107

    1108

    1109

    1110

    1111

    1112

    1113

    1114

    1115

    1116

    1117

    1201

    1202

    1203

    1204

    1205

    1206

    1207

    1208

    1209

    1210

    1211

    1212

    1213

    1214

    1215

    1216

    12173001 3002 3003 30043005 3006

    4001 4002 4003 4004

    4005 4006 4007 4008

    V5

    C1

    G4

    Element Numbers

    X

    Y

    Z

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1920 21 22 23 24 25 26272829 30 31 32 33 34 35 36 37 38 39 4041 42 43 44 45 46 47 48 49 50 51

    52 53545556 57 58 59 60 61 62 63 64 65 66 6768 69 70 71 72 73 7475 76 77 78 79 80 8182 83 84 85 86 87 88 89 90 91 92 939495 96 97 98 99100101102103104105106107108109110111112113114 115116117118119120121122123124125126 127128129130131

    132133134135136137138139140141142143144145146147 148149 150151152153154

    155156 157158159160161162163164165166167168169170171172 173174175176177178 179180181182 183 184185186187188 189

    190191192 193194195196197198199 200201202203204 205 206207208209210 211212213214215216217218219 220221222223224225

    226227228229230 231232233234235236237 238239240241242243 244245246247248 249250251252253

    254 255256257258 259260261262263264265 266267268269270271 272273274 275276277278279280 281 282283284285286287

    288289290 291292293294295296297298299 300301302303304305306307308309310 311312313314

    315316317318319320321

    322 323324325326 327328329 330331332333334335336337338

    339340341342343344345346347348349350351

    352353354355356357358359360361362363364365 366367368369370371372373 374375376377 378379380381

    382383384385386387388389390391 392393394395 396397398399400 401402403404405 406 407408409410411

    412413414 415416417418 419420421422423424425426427 428 429430431432433434 435436437438439440441442443444 445446447448 449450451452453454455456457458459460461462463464 465466467468469470471472473474 475476477478 479480481482483484485 486487488 489 490491492493494495496497498499500501

    502503504505506507508

    509510511 512513514515 516517518519520521522523524525 526 527528529530531532533534535536537538 539540541542543544545546547548549550 551

    552553554555556557558559560561562563 564565566567568569570571572573574 575 576577578579580581 582583584585586 587588589590591592593

    594595596597 598599600601602603604605606607608609610611612 613614 615 616 617618619620621622 623624625626627628629630631632633634635 636

    637638639640641 642643644645646647648649650651652653654655656 657658659 660 661662663664665666667668669670671672 673674675676677678679680681 682683684685686687

    688689690 691692693694695696697698699700701702 703704705706707708709710711712713714715716717 718719720 721 722723724725726727728729730731732 733734735736737738

    739740741742743 744745746747748749750751752753754755756757758 759760761 762 763764765766767768769770771772773774 775776777778779780781782783 784785786787788789

    790791792793794 795796797798799800801802803804805806807808809 810811812 813 814815816817818819820821822823824825826827 828829830831 832833834835836837838839840

    841842843844845 846847848849850851852853854855856857858859860 861862863 864 865866867868869870871872873874875876877878879880881882883884885886887888889890891

    892893894895896897898

    899900901902903904905

    906

    907

    908

    909910

    911

    912

    913

    V5

    C1

    G3

  • 8/9/2019 Dynamic and static analysis of turbogenerator foundation

    15/120

  • 8/9/2019 Dynamic and static analysis of turbogenerator foundation

    16/120

    BUSHAN STEEL LTD. Page 12MERAMANDALI 165 MW STG - UNIT 4

    Vibration Isolation of a Turbo Generator Set Rev. 1

    GERB Engineering GmbHRuhrallee 311, D - 45136 Essen / Germany,+49-201-2660420

    1.14 Input Data

    In the Appendix the input decks for the modal extraction and the static analysis are printed. For abetter interpretation the single input cards are described below. The printed figures just give an

    example and do not have any relationship to the present project.

    1.14.1 Input of the Calculation Model

    a) STARTCardg [m/s2]

    START 10.

    b) MATLG - Card (material parameters)

    Nr. Descript. E [kN/m] Poisson [kN/m] T [K-1] DampingMATLG, 1, Concrete 30000000., 0.2, 25., 1.0E-5 0.02

    c) NODE - Card (nodal coordinates)no. x1 [m] x2 [m] x3 [m]

    NODE, 65, 1.925, 1.65, 0.

    d) RESTG - Card (nodal restraint table)node no. T1 T2 T3 R1 R2 R3

    RESTG 1 1, 2, 3, 4, 5, 6

    e) WGHT - Card (nodal weights)node no. Wx1 [kN] Wx2 [kN] Wx3 [kN]

    WGHT, 27, 128., 128., 128.

    f) BEAMG - Card (beam element topology)

    no. node A node B orient. mat. prop. releases betaBEAMG, 29, 50, 49, 9999 2 7 000000 0

    g) BPROP1 - Card (beam properties)no. A [m2] IT [m4] Iy [m4] Iz [m4] shear factors

    BPROP1 1 2.2475 0.5644 0.3938 0.45 0., 0.

    h) BPROP2 - Card (cross section properties)no. H2 [m] H3 [m]

    BPROP2 1 2.2475 0.5644

    i) BPROP4 - Card (beam offsets)prop. no.XOFFA [m], YOFFA [m]ZOFFA [m]XOFFB [m] YOFFB [m] ZOFFB

    BPROP4 1 0., 0., 0., 0., 0.775, 0.

    j) QUADS - Card (plate elements)FROM QPLT, TO QPLT, FROM JA, INCR JB, TO JB, INCR JB, FROM JC, INCR JC,FROM JD, INCR JD, MATLG NO, TYPE, T [m], AXIS ANGLE, INTEG ORDERQUADS, 69,, 115,, 138,, 139,, 116, 1, 1, 1.45,

    k) MADDEL - Card (matrix addition table)NO, JA, JB, JC, IMOUT, MAXSIZE

    MADDEL, 690, 519, 736, 1

    l) MADDXINC - Card (springs)RN, CN, RDOF, CDOF, INCRN, INCCN, RNMAX, CNMAX, Dks [kN/m]

    MADDXINC, 5, 5, 3, 3, 1, 1, 6, 6, 30270.0

  • 8/9/2019 Dynamic and static analysis of turbogenerator foundation

    17/120

    BUSHAN STEEL LTD. Page 13MERAMANDALI 165 MW STG - UNIT 4

    Vibration Isolation of a Turbo Generator Set Rev. 1

    GERB Engineering GmbHRuhrallee 311, D - 45136 Essen / Germany,+49-201-2660420

    1.14.2 Input for dynamic analysis

    a) DYNAMIC - Card (Lanczos-analysis control entry)

    nout isave ieropt nlowm maxcps shiftpDYNAMIC 0, 0, 0, 40, 0., 0.

    1.14.3 Input for static analysis

    a) STATIC - card (static analysis control entry)NOUT ITAPE ISAVE IEROPT

    STATIC, 1, 0, 0, 0,

    b) ACCEL - card (gravitational constants)Vx1 Vx2 Vx3 CGx1 CGx2 CGx3

    ACCEL, 0., 0., 9.81, 0., 0., 0.,

    c) CONC - card (nodal forces)FROM F1 [kN] F2 [kN] F3 [kN]M1 [kNm]M2 [kNm] M3 [kNm]

    CONC, 45, 100., 0., 100., 0., 0., 0.,

    d) CONCG - card (nofal force generator)FROM TO INCRE F1 [kN] F2 [kN] F3 [kN] M1 [kNm]M2 [kNm] M3 [kNm]

    CONCG, 45, 50, 1, 100., 0., 100., 0., 0., 0.,

    e) BMTEMPG - card (beam temperature generator)FROM TO INCRE T [K]

    BMTEMPG, 2, 5, 1, 10.0,

    f) BMTEMP - card (beam temperature)FROM TO INCRE +T2 [K] -T2 [K] +T3 [K] -T3 [K]

    BMTEMP, 2, 5, 1, 10.0, -10.0, 0., 0.,

    g) BMLOAD - card (beam loads in global coordinates)FROM TO INCRE ITYPEpx1 [kN/m]px2 [kN/m]px2 [kN/m]

    BMLOAD, 2, 5, 1, GL, -10.0, 0., 0.,

    h) BMLOAD - card (beam loads in local coordinates)FROM TO INCRE ITYPEpA [kN/m] xpA [-] pB [kN/m] xpB [-]

    BMLOAD, 2, 5, 1, D2, -10.0, 0.0, -10.0, 1.0

    i) QPRSN - card (area loads)FROM TO INCRE PJA PJB PJC PJD

    QPRSN, 2, 5, 1, -5.0, -5.0, -5.0, -5.0

  • 8/9/2019 Dynamic and static analysis of turbogenerator foundation

    18/120

    BUSHAN STEEL LTD. Page 14MERAMANDALI 165 MW STG - UNIT 4

    Vibration Isolation of a Turbo Generator Set Rev. 1

    GERB Engineering GmbHRuhrallee 311, D - 45136 Essen / Germany,+49-201-2660420

    2 D Y N A M I C A N A L Y S I S

    2.1 Foundation and Machine Masses

    The mass of the foundation is automatically calculated by 'STARDYNE' taking cross section area,beam element length or plate element area, plate thickness respectively and specific mass ofmaterial into account. The top concrete is considered with its nonstructural mass only, which iscontrolled by the specific mass of the corresponding material group.

    b) machine masses

    The machine masses are applied as given by the machine manufacturer. The single machinemasses are distributed on nodal points of the calculation model as follows:

    generator 3001 31.30

    generator 3005 87.50

    generator 3006 87.50

    generator 3002 31.30

    turbine 3003 62.84

    turbine 3004 102.96

    exciter 1115 6.30

    exciter 1116 6.30condenser 1203 4.76

    condenser 1204 4.76

    condenser 1205 4.76

    condenser 1206 4.76

    condenser 1207 4.76

    condenser 1208 4.76

    condenser 1209 4.76

    condenser 1210 4.76

    condenser 1211 4.76

    condenser 1212 4.76

    condenser 1213 4.76

    condenser 1214 4.76

    total = 473.12

    mass [t]nodesmachine

  • 8/9/2019 Dynamic and static analysis of turbogenerator foundation

    19/120

  • 8/9/2019 Dynamic and static analysis of turbogenerator foundation

    20/120

    BUSHAN STEEL LTD. Page 16MERAMANDALI 165 MW STG - UNIT 4

    Vibration Isolation of a Turbo Generator Set Rev. 1

    GERB Engineering GmbHRuhrallee 311, D - 45136 Essen / Germany,+49-201-2660420

    2.2.3 Plot of the Mode Shapes

    The mode shapes of the most relevant natural frequencies are shown by plots on the following

    pages.

    XY

    Z

    V2

    C1

    Output Set: Mode 1 3.21662 Hz

    Deformed(1.): Total Translation

    XY

    Z

    V2

    C1

    Output Set: Mode 2 3.282922 Hz

    Deformed(1.107): Total Translation

  • 8/9/2019 Dynamic and static analysis of turbogenerator foundation

    21/120

    BUSHAN STEEL LTD. Page 17MERAMANDALI 165 MW STG - UNIT 4

    Vibration Isolation of a Turbo Generator Set Rev. 1

    GERB Engineering GmbHRuhrallee 311, D - 45136 Essen / Germany,+49-201-2660420

    XY

    Z

    V2

    C1

    Output Set: Mode 3 3.851459 Hz

    Deformed(1.07): Total Translation

    XYZ

    V2

    C1

    Output Set: Mode 4 4.130069 Hz

    Deformed(1.004): Total Translation

  • 8/9/2019 Dynamic and static analysis of turbogenerator foundation

    22/120

    BUSHAN STEEL LTD. Page 18MERAMANDALI 165 MW STG - UNIT 4

    Vibration Isolation of a Turbo Generator Set Rev. 1

    GERB Engineering GmbHRuhrallee 311, D - 45136 Essen / Germany,+49-201-2660420

    XY

    Z

    V2

    C1

    Output Set: Mode 5 4.35294 Hz

    Deformed(1.054): Total Translation

    XY

    Z

    V2

    C1

    Output Set: Mode 6 6.249666 Hz

    Deformed(1.046): Total Translation

  • 8/9/2019 Dynamic and static analysis of turbogenerator foundation

    23/120

    BUSHAN STEEL LTD. Page 19MERAMANDALI 165 MW STG - UNIT 4

    Vibration Isolation of a Turbo Generator Set Rev. 1

    GERB Engineering GmbHRuhrallee 311, D - 45136 Essen / Germany,+49-201-2660420

    XY

    Z

    V2

    C1

    Output Set: Mode 7 8.869635 Hz

    Deformed(1.): Total Translation

    XY

    Z

    V2

    C1

    Output Set: Mode 8 12.98959 Hz

    Deformed(1.005): Total Translation

  • 8/9/2019 Dynamic and static analysis of turbogenerator foundation

    24/120

    BUSHAN STEEL LTD. Page 20MERAMANDALI 165 MW STG - UNIT 4

    Vibration Isolation of a Turbo Generator Set Rev. 1

    GERB Engineering GmbHRuhrallee 311, D - 45136 Essen / Germany,+49-201-2660420

    XY

    Z

    V2

    C1

    Output Set: Mode 9 23.14119 Hz

    Deformed(1.016): Total Translation

    XY

    Z

    V2

    C1

    Output Set: Mode 10 27.50172 Hz

    Deformed(1.): Total Translation

  • 8/9/2019 Dynamic and static analysis of turbogenerator foundation

    25/120

    BUSHAN STEEL LTD. Page 21MERAMANDALI 165 MW STG - UNIT 4

    Vibration Isolation of a Turbo Generator Set Rev. 1

    GERB Engineering GmbHRuhrallee 311, D - 45136 Essen / Germany,+49-201-2660420

    XY

    Z

    V2

    C1

    Output Set: Mode 14 46.29186 Hz

    Deformed(1.114): Total Translation

    XY

    Z

    V2

    C1

    Output Set: Mode 15 47.01164 Hz

    Deformed(1.163): Total Translation

  • 8/9/2019 Dynamic and static analysis of turbogenerator foundation

    26/120

    BUSHAN STEEL LTD. Page 22MERAMANDALI 165 MW STG - UNIT 4

    Vibration Isolation of a Turbo Generator Set Rev. 1

    GERB Engineering GmbHRuhrallee 311, D - 45136 Essen / Germany,+49-201-2660420

    XY

    Z

    V2

    C1

    Output Set: Mode 16 55.46156 Hz

    Deformed(1.002): Total Translation

    XY

    Z

    V2

    C1

    Output Set: Mode 17 60.09774 Hz

    Deformed(1.323): Total Translation

  • 8/9/2019 Dynamic and static analysis of turbogenerator foundation

    27/120

    BUSHAN STEEL LTD. Page 23MERAMANDALI 165 MW STG - UNIT 4

    Vibration Isolation of a Turbo Generator Set Rev. 1

    GERB Engineering GmbHRuhrallee 311, D - 45136 Essen / Germany,+49-201-2660420

    2.3 Determination of Vibrational Amplitudes

    Theoretical amplitudes are determined due to unbalance caused by the machine at normaloperating condition.

    The amplitudes are determined using the steady-state technique.

    2.3.1 Excitation by Unbalanced Forces

    Balance quality grade according to manufacturer and DIN ISO 1940, table 1:

    turbine and generator G2.5 eper= 2.5 mm/s

    Balance quality grade for calculation according to DIN 4024:

    turbine and generator G6.3 eper= 6.3 mm/s

    According to DIN ISO 1940 the unbalanced forces are calculated as follows:

    Uper= eper2 fmL / g (permissible residual unbalance)

    where: L (rotating weight)fm (rotational speed)

    = m= 2fm (angular frequency)g 10 m/s (gravitational constant)

    Distribution of unbalanced forces:

    e* fm L U

    [mm/s] [Hz] [kN] [kN]

    generator 3001 6.3 50 230 46

    generator 3002 6.3 50 230 46

    turbine 3003 6.3 50 145 29

    turbine 3004 6.3 50 145 29

    nodemachine

    If eigenvalues are located within a range of 5% of the operating frequencies, acc. to DIN 4024forced vibrations have to be calculated in resonance for the both adjacent natural frequencies.

  • 8/9/2019 Dynamic and static analysis of turbogenerator foundation

    28/120

    BUSHAN STEEL LTD. Page 24MERAMANDALI 165 MW STG - UNIT 4

    Vibration Isolation of a Turbo Generator Set Rev. 1

    GERB Engineering GmbHRuhrallee 311, D - 45136 Essen / Germany,+49-201-2660420

    2.3.2 Superposition of Theoretical Amplitudes

    Amplitudes are determined for the following nodal points:

    bearing 1 to 4: nodal points 3001 to 3004

    The vibrational amplitudes at bearing points from single-force excitation are determined by usingthe SRSS-method:

    2

    ni,

    2

    i,2

    2

    i,1eff,i A......AA=A

    with Ai,k = Amplitude at bearing point i from excitation with the force kk = 1, 2, 3 ... n

    2.3.3 Frequency Response of Amplitudes

    The excitation at the different bearing points from 40 Hz to 60 Hz in steps of 0.10 Hz results in thefrequency responses of amplitudes at the above mentioned nodal points.

    The constant unbalance force between 40 Hz and 60 Hz is calculated as follows:

    Uper(f) = Uper(fm)= eper2fm L / g

    Unbalanced Forces

    0%

    50%

    100%

    20 30 40 50 60 70 80

    f [Hz]

    U(f)/Uperm

    The superposition is performed in the same way as described in section (2.3.2).

    The maximum r.m.s. velocity at operational speed (f = 50 Hz 5%) has been calculated to

    max veff = 0.9 mm/s < 3.8 mm/s at 47.5 Hz

    For comments on the results refer to clause (1.8).

    The plot of the resulting frequency responses is presented below.

  • 8/9/2019 Dynamic and static analysis of turbogenerator foundation

    29/120

    BUSHAN STEEL LTD. Page 25MERAMANDALI 165 MW STG - UNIT 4

    Vibration Isolation of a Turbo Generator Set Rev. 1

    GERB Engineering GmbHRuhrallee 311, D - 45136 Essen / Germany,+49-201-2660420

    SRSS-superposition of the vibration velocity in the range of 40 to 60 Hz

    0.0000

    0.0010

    0.0020

    0.0030

    0.0040

    0.0050

    0.0060

    40 45 50 55 60

    r.m.s.velocityveff[m/s]

    frequency f [Hz]

    Frequency Response (SRSS)

    3001 - V2 eff. 3001 - V3 eff.

    3002 - V2 eff. 3002 - V3 eff.

    3003 - V2 eff. 3003 - V3 eff.

    3004 - V2 eff. 3004 - V3 eff.

    zone A/B

  • 8/9/2019 Dynamic and static analysis of turbogenerator foundation

    30/120

    BUSHAN STEEL LTD. Page 26MERAMANDALI 165 MW STG - UNIT 4

    Vibration Isolation of a Turbo Generator Set Rev. 1

    GERB Engineering GmbHRuhrallee 311, D - 45136 Essen / Germany,+49-201-2660420

    2.4 Dynamic Element Loads due to Unbalance

    The dynamic forces are taken into account by use of the natural mode method acc. to DIN 4024,part 1, sect. 5.4.3 under consideration of the manufacturers design recommendations.

    Internal forces are calculated for a steady-state excitation of those natural modes which are in a

    range of the operating speed fm10%, i. e. between 45 Hz and 55 Hz.

    The maximum vibrational amplitudes at malfunctioning states can be estimated to be less than thesix fold half-peak amplitudes at normal operation.

    max veff= 6 * 3.8 mm/s = 22.8 mm/s

    max s = max veff* 2 / (2 f) = 22.8 mm/s * 2 / (314/s) = 102 m 0.10 mm

    The internal forces and moments due to dynamic excitation therefore are calculated from the

    natural mode shapes, which are scaled to a maximum displacement of 100 m.

  • 8/9/2019 Dynamic and static analysis of turbogenerator foundation

    31/120

    BUSHAN STEEL LTD. Page 27MERAMANDALI 165 MW STG - UNIT 4

    Vibration Isolation of a Turbo Generator Set Rev. 1

    GERB Engineering GmbHRuhrallee 311, D - 45136 Essen / Germany,+49-201-2660420

    3 S T A T I C A N A L Y S I S

    3.1 General

    The structural analysis of the foundation is performed on the following pages.The calculation model is identical to that of the dynamical analysis.

    3.2 Compilation of Load Cases

    The following load cases will be considered:

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    1314

    15

    16

    17

    18

    19

    20

    21

    22

    23

    24

    25

    26

    27

    28

    29

    30

    31

    32 dynamic loads mode 12

    33 dynamic loads mode 14

    34 dynamic loads mode 14

    35 dynamic loads mode 15

    36

    37

    load case description

    loss of blade (+/-Y)

    dead load

    machine load

    live load 5 kN/m

    operational torque

    thermal forces X

    erection load

    seismic X + 0.3 Y + 0.3 Z

    seismic X + 0.3 Y - 0.3 Z

    seismic X - 0.3 Y + 0.3 Z

    seismic X - 0.3 Y - 0.3 Z

    seismic Y + 0.3 X + 0.3 Z

    horizontal pipe forces (+/-Y)

    seismic load +/-Y

    seismic load +/-Z

    short circuit

    loss of blade (+/-Z)

    erection load

    seismic load +/-X

    seismic Z + 0.3 X + 0.3 Y

    dynamic loads mode 16

    dynamic loads mode 17

    seismic Z + 0.3 X - 0.3 Y

    seismic Z - 0.3 X + 0.3 Y

    seismic Z - 0.3 X - 0.3 Y

    horizontal pipe forces (+/-X)

    condenser load

    thermal forces Y

    thermal forces Z

    vertical pipe forces (+/-Z)

    seismic Y + 0.3 X - 0.3 Z

    seismic Y - 0.3 X + 0.3 Z

    seismic Y - 0.3 X - 0.3 Z

    Load cases 1 to 11 represent operating conditions and load cases 12 and 13 consider erectioncondition as well as load cases 14 to 37 emergency situations.

  • 8/9/2019 Dynamic and static analysis of turbogenerator foundation

    32/120

    BUSHAN STEEL LTD. Page 28MERAMANDALI 165 MW STG - UNIT 4

    Vibration Isolation of a Turbo Generator Set Rev. 1

    GERB Engineering GmbHRuhrallee 311, D - 45136 Essen / Germany,+49-201-2660420

    3.3 Description of the Single Load Cases

    3.3.1 Load Case 1 - Dead Load Foundation

    The dead weight of the concrete structure will be automatically calculated by the program takingcross-sectional area, beam element length, plate element area and thickness as well as specificweight of corresponding material group into account.

    The machine masses have been eliminated for this load case.

    total weight of concrete: G = 12286 kN

  • 8/9/2019 Dynamic and static analysis of turbogenerator foundation

    33/120

    BUSHAN STEEL LTD. Page 29MERAMANDALI 165 MW STG - UNIT 4

    Vibration Isolation of a Turbo Generator Set Rev. 1

    GERB Engineering GmbHRuhrallee 311, D - 45136 Essen / Germany,+49-201-2660420

    3.3.2 Load Case 2 Machine Loads

    The loads are taken from SIEMENS doc. n 1CSD420784.They are distributed as single loads acting on nodal points in global z-direction :

    machine

    weight

    node Fz

    no. kN

    C1 1101 -175

    C2 1102 -175

    C3 1103 -175

    C4 1104 -175

    C5 1105 -175

    C6 1106 -175

    C7 1107 -175

    C8 1108 -175C9 1109 -175

    C10 1110 -175

    C11 1111,1112 -313

    C12 1113,1114 -313

    C13 1115 -63

    C14 1116 -63

    C15 1117

    generator loads

    position

    machine

    weight

    node Fz

    no. kN

    E1 1201 -314.2

    E2 1202 -314.2

    E3 1203 -85.8

    E4 1204 -85.8

    E5 1205 -85.8

    E6 1206 -85.8

    E7 1207 -85.8

    E8 1208 -85.8E9 1209 -85.8

    E10 1210 -85.8

    E11 1211 -85.8

    E12 1212 -85.8

    E13 1213 -85.8

    E14 1214 -85.8

    E15 1215

    E16 1216

    E17 1217

    turbine loads

    position

    load resultant: Fz= -4160 kN

    XY

    Z 175.175.

    175.175.

    175.175.175.

    175.175.

    175.

    156.5

    156.5

    156.5

    156.5

    63.

    63.

    314.2

    314.2

    85.885.885.885.8

    85.885.8

    85.885.885.885.8

    85.885.8

    V2

    L2

    C1

    G3

  • 8/9/2019 Dynamic and static analysis of turbogenerator foundation

    34/120

    BUSHAN STEEL LTD. Page 30MERAMANDALI 165 MW STG - UNIT 4

    Vibration Isolation of a Turbo Generator Set Rev. 1

    GERB Engineering GmbHRuhrallee 311, D - 45136 Essen / Germany,+49-201-2660420

    3.3.3 Load Case 3 Condenser Loads

    The loads are taken from SIEMENS doc. n 1CSD420784.They are distributed as single loads acting on nodal points in global z-direction :

    condenser

    forces

    node Fz

    no. kNm

    E1 1201

    E2 1202

    E3 1203 -47.6

    E4 1204 -47.6

    E5 1205 -47.6

    E6 1206 -47.6

    E7 1207 -47.6

    E8 1208 -47.6E9 1209 -47.6

    E10 1210 -47.6

    E11 1211 -47.6

    E12 1212 -47.6

    E13 1213 -47.6

    E14 1214 -47.6

    E15 1215

    E16 1216

    E17 1217

    turbine loads

    position

    load resultant: Fz= -571 kN

    XY

    Z

    47.647.647.647.6

    47.647.6

    47.647.647.647.647.6

    47.6

    V2

    L3

    C1

    G3

  • 8/9/2019 Dynamic and static analysis of turbogenerator foundation

    35/120

    BUSHAN STEEL LTD. Page 31MERAMANDALI 165 MW STG - UNIT 4

    Vibration Isolation of a Turbo Generator Set Rev. 1

    GERB Engineering GmbHRuhrallee 311, D - 45136 Essen / Germany,+49-201-2660420

    3.3.4 Load Case 4 Live Load

    A live load of p = 5.0 kN/m is considered acc. to DIN 4024.

    The load is applied to all plate elements as an uniformly distributed pressure load in negativez-direction

    load resultant: Fz= -1077 kN

    XY

    Z

    5.5.5. 5.

    5.5.5.5.

    5.5.5.5.

    5.5.5.5.

    5.5.5.5.5.

    5.5.5. 5.

    5.5.5.5.5.

    5.5.5.5.

    5.5.5.5.

    5.5.5.5. 5.

    5.5.5.5.

    5.5.5.5.

    5.5.5.5.5.

    5.5.5.5.

    5.5.5.5.

    5. 5.5.5.5.

    5.5.5.5.

    5.

    5.5.5. 5.

    5.5.5.5.

    5.5.5.5.

    5.5.5.5.

    5.5.5.5.5.

    5.5.5.

    5.5.5.5.

    5.5.5.5.5.

    5.5.5.5.

    5.5.5. 5.

    5.5.5.5.5.

    5.5.5.

    5.5.5. 5.

    5.5.5.5.

    5.5.5.5.

    5.5.5.5.

    5.5.5.5.5.

    5.5.5. 5.

    5.

    5.5.5.5.

    5.

    5.5.5.5.5.

    5. 5.5.5.

    5.5.5.5.5.5.

    5.5.5.5.

    5.5.5.5.

    5.

    5.5.5.5.

    5. 5.5.5.5.

    5.

    5.

    5.5.5. 5.

    5.5.5.5.

    5.5.

    5.5.5.5.5.

    5.5.5.5.5.

    5.

    5.5.5.5.5.

    5.5.

    5.5.5.5.5.

    5. 5.5.5.5.

    5.5.5. 5.

    5.5.5.5.

    5.5.

    5.5.5.5.5.

    5. 5.5.5.5.

    5.

    5.5.5.5.

    5.

    5.5.5.5.

    5.

    5.5.5.

    5.

    5.5.5. 5.

    5.5.5.5.

    5.

    5.5.5.

    5.5.5.

    5.5.5.5. 5.

    5.5.5.5.

    5.

    5.5.5. 5.

    5.5.5.5.5.

    5.5.5. 5.

    5.5.5.5.

    5.5.5.5.

    5.5.5.5.5.

    5.

    5.5.5.5.

    5.5.5.

    5.

    5.

    5.5.5. 5.

    5.5.

    5.5.5.5.

    5.5.5.5.

    5.

    5.5.5.5.

    5.5.5.

    5.5.5.5.5.

    5.

    5.5.5.5.

    5.5.5.

    5.5.

    5.5.5.5.

    5.5.5.5.

    5.5.5. 5.

    5. 5.

    5.5.5. 5.

    5.5.5.

    5.5.5.5.

    5.5.5.

    5.5.5. 5.

    5.5.5.

    5.5.5.5.

    5.5.5.5.

    5.5.5.5.

    5.5.5.5.

    5.5.5. 5.

    5.5.5.

    5.5.5.5.

    5.5.5.5.

    5.5.5. 5.

    5.5.5.5.

    5.5.5.5.

    5.5.5.

    5.5.5. 5.

    5.5.5.

    5.5.5.5.

    5.5.5.5.

    5.5.5.5.

    5.5.5.5.

    5.5.5.5.

    5.5.5.

    5.5.5. 5.

    5.5.5.

    5.5.

    5.5.5.5.

    5.5.5.5.

    5.5.5.5.5.

    5.5.5.5.5.5.5.

    5.

    5.5.5.5.

    5.5.5.

    5.5.5. 5.

    5.5.5.

    5.5.5.5.

    5.5.5.5.

    5.5.5. 5.

    5.5.5.5.5.

    5.5.5.5.5.5.

    5.5.5.5.

    5.5.5.

    5.5.5.5.5.

    5.

    5.5.5.5.

    5.5.5.5.

    5.5.5.5.

    5.5.5.5.

    5.5.5.5.

    5.5.5.5.

    5.5.5.5.5.

    5. 5.5.

    5.5.5.

    5.5.5.5.

    5.5.5.

    5.5.5.5.

    5.5.5.5.

    5.5.5.5.

    5.5.5.5.

    5.5.5.

    5.5.5. 5.

    5.5.5.

    5.5.5.

    5.5.5.5.

    5.5.5.

    5.5.5.5.5.

    5.

    5.

    5.5.5.5.

    5.5.5.5.

    5.5.5.5.

    5.5.5.5.

    5.5.5.5.

    5.5.5. 5.

    5.5.5.5.5.5.5.5.

    5.5.5.5.

    5.5.5.5.

    5.5.5.

    5.5.5.5.5.

    5. 5.5.

    5.5.5. 5.

    5.5.5.5.5.

    5.

    5.5.5.5.

    5.5.5.5.

    5.5.5.5.

    5.5.5.5.

    5.5.5.5.

    5.5.5. 5.

    5.5.5.5.5.5.

    5.5.5.5.

    5.

    5.5.5.5.

    5.5.

    5.5.5.5.

    5. 5.5.5.

    5.5.5.5.

    5.5.5.5.

    5.5.5.5.

    5.5.5. 5. 5.5.5.

    5.5.5.5.

    5.5.5.5.

    5.

    5.5.5.5.

    5.5.5.

    5.5.5.5.5.

    5. 5.5.

    5.5.5.5.

    5.5.5.5.

    5.5.5.5.

    5.5.5.5.

    5.5.5.5.

    5.5.5. 5. 5.

    5.5.5.5.5.

    5.5.5.5.

    5.5.5.5.

    5.5.5.5. 5.

    5.5.5.5.

    5.5.5.5.

    5.5.5.5.

    5.5.5.5.

    5.5.5.5.

    5.5.5.5.

    5.5.5.5.

    5.5.5. 5.

    5.5.5.5.5.

    5.5.5.5.

    5.5.5.5.

    5. 5.5.5.5.

    5.5.5.5.

    5.5.5.5.

    .

    5.5.5.5.

    5.5.5.

    5.5.5.5.

    5.5.5.

    5.5.5.5.

    5.5.5.5.

    V2

    L4

    C1

    G3

  • 8/9/2019 Dynamic and static analysis of turbogenerator foundation

    36/120

    BUSHAN STEEL LTD. Page 32MERAMANDALI 165 MW STG - UNIT 4

    Vibration Isolation of a Turbo Generator Set Rev. 1

    GERB Engineering GmbHRuhrallee 311, D - 45136 Essen / Germany,+49-201-2660420

    3.3.5 Load Case 5 Power Torque

    The loads are taken from SIEMENS doc. n 1CSD420784.They are distributed as single loads acting on nodal points in global z-direction :

    torque

    node Fz

    no. kN

    C1 1101 27.9

    C2 1102 -27.9

    C3 1103 27.9

    C4 1104 -27.9

    C5 1105 27.9

    C6 1106 -27.9

    C7 1107 27.9

    C8 1108 -27.9C9 1109 27.9

    C10 1110 -27.9

    C11 1111,1112

    C12 1113,1114

    C13 1115

    C14 1116

    C15 1117

    generator loads

    position

    torque

    node Fz

    no. kN

    E1 1201 -134.9

    E2 1202 134.9

    E3 1203 -7.2

    E4 1204 7.2

    E5 1205 -7.2

    E6 1206 7.2

    E7 1207 -7.2

    E8 1208 7.2E9 1209 -7.2

    E10 1210 7.2

    E11 1211 -7.2

    E12 1212 7.2

    E13 1213 -7.2

    E14 1214 7.2

    E15 1215

    E16 1216

    E17 1217

    turbine loads

    position

    load resultant: Mx0

    XY

    Z

    27.927.9

    27.927.9

    27.9

    27.927.9

    27.927.9

    27.9

    134.9

    134.9

    7.27.2

    7.27.27.27.2

    7.27.27.27.2

    7.27.2

    V2

    L5

    C1

    G3

  • 8/9/2019 Dynamic and static analysis of turbogenerator foundation

    37/120

    BUSHAN STEEL LTD. Page 33MERAMANDALI 165 MW STG - UNIT 4

    Vibration Isolation of a Turbo Generator Set Rev. 1

    GERB Engineering GmbHRuhrallee 311, D - 45136 Essen / Germany,+49-201-2660420

    3.3.6 Load Case 6 Thermal Forces X

    The loads are taken from SIEMENS doc. n 1CSD420784.

    They are distributed as single loads acting on nodal points in global x-direction, taking into accountmoments due to vertical eccentricity:

    node Fx My=Fx*ez

    no. kN kNm

    C1 1101 -112 -157

    C2 1102 -112 -157

    C3 1103 -112 -157

    C4 1104 -112 -157

    C5 1105 -112 -157

    C6 1106 -112 -157C7 1107 -112 -157

    C8 1108 -112 -157

    C9 1109 -112 -157

    C10 1110 -112 -157

    C11 1111,1112 1570 2198

    C12 1113,1114 -224 -314

    C13 1115 -112 -157

    C14 1116 -112 -157

    C15 1117

    generator loads thermal forces X

    position

    node Fx My=Fx*ez

    no. kN kNm

    E1 1201 -21.8 -61

    E2 1202 -21.8 -61

    E3 1203 -21.5 -30

    E4 1204 -21.5 -30

    E5 1205 -21.5 -30

    E6 1206 -21.5 -30E7 1207 -21.5 -30

    E8 1208 -21.5 -30

    E9 1209 21.5 30

    E10 1210 21.5 30

    E11 1211 21.5 30

    E12 1212 21.5 30

    E13 1213 21.5 30

    E14 1214 21.5 30

    E15 1215 86.2 121

    E16 1216 86.2 121

    E17 1217

    turbine loads

    position

    thermal forces X

    XY

    Z

    112.

    112.

    112.

    112.

    112.

    112.

    112.

    112.

    112.

    112.

    112.

    112.

    112.

    112.157.

    157.

    157.

    157.

    157.

    157.

    157.

    157.

    157.

    157.

    157.

    157.

    157.

    157.

    785.

    785.

    1099.

    1099. 21.8

    21.8

    21.5

    21.5

    21.5

    21.5

    21.5

    21.5

    21.5

    21.5

    21.5

    21.5

    21.5

    21.5

    86.2

    86.2

    61.

    61.

    30.

    30.

    30.

    30.

    30.

    30.

    30.

    30.

    30.

    30.

    30.

    30.

    121.

    121.

    V2

    L6

    C1

    G6

  • 8/9/2019 Dynamic and static analysis of turbogenerator foundation

    38/120

    BUSHAN STEEL LTD. Page 34MERAMANDALI 165 MW STG - UNIT 4

    Vibration Isolation of a Turbo Generator Set Rev. 1

    GERB Engineering GmbHRuhrallee 311, D - 45136 Essen / Germany,+49-201-2660420

    3.3.7 Load Case 7 Thermal Forces Y

    The loads are taken from SIEMENS doc. n 1CSD420784.

    They are distributed as single loads acting on nodal points in global y-direction, taking into accountmoments due to vertical eccentricity:

    node Fy Mx=-Fy*ez

    no. kN kNm

    C1 1101 112 -157

    C2 1102 -112 157

    C3 1103 112 -157

    C4 1104 -112 157

    C5 1105 112 -157

    C6 1106 -112 157C7 1107 112 -157

    C8 1108 -112 157

    C9 1109 112 -157

    C10 1110 -112 157

    C11 1111,1112 393 -550

    C12 1113,1114 224 -314

    C13 1115 -112 157

    C14 1116 -112 157

    C15 1117 -393 550

    generator loads thermal forces Y

    position

    node Fy Mx=-Fy*ez

    no. kN kNm

    E1 1201

    E2 1202

    E3 1203 21.5 -30

    E4 1204 -21.5 30

    E5 1205 21.5 -30

    E6 1206 -21.5 30E7 1207 21.5 -30

    E8 1208 -21.5 30

    E9 1209 21.5 -30

    E10 1210 -21.5 30

    E11 1211 21.5 -30

    E12 1212 -21.5 30

    E13 1213 21.5 -30

    E14 1214 -21.5 30

    E15 1215

    E16 1216

    E17 1217

    turbine loads

    position

    thermal forces Y

    XY

    Z

    112.112.

    112.112.

    112.

    112.112.

    112.112.

    112.

    112.

    112.

    196.5196.5

    112.

    112.

    393.

    157.157.

    157.157.

    157.

    157.

    157.

    157.157.

    157.157.

    157.

    157.

    157.

    275.

    275.

    550.

    21.5

    21.5

    21.5

    21.5

    21.5

    21.5

    21.5

    21.5

    21.5

    21.5

    21.5

    21.5

    21.5

    21.5

    30.

    30.

    30.

    30.

    30.

    30.

    30.

    30.

    30.

    30.

    30.

    30.

    30.

    30.

    V2

    L7

    C1

    G6

  • 8/9/2019 Dynamic and static analysis of turbogenerator foundation

    39/120

    BUSHAN STEEL LTD. Page 35MERAMANDALI 165 MW STG - UNIT 4

    Vibration Isolation of a Turbo Generator Set Rev. 1

    GERB Engineering GmbHRuhrallee 311, D - 45136 Essen / Germany,+49-201-2660420

    3.3.8 Load Case 8 Thermal Forces Z

    The loads are taken from SIEMENS doc. n 1CSD420784.

    They are distributed as single loads acting on nodal points in global z-direction, taking into accountmoments due to vertical eccentricity:

    node Fz My

    no. kN kNm

    E1 1201 -49.7

    E2 1202 -49.7

    E3 1203 6.9

    E4 1204 6.9

    E5 1205E6 1206

    E7 1207

    E8 1208

    E9 1209

    E10 1210

    E11 1211

    E12 1212

    E13 1213 -6.9

    E14 1214 -6.9

    E15 1215

    E16 1216

    E17 1217

    turbine loads

    position

    thermal forces Z

    XY

    Z

    6.9

    6.9

    6.9

    6.9

    49.7

    49.7

    V2

    L8

    C1

    G6

  • 8/9/2019 Dynamic and static analysis of turbogenerator foundation

    40/120

    BUSHAN STEEL LTD. Page 36MERAMANDALI 165 MW STG - UNIT 4

    Vibration Isolation of a Turbo Generator Set Rev. 1

    GERB Engineering GmbHRuhrallee 311, D - 45136 Essen / Germany,+49-201-2660420

    3.3.9 Load case 9 Pipe Forces X

    The loads are taken from SIEMENS doc. n 1CSD420784.

    They are distributed as single loads acting on nodal points in global x-direction, taking into accountmoments due to vertical eccentricity.

    For determination of design forces the internal forces caused by this load case have to beconsidered with alternating signs.

    node Fx My=Fx*ez

    no. kN kNm

    E1 1201

    E2 1202

    E3 1203E4 1204

    E5 1205

    E6 1206

    E7 1207

    E8 1208

    E9 1209

    E10 1210

    E11 1211

    E12 1212

    E13 1213

    E14 1214

    E15 1215 82.5 116

    E16 1216 82.5 116

    E17 1217

    turbine loads

    position

    pipe forces X

    XY

    Z

    82.5

    82.5

    116.

    116.

    V2

    L9

    C1

    G6

  • 8/9/2019 Dynamic and static analysis of turbogenerator foundation

    41/120

    BUSHAN STEEL LTD. Page 37MERAMANDALI 165 MW STG - UNIT 4

    Vibration Isolation of a Turbo Generator Set Rev. 1

    GERB Engineering GmbHRuhrallee 311, D - 45136 Essen / Germany,+49-201-2660420

    3.3.10 Load case 10 Pipe Forces Y

    The loads are taken from SIEMENS doc. n 1CSD420784.

    They are distributed as single loads acting on nodal points in global y-direction, taking into accountmoments due to vertical eccentricity:

    For determination of design forces the internal forces caused by this load case have to beconsidered with alternating signs.

    node Fy Mx=-Fy*ez

    no. kN kNm

    E1 1201 31.3 -88

    E2 1202 31.3 -88

    E3 1203E4 1204

    E5 1205

    E6 1206

    E7 1207

    E8 1208

    E9 1209

    E10 1210

    E11 1211

    E12 1212

    E13 1213

    E14 1214

    E15 1215

    E16 1216

    E17 1217 102.5 -103

    turbine loads

    position

    pipe forces Y

    XY

    Z

    31.3

    31.3

    102.5

    88.

    88.

    103.

    V2

    L10

    C1

    G6

  • 8/9/2019 Dynamic and static analysis of turbogenerator foundation

    42/120

    BUSHAN STEEL LTD. Page 38MERAMANDALI 165 MW STG - UNIT 4

    Vibration Isolation of a Turbo Generator Set Rev. 1

    GERB Engineering GmbHRuhrallee 311, D - 45136 Essen / Germany,+49-201-2660420

    3.3.11 Load case 11 Pipe Forces Z

    The loads are taken from SIEMENS doc. n 1CSD420784.

    They are distributed as single loads acting on nodal points in global z-direction.

    For determination of design forces the internal forces caused by this load case have to beconsidered with alternating signs.

    pipe

    forces Z

    node Fz

    no. kN

    E1 1201 98.4

    E2 1202 98.4

    E3 1203 37.2

    E4 1204 37.2E5 1205 11

    E6 1206 11

    E7 1207 11

    E8 1208 11

    E9 1209 11

    E10 1210 11

    E11 1211 11

    E12 1212 11

    E13 1213 11

    E14 1214 11

    E15 1215 37.2

    E16 1216 37.2

    E17 1217

    turbine loads

    position

    XY

    Z

    98.4

    98.4

    37.2

    37.2

    37.2

    37.2

    11.

    11.

    11.

    11.

    11.

    11.

    11.

    11.

    11.

    11.

    V2

    L11

    C1

    G6

  • 8/9/2019 Dynamic and static analysis of turbogenerator foundation

    43/120

    BUSHAN STEEL LTD. Page 39MERAMANDALI 165 MW STG - UNIT 4

    Vibration Isolation of a Turbo Generator Set Rev. 1

    GERB Engineering GmbHRuhrallee 311, D - 45136 Essen / Germany,+49-201-2660420

    3.3.12 Load case 12 - Erection load

    The loads are taken from SIEMENS drawing n 0-13100-B6151. They are distributed as singleloads acting on nodal points in global directions :

    node Fx My=Fx*ez Fy Mx=-Fy*ez

    no. kN kNm kN kNm

    C1 1101 -625 -875 625 -875

    C2 1102 -625 -875 -625 875

    C9 1109 625 875 625 -875

    C10 1110 625 875 -625 875

    position

    erection loadsgenerator loads

    node Fx My=Fx*ez Fy Mx=-Fy*ez

    no. kN kNm kN kNm

    E3 1203 -257 -360 257 -360

    E4 1204 -257 -360 -257 360

    E13 1213 257 360 257 -360

    E14 1214 257 360 -257 360

    turbine loads erection loads

    position

    XY

    Z

    625.

    625.

    625.

    625.

    257.

    257.

    257.

    257.

    875.

    875.

    875.

    875.

    360.

    360.

    360.

    360.

    625.

    625.

    625.

    625.875.

    875.

    875.

    875.

    257.

    257.

    257.

    257.

    360.

    360.

    360.

    360.

    V2

    L18

    C1

    G6

  • 8/9/2019 Dynamic and static analysis of turbogenerator foundation

    44/120

  • 8/9/2019 Dynamic and static analysis of turbogenerator foundation

    45/120

    BUSHAN STEEL LTD. Page 41MERAMANDALI 165 MW STG - UNIT 4

    Vibration Isolation of a Turbo Generator Set Rev. 1

    GERB Engineering GmbHRuhrallee 311, D - 45136 Essen / Germany,+49-201-2660420

    3.3.14 Load case 14 - Loss of blade Y

    The loads are taken from SIEMENS doc. n 1CSD420784.

    For determination of design forces the internal forces caused by this load case have to beconsidered with alternating signs.

    node Fy Mx=-Fy*ez Fz

    no. kN kNm kN

    E1 1201 1269.5 -3555 -2724.2

    E2 1202 1269.5 -3555 2724.2

    E3 1203

    E4 1204

    E5 1205

    E6 1206E7 1207

    E8 1208

    E9 1209

    E10 1210

    E11 1211

    E12 1212

    E13 1213

    E14 1214

    E15 1215

    E16 1216

    E17 1217 5903.1 -5903

    turbine loads

    position

    loss of blade Y

    XY

    Z

    1269.5

    1269.5

    5903.1

    2724.2

    2724.2

    3555.

    3555.

    5903.

    V2

    L12

    C1

    G6

  • 8/9/2019 Dynamic and static analysis of turbogenerator foundation

    46/120

    BUSHAN STEEL LTD. Page 42MERAMANDALI 165 MW STG - UNIT 4

    Vibration Isolation of a Turbo Generator Set Rev. 1

    GERB Engineering GmbHRuhrallee 311, D - 45136 Essen / Germany,+49-201-2660420

    3.3.15 Load case 15 - Loss of blade Z

    The loads are taken from SIEMENS doc. n 1CSD420784.

    For determination of design forces the internal forces caused by this load case have to beconsidered with alternating signs.

    loss of

    blade Z

    node Fz

    no. kN

    E1 1201 1269.5

    E2 1202 1269.5

    E3 1203 491.9

    E4 1204 491.9

    E5 1205 491.9

    E6 1206 491.9E7 1207 491.9

    E8 1208 491.9

    E9 1209 491.9

    E10 1210 491.9

    E11 1211 491.9

    E12 1212 491.9

    E13 1213 491.9

    E14 1214 491.9

    E15 1215

    E16 1216

    E17 1217

    turbine loads

    position

    XY

    Z

    1269.5

    1269.5

    491.9491.9491.9491.9

    491.9491.9

    491.9491.9491.9491.9

    491.9491.9

    V2

    L13

    C1

    G6

  • 8/9/2019 Dynamic and static analysis of turbogenerator foundation

    47/120

  • 8/9/2019 Dynamic and static analysis of turbogenerator foundation

    48/120

    BUSHAN STEEL LTD. Page 44MERAMANDALI 165 MW STG - UNIT 4

    Vibration Isolation of a Turbo Generator Set Rev. 1

    GERB Engineering GmbHRuhrallee 311, D - 45136 Essen / Germany,+49-201-2660420

    3.3.17 Load case 17 - Seismic load X

    Relevant machine loads caused by seismic activities are taken from SIEMENS drawing n1CSD420784. The dead load of foundation is considered by multiplying with the horizontal seismic

    acceleration coefficient = 0.200 g as determined in clause [1.9]of the present paper. All loadingsare acting in global x-direction.

    For determination of design forces the internal forces caused by this load case have to beconsidered with alternating signs.

    node Fx My=Fx*ez

    no. kN kNm

    C1 1101 17.1 24

    C2 1102 17.1 24

    C3 1103 17.1 24C4 1104 17.1 24

    C5 1105 17.1 24

    C6 1106 17.1 24

    C7 1107 17.1 24

    C8 1108 17.1 24

    C9 1109 17.1 24

    C10 1110 17.1 24

    C11 1111,1112 51.3 72

    C12 1113,1114 34.2 48

    C13 1115 17.1 24

    C14 1116 17.1 24

    C15 1117

    seismic loads Xgenerator loads

    position

    node Fx My=Fx*ez

    no. kN kNm

    E1 1201 123.1 345

    E2 1202 123.1 345

    E3 1203E4 1204

    E5 1205

    E6 1206

    E7 1207

    E8 1208

    E9 1209

    E10 1210

    E11 1211

    E12 1212

    E13 1213

    E14 1214

    E15 1215

    E16 1216

    E17 1217

    seismic loads Xturbine loads

    position

    XY

    Z

    17.1

    17.1

    17.1

    17.1

    17.1

    17.1

    17.1

    17.1

    17.1

    17.1

    25.65

    25.65

    17.1

    17.1

    17.1

    17.124.

    24.

    24.

    24.

    24.

    24.

    24.

    24.

    24.

    24.

    36.

    36.

    24.

    24.

    24.

    24.

    123.1

    123.1345.

    345.

    V2

    L15

    C1

    G6

  • 8/9/2019 Dynamic and static analysis of turbogenerator foundation

    49/120

    BUSHAN STEEL LTD. Page 45MERAMANDALI 165 MW STG - UNIT 4

    Vibration Isolation of a Turbo Generator Set Rev. 1

    GERB Engineering GmbHRuhrallee 311, D - 45136 Essen / Germany,+49-201-2660420

    3.3.18 Load case 18 - Seismic load Y

    Relevant machine loads caused by seismic activities are taken from SIEMENS drawing n1CSD420784. The dead load of foundation is considered by multiplying with the horizontal seismic

    acceleration coefficient = 0.200 g as determined in clause [1.9]of the present paper. All loadingsare acting in global y-direction.

    For determination of design forces the internal forces caused by this load case have to beconsidered with alternating signs.

    node Fy Mx=-Fy*ez

    no. kN kNm

    C1 1101 16.2 -23

    C2 1102 16.2 -23

    C3 1103 16.2 -23C4 1104 16.2 -23

    C5 1105 16.2 -23

    C6 1106 16.2 -23

    C7 1107 16.2 -23

    C8 1108 16.2 -23

    C9 1109 16.2 -23

    C10 1110 16.2 -23

    C11 1111,1112 48.5 -68

    C12 1113,1114 32.3 -45

    C13 1115 16.2 -23

    C14 1116 16.2 -23

    C15 1117 16.2 -23

    seismic loads Ygenerator loads

    position

    node Fy Mx=-Fy*ez

    no. kN kNm

    E1 1201 36.5 -102

    E2 1202 36.5 -102

    E3 1203E4 1204

    E5 1205

    E6 1206

    E7 1207

    E8 1208

    E9 1209

    E10 1210

    E11 1211

    E12 1212

    E13 1213

    E14 1214

    E15 1215

    E16 1216

    E17 1217 119.7 -120

    seismic loads Yturbine loads

    position

    XY

    Z

    16.2

    16.2

    16.2

    16.2

    16.2

    16.2

    16.2

    16.2

    16.2

    16.2

    24.3

    24.3

    16.2

    16.2

    16.2

    16.223.

    23.

    23.

    23.

    23.

    23.

    23.

    23.

    23.

    23.

    34.5

    34.5

    23.

    23.

    23.

    23.

    36.5

    36.5

    119.7

    102.

    102.

    120.

    16.2

    23.

    V2

    L16

    C1

    G6

  • 8/9/2019 Dynamic and static analysis of turbogenerator foundation

    50/120

    BUSHAN STEEL LTD. Page 46MERAMANDALI 165 MW STG - UNIT 4

    Vibration Isolation of a Turbo Generator Set Rev. 1

    GERB Engineering GmbHRuhrallee 311, D - 45136 Essen / Germany,+49-201-2660420

    3.3.19 Load case 19 - Seismic load Z

    Relevant machine loads caused by seismic activities are taken from SIEMENS drawing n1CSD420784. The dead load of foundation is considered by multiplying with the horizontal seismic

    acceleration coefficient = 0.133 g as determined in clause [1.9]of the present paper. All loadingsare acting in global z-direction.

    For determination of design forces the internal forces caused by this load case have to beconsidered with alternating signs.

    seismic

    loads Z

    node Fz

    no. kN

    C1 1101 16.6

    C2 1102 16.6

    C3 1103 16.6C4 1104 16.6

    C5 1105 16.6

    C6 1106 16.6

    C7 1107 16.6

    C8 1108 16.6

    C9 1109 16.6

    C10 1110 16.6

    C11 1111,1112 33.2

    C12 1113,1114 33.2

    C13 1115 16.6

    C14 1116 16.6

    C15 1117

    generator loads

    position

    seismic

    loads Z

    node Fz

    no. kN

    E1 1201 78.4

    E2 1202 78.4

    E3 1203 30.6E4 1204 30.6

    E5 1205 2.9

    E6 1206 2.9

    E7 1207 2.9

    E8 1208 2.9

    E9 1209 2.9

    E10 1210 2.9

    E11 1211 2.9

    E12 1212 2.9

    E13 1213 30.6

    E14 1214 30.6

    E15 1215

    E16 1216

    E17 1217

    turbine loads

    position

    XY

    Z

    16.6

    16.6

    16.6

    16.6

    16.6

    16.6

    16.6

    16.6

    16.6

    16.6

    16.6

    16.6

    16.6

    16.6

    16.6

    16.6

    78.4

    78.4

    30.6

    30.6

    30.6

    30.6

    2.9

    2.9

    2.9

    2.9

    2.9

    2.9

    2.9

    2.9

    V2

    L17

    C1

    G6

  • 8/9/2019 Dynamic and static analysis of turbogenerator foundation

    51/120

    BUSHAN STEEL LTD. Page 47MERAMANDALI 165 MW STG - UNIT 4

    Vibration Isolation of a Turbo Generator Set Rev. 1

    GERB Engineering GmbHRuhrallee 311, D - 45136 Essen / Germany,+49-201-2660420

    3.3.20 Load Case 20 to 31 Seismic Combinations

    Seismic forces are combined for 100% acceleration in one direction and 30% in the other twoorthogonal directions. The according superpositions of load case 16 to 18 are stored as load case

    numbers 19 to 30.

    3.3.21 Load Case 32 to 37 Dynamic Loads at Malfunctional States

    The displacements and internal forces and moments which result from the excitation of the naturalmodes of vibration are stored as load case 32 to 37. For the scaling of the mode shapes tomaximum amplitudes refer to clause2.4.

  • 8/9/2019 Dynamic and static analysis of turbogenerator foundation

    52/120

    BUSHAN STEEL LTD. Page 48MERAMANDALI 165 MW STG - UNIT 4

    Vibration Isolation of a Turbo Generator Set Rev. 1

    GERB Engineering GmbHRuhrallee 311, D - 45136 Essen / Germany,+49-201-2660420

    3.4 Superposition of Load Cases

    For the determination of design load cases the single load cases are taken into account acc. to thefollowing superposition schema.

    For operational loads a unique safety factor of = 1.50 acc. to IS 456 has been used whichenvelopes the factors defined in DIN 1045-1. For emergency load combinations a reduced factorof = 1.00 can be considered for all related load cases acc. to DIN 1045-1.

    operation erection emergency

    f f f

    1 G 0.90 / 1.50 0.90 / 1.50 1.00

    2 G 0.90 / 1.50 0.90 / 1.50 1.00

    3 Q 1.50 1.50 1.00

    4 Q 1.50 1.50 1.00

    5 Q 1.50 - 1.00

    6 W 1.50 - 1.007 W 1.50 - 1.00

    8 W 1.50 - 1.00

    9 W 1.50 - 1.00

    10 W 1.50 - 1.00

    11 W 1.50 - 1.00

    12 M - 1.50 -

    13 M - 1.50 -

    14 A - - 1.00

    15 A - - 1.00

    16 A - - 1.00

    17 A - - 1.00

    18 A - - 1.00

    19 A - - 1.00

    20 A - - 1.00

    21 A - - 1.00

    22 A - - 1.00

    23 A - - 1.00

    24 A - - 1.00

    25 A - - 1.00

    26 A - - 1.00

    27 A - - 1.00

    28 A - - 1.00

    29 A - - 1.0030 A - - 1.00

    31 A - - 1.00

    32 dynamic loads mode 12 A - - 1.00

    33 dynamic loads mode 14 A - - 1.00

    34 dynamic loads mode 14 A - - 1.00

    35 dynamic loads mode 15 A - - 1.00

    36 A - - 1.00

    37 A - - 1.00

    load case description

    loss of blade (+/-Y)

    dead load

    machine load

    live load 5 kN/m

    operational torque

    thermal forces X

    erection load

    type

    design combination

    seismic X + 0.3 Y + 0.3 Z

    seismic X + 0.3 Y - 0.3 Z

    seismic X - 0.3 Y + 0.3 Z

    seismic X - 0.3 Y - 0.3 Z

    seismic Y + 0.3 X + 0.3 Z

    horizontal pipe forces (+/-Y)

    seismic load +/-Y

    seismic load +/-Z

    short circuit

    loss of blade (+/-Z)

    erection load

    seismic load +/-X

    seismic Z + 0.3 X + 0.3 Y

    dynamic loads mode 16

    dynamic loads mode 17

    seismic Z + 0.3 X - 0.3 Yseismic Z - 0.3 X + 0.3 Y

    seismic Z - 0.3 X - 0.3 Y

    horizontal pipe forces (+/-X)

    condenser load

    thermal forces Y

    thermal forces Z

    vertical pipe forces (+/-Z)

    seismic Y + 0.3 X - 0.3 Z

    seismic Y - 0.3 X + 0.3 Z

    seismic Y - 0.3 X - 0.3 Z

    load case types: G permanent loadQ non-permanent load

    W non-permanent load with alternating signs ()A alternative load with alternating signs ()M erection load, alternative to all other non-permanent loads

  • 8/9/2019 Dynamic and static analysis of turbogenerator foundation

    53/120

    BUSHAN STEEL LTD. Page 49MERAMANDALI 165 MW STG - UNIT 4

    Vibration Isolation of a Turbo Generator Set Rev. 1

    GERB Engineering GmbHRuhrallee 311, D - 45136 Essen / Germany,+49-201-2660420

    This procedure leads to the following 48 design load cases:

    LC X01: max nxx LC X09: min nxxLC X02: max nyy LC X10: min nyyLC X03: max n

    xy LC X11: min n

    xy

    LC X04: max qxz LC X12: min qxzLC X05: max mxx LC X13: min mxxLC X06: max myy LC X14: min myyLC X07: max mxy LC X15: min mxyLC X08: max qyz LC X16: min qyz

    where: X=1 for operation combinationX=2 for erection combinationsX=3 for emergency combinations

  • 8/9/2019 Dynamic and static analysis of turbogenerator foundation

    54/120

    BUSHAN STEEL LTD. Page 50MERAMANDALI 165 MW STG - UNIT 4

    Vibration Isolation of a Turbo Generator Set Rev. 1

    GERB Engineering GmbHRuhrallee 311, D - 45136 Essen / Germany,+49-201-2660420

    3.5 Design Forces and Moments

    The reinforcement design is performed within the local coordinate system of the plate

    elements.

    The local coordinate systems corresponds to the global coordinates, i. e. the local z-axis isdirected upwardly.

    The maximum required reinforcement for the load cases mentioned in clause (3.4)will bedetermined.

    The sign convention of the internal forces for plate elements is shown below (acc. to DIN1080).

    Sign convention of internal plate forces & moments:

    The distributions of the calculated maximum und minimum plate moments mxxand myyare shownexemplarily on the following pages.

  • 8/9/2019 Dynamic and static analysis of turbogenerator foundation

    55/120

    BUSHAN STEEL LTD. Page 51MERAMANDALI 165 MW STG - UNIT 4

    Vibration Isolation of a Turbo Generator Set Rev. 1

    GERB Engineering GmbHRuhrallee 311, D - 45136 Essen / Germany,+49-201-2660420

    3.5.1 Design Moments due to Operational Combinations

    plate moments mxx

    X

    Y

    Z

    2098.

    1913.

    1727.

    1542.

    1357.

    1172.

    987.

    801.9

    616.8

    431.7

    246.6

    61.51

    -123.6

    -308.7

    -493.8

    -678.9

    -864.

    V5

    C1

    G3

    Output Set: MAX Mxx

    Contour: Plate X Moment

    X

    Y

    Z

    618.1378.

    138.

    -102.1

    -342.2

    -582.2

    -822.3

    -1062.

    -1302.

    -1542.

    -1783.

    -2023.

    -2263.

    -2503.

    -2743.

    -2983.

    -3223.

    V5

    C1G3

    Output Set: MIN Mxx

    Contour: Plate X Moment

  • 8/9/2019 Dynamic and static analysis of turbogenerator foundation

    56/120

    BUSHAN STEEL LTD. Page 52MERAMANDALI 165 MW STG - UNIT 4

    Vibration Isolation of a Turbo Generator Set Rev. 1

    GERB Engineering GmbHRuhrallee 311, D - 45136 Essen / Germany,+49-201-2660420

    plate moments myy

    X

    Y

    Z

    329.8

    194.5

    59.12

    -76.24

    -211.6

    -347.

    -482.3

    -617.7

    -753.

    -888.4

    -1024.

    -1159.

    -1294.

    -1430.

    -1565.

    -1701.

    -1836.

    V5

    C1

    G3

    Output Set: MAX Myy

    Contour: Plate Y Moment

    X

    Y

    Z

    105.

    -202.1

    -509.2

    -816.3

    -1123.

    -1430.

    -1738.

    -2045.

    -2352.

    -2659.

    -2966.

    -3273.

    -3580.

    -3887.

    -4194.

    -4501.

    -4809.

    V5

    C1

    G3

    Output Set: MIN Myy

    Contour: Plate Y Moment

  • 8/9/2019 Dynamic and static analysis of turbogenerator foundation

    57/120

    BUSHAN STEEL LTD. Page 53MERAMANDALI 165 MW STG - UNIT 4

    Vibration Isolation of a Turbo Generator Set Rev. 1

    GERB Engineering GmbHRuhrallee 311, D - 45136 Essen / Germany,+49-201-2660420

    3.5.2 Design Moments due to Erection Combinations

    plate moments mxx

    X

    Y

    Z

    2911.

    2662.

    2413.

    2164.

    1915.

    1667.

    1418.

    1169.

    919.9

    670.9

    422.

    173.1

    -75.78

    -324.7

    -573.6

    -822.5

    -1071.

    V5

    C1

    G3

    Output Set: MAX Mxx

    Contour: Plate X Moment

    X

    Y

    Z

    810.4379.9

    -50.59

    -481.1

    -911.6

    -1342.

    -1773.

    -2203.

    -2634.

    -3064.

    -3495.

    -3925.

    -4356.

    -4786.

    -5217.

    -5647.

    -6078.

    V5

    C1G3

    Output Set: MIN Mxx

    Contour: Plate X Moment

  • 8/9/2019 Dynamic and static analysis of turbogenerator foundation

    58/120

    BUSHAN STEEL LTD. Page 54MERAMANDALI 165 MW STG - UNIT 4

    Vibration Isolation of a Turbo Generator Set Rev. 1

    GERB Engineering GmbHRuhrallee 311, D - 45136 Essen / Germany,+49-201-2660420

    plate moments myy

    X

    Y

    Z

    600.3

    438.

    275.6

    113.3

    -49.01

    -211.3

    -373.7

    -536.

    -698.3

    -860.6

    -1023.

    -1185.

    -1348.

    -1510.

    -1672.

    -1835.

    -1997.

    V5

    C1

    G3

    Output Set: MAX Myy

    Contour: Plate Y Moment

    X

    Y

    Z

    154.5

    -139.7

    -433.9

    -728.2

    -1022.

    -1317.

    -1611.

    -1905.

    -2199.

    -2494.

    -2788.

    -3082.

    -3376.

    -3671.

    -3965.

    -4259.

    -4553.

    V5

    C1

    G3

    Output Set: MIN Myy

    Contour: Plate Y Moment

  • 8/9/2019 Dynamic and static analysis of turbogenerator foundation

    59/120

    BUSHAN STEEL LTD. Page 55MERAMANDALI 165 MW STG - UNIT 4

    Vibration Isolation of a Turbo Generator Set Rev. 1

    GERB Engineering GmbHRuhrallee 311, D - 45136 Essen / Germany,+49-201-2660420

    3.5.3 Design Moments due to Emergency Combinations

    plate moments mxx

    X

    Y

    Z

    3820.

    3562.

    3305.

    3048.

    2791.

    2534.

    2277.

    2020.

    1763.

    1505.

    1248.

    991.1

    734.

    476.9

    219.7

    -37.41

    -294.5

    V5

    C1

    G3

    Output Set: MAX Mxx

    Contour: Plate X Moment

    X

    Y

    Z

    400.9-17.15

    -435.2

    -853.3

    -1271.

    -1689.

    -2107.

    -2526.

    -2944.

    -3362.

    -3780.

    -4198.

    -4616.

    -5034.

    -5452.

    -5870.

    -6288.

    V5

    C1G3

    Output Set: MIN Mxx

    Contour: Plate X Moment

  • 8/9/2019 Dynamic and static analysis of turbogenerator foundation

    60/120

    BUSHAN STEEL LTD. Page 56MERAMANDALI 165 MW STG - UNIT 4

    Vibration Isolation of a Turbo Generator Set Rev. 1

    GERB Engineering GmbHRuhrallee 311, D - 45136 Essen / Germany,+49-201-2660420

    plate moments myy

    X

    Y

    Z

    2117.

    1906.

    1695.

    1484.

    1272.

    1061.

    849.6

    638.3

    426.9

    215.6

    4.326

    -207.

    -418.3

    -629.6

    -840.9

    -1052.

    -1264.

    V5

    C1

    G3

    Output Set: MAX Myy

    Contour: Plate Y Moment

    X

    Y

    Z

    18.18

    -340.7

    -699.6

    -1058.

    -1417.

    -1776.

    -2135.

    -2494.

    -2853.

    -3212.

    -3571.

    -3929.

    -4288.

    -4647.

    -5006.

    -5365.

    -5724.

    V5

    C1

    G3

    Output Set: MIN Myy

    Contour: Plate Y Moment

  • 8/9/2019 Dynamic and static analysis of turbogenerator foundation

    61/120

    BUSHAN STEEL LTD. Page 57MERAMANDALI 165 MW STG - UNIT 4

    Vibration Isolation of a Turbo Generator Set Rev. 1

    GERB Engineering GmbHRuhrallee 311, D - 45136 Essen / Germany,+49-201-2660420

    3.6 Design of Reinforcement

    The foundation plate is designed for the maximum values of internal forces, which are determined

    as described in clause (3.4).

    3.6.1 Building materials

    Concrete: Grade (IS 456 - 2000) M 35Compressive strength fck= 35 N/mmDesign strength fcd= 23.45/ 1.5 = 15.6 N/mmStatic modulus of elasticity Ec= 29580 MN/m

    Density of reinforced concrete = 25 kN/mPoissons ratio = 0.20

    Reinforcing Steel: Grade (IS 1786 - 1985) Fe 415Yield strength fyk= 415 MN/mDesign strength fyd= 415 MN/m / 1.15 = 360 N/mmModulus of elasticity 210000 MN/m

    3.6.2 Calculation method

    The reinforcement design is performed according to the German standard DIN 1045-1.The design forces of the different reinforcement layers are calculated acc. to the method of

    Baumann(3).

    First the internal forces and moments are converted to normal forces in both outer layers (+z/-z) of

    the plate. The stati