ece2305’lecture’slides’ - spinlab: the signal...

22
ECE2305 Lecture Slides D. Richard Brown III Worcester Polytechnic Ins@tute Electrical and Computer Engineering Department Adapted from Pren.ce Hall instructor resources William Stallings: Data and Computer Communications Section 5.1 – Digital Data, Digital Signals

Upload: vuthien

Post on 01-Feb-2018

237 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ECE2305’Lecture’Slides’ - spinlab: The Signal ...spinlab.wpi.edu/courses/ece2305_2014/digital_signaling.pdf · ECE2305’Lecture’Slides ... HDB3 = high-density bipolar—3

ECE2305  Lecture  Slides  

 

D.  Richard  Brown  III  Worcester  Polytechnic  Ins@tute  

Electrical  and  Computer  Engineering  Department    

Adapted  from  Pren.ce  Hall  instructor  resources  

William Stallings: Data and Computer Communications Section 5.1 – “Digital Data, Digital Signals”

Page 2: ECE2305’Lecture’Slides’ - spinlab: The Signal ...spinlab.wpi.edu/courses/ece2305_2014/digital_signaling.pdf · ECE2305’Lecture’Slides ... HDB3 = high-density bipolar—3

Basics  of  Signal  Encoding  

•  Important  func@on  of  the  physical  layer:  Convert  data  (e.g.  bits)  to  signals  (e.g.  voltages).  

•  The  signal  must  be  designed  to  efficiently  propagate  through  the  medium.  

•  The  signal  must  also  be  designed  so  that  the  receiver  can  correctly  interpret  it.  

Signals->data Data->signals medium

Data generated by higher layers

Data received by higher layers

Page 3: ECE2305’Lecture’Slides’ - spinlab: The Signal ...spinlab.wpi.edu/courses/ece2305_2014/digital_signaling.pdf · ECE2305’Lecture’Slides ... HDB3 = high-density bipolar—3

“Digital”  Signaling  

•  The  waveform  sent  through  the  medium  has  discrete  levels  –  Perfectly  square  pulses  are  impossible  to  generate  –  ANenua@on,  distor@on,  and/or  noise  may  cause  the  received  signal  to  

look  somewhat  different  •  Characteris@cs:  

–  Polar  vs.  unipolar  –  Data  rate  (bits  per  second)  –  Modula@on  rate  (signal  transi@ons  per  second)  

0 1 1 1 0 1 0 1 0 0

+5V

0V

0.02ms

Example:

Page 4: ECE2305’Lecture’Slides’ - spinlab: The Signal ...spinlab.wpi.edu/courses/ece2305_2014/digital_signaling.pdf · ECE2305’Lecture’Slides ... HDB3 = high-density bipolar—3

Where  is  “digital”  signaling  used?  

•  OVen  used  for  communica@on  over  dedicated  wired  media  –  Ethernet  –  RS-­‐232  –  Etc.  

•  Not  used  for:  – Wireless  communica@on  –  Op@cal  communica@on  –  Cable  modems  –  Digital  subscriber  loops  (DSL)  

Page 5: ECE2305’Lecture’Slides’ - spinlab: The Signal ...spinlab.wpi.edu/courses/ece2305_2014/digital_signaling.pdf · ECE2305’Lecture’Slides ... HDB3 = high-density bipolar—3

Characteris@cs  of  Digital  Signal  Encoding  Schemes  

•  Signal  spectrum  –  Less  high  frequency  content  means  we  can  use  cheaper  cables  or  go  

longer  distances  without  repeaters.  

•  Clocking  –  The  receiver  needs  to  know  where  the  start  and  end  of  each  bit  occurs.  –  Some  signaling  techniques  make  it  easy  on  the  receiver  to  determine  the  

@ming  of  the  bits.  

•  Error  detec@on  –  Features  built  into  the  signaling  scheme  to  detect  errors.  

•  Noise  immunity  •  Cost  and  complexity  

Page 6: ECE2305’Lecture’Slides’ - spinlab: The Signal ...spinlab.wpi.edu/courses/ece2305_2014/digital_signaling.pdf · ECE2305’Lecture’Slides ... HDB3 = high-density bipolar—3

Some  Common  Digital  Encoding  Schemes  

Page 7: ECE2305’Lecture’Slides’ - spinlab: The Signal ...spinlab.wpi.edu/courses/ece2305_2014/digital_signaling.pdf · ECE2305’Lecture’Slides ... HDB3 = high-density bipolar—3

Nonreturn  to  Zero-­‐Level  (NRZ-­‐L)  

•  Two  different  voltages:  –  Logical  0  -­‐>  V1  –  Logical  1  -­‐>  V2  

•  Signal  voltage  held  constant  during  bit  interval  –  Unipolar:  either  V1  or  V2  is  equal  to  zero.  The  other  voltage  is  usually  posi@ve,  e.g.  +5V.  

–  Bipolar:  V1  =  -­‐V2  

Page 8: ECE2305’Lecture’Slides’ - spinlab: The Signal ...spinlab.wpi.edu/courses/ece2305_2014/digital_signaling.pdf · ECE2305’Lecture’Slides ... HDB3 = high-density bipolar—3

Nonreturn  to  Zero  Inverted  •  Two  voltages:  V1  and  V2  

(can  unipolar  or  bipolar)  –  Logical  1  -­‐>  transi@on  

from  V1  to  V2  or  V2  to  V1  

–  Logical  0  -­‐>  no  transi@on  •  Signal  voltage  held  

constant  during  bit  interval  

•  This  is  an  example  of  “differen@al  encoding”  –  data  mapped  to  changes  

in  signal  level  rather  than  actual  levels  

–  detec@on  of  a  transi@on  is  oVen  more  reliable  that  detec@on  of  a  level  

Page 9: ECE2305’Lecture’Slides’ - spinlab: The Signal ...spinlab.wpi.edu/courses/ece2305_2014/digital_signaling.pdf · ECE2305’Lecture’Slides ... HDB3 = high-density bipolar—3

NRZ  Pros  &  Cons  •  Pros  – Easy  to  engineer  – PreNy  good  spectrum  containment    

•  Cons  – Poten@al  DC  (zero-­‐frequency)  component  – Poten@al  loss  of  synchroniza@on  if  long  strings  of  zeros  or  ones  sent  

Page 10: ECE2305’Lecture’Slides’ - spinlab: The Signal ...spinlab.wpi.edu/courses/ece2305_2014/digital_signaling.pdf · ECE2305’Lecture’Slides ... HDB3 = high-density bipolar—3

Mul@level  Binary:  Bipolar-­‐AMI  (AMI  =  “alternate  mark  inversion”)  

•  Three  voltage  levels:  +V,  0,  -­‐V  –  Logical  0  -­‐>  output  zero  

voltage  –  Logical  1  -­‐>  pulse  at  

voltage  +V  or  -­‐V  •  Pulse  transmiNed  with  

opposite  polarity  of  last  pulse  

–  Signal  voltage  held  constant  during  bit  interval  

•  Proper@es:  –  No  loss  of  sync  if  a  long  

string  of  ones  –  Long  runs  of  zeros  s@ll  a  

problem  –  No  DC  (zero-­‐frequency)  

component  –  BeNer  spectral  

proper@es  than  NRZ-­‐L  &  NRZI  

–  Some  built-­‐in  error  detec@on    •  e.g.  two  consecu@ve  

posi@ve  pulses:  illegal!  

Page 11: ECE2305’Lecture’Slides’ - spinlab: The Signal ...spinlab.wpi.edu/courses/ece2305_2014/digital_signaling.pdf · ECE2305’Lecture’Slides ... HDB3 = high-density bipolar—3

Mul@level  Binary:  Pseudoternary  •  Same  idea  as  Bipolar-­‐

AMI  •  Three  voltage  levels:  +V,  

0,  -­‐V  –  Logical  1  -­‐>  output  zero  

voltage  –  Logical  0  -­‐>  pulse  at  

voltage  +V  or  -­‐V  •  Pulse  transmiNed  with  

opposite  polarity  of  last  pulse  

–  Signal  voltage  held  constant  during  bit  interval  

•  Same  proper@es  of  Bipolar-­‐AMI  –  No  advantage  or  

disadvantages  –  Each  used  in  different  

applica@ons  

Page 12: ECE2305’Lecture’Slides’ - spinlab: The Signal ...spinlab.wpi.edu/courses/ece2305_2014/digital_signaling.pdf · ECE2305’Lecture’Slides ... HDB3 = high-density bipolar—3

Mul@level  Binary  Issues  

•  Loss  of  synchroniza@on  with  long  runs  of  0’s  or  1’s  – Workaround:  inser@on  of  bits  or  scrambling  

•  Not  as  efficient  as  NRZ  –  Each  signal  element  only  represents  one  bit  

•  receiver  dis@nguishes  between  three  levels:  +V,  -­‐V,  0  –  A  3  level  system  could  actually  represent  log23  =  1.58  bits  in  each  bit  period  

–  Requires  approx.  3dB  more  signal  power  than  NRZ  for  same  of  bit  error  rate  (BER)  

Page 13: ECE2305’Lecture’Slides’ - spinlab: The Signal ...spinlab.wpi.edu/courses/ece2305_2014/digital_signaling.pdf · ECE2305’Lecture’Slides ... HDB3 = high-density bipolar—3

BiPhase  Encoding  Method  1:    Manchester  Encoding  

•  Main  idea:  signal  transi@on  in  middle  of  each  bit  period  •  Why  do  this?  Transi@on  serves  as  clock  and  data  •  Logical  1  -­‐>  transi@on  from  low  to  high  •  Logical  0  -­‐>  transi@on  from  high  to  low  •  Used  by  IEEE  802.3  (Ethernet  LAN)  

Page 14: ECE2305’Lecture’Slides’ - spinlab: The Signal ...spinlab.wpi.edu/courses/ece2305_2014/digital_signaling.pdf · ECE2305’Lecture’Slides ... HDB3 = high-density bipolar—3

BiPhase  Encoding  Method  2:    Differen@al  Manchester  Encoding  

•  Like  regular  Manchester:  transi@on  in  each  bit  period  •  Differen@ally  encoded  

–  Logical  0  -­‐>  transi@on  at  start  of  bit  period  –  Logical  1  -­‐>  no  transi@on  at  start  of  bit  period  

•  used  by  IEEE  802.5  (token  ring  LAN)  

Page 15: ECE2305’Lecture’Slides’ - spinlab: The Signal ...spinlab.wpi.edu/courses/ece2305_2014/digital_signaling.pdf · ECE2305’Lecture’Slides ... HDB3 = high-density bipolar—3

Biphase  Pros  and  Cons  •  Pros  –  Self  clocking:  every  bit  period  guaranteed  to  have  a  mid-­‐bit  transi@on  

–  No  DC  (zero-­‐frequency)  component  –  Some  built-­‐in  error  detec@on  capabili@es  

•  Cons  –  Poor  spectral  containment  (requires  more  bandwidth)  

•  At  least  one  transi@on  per  bit  period  (and  possibly  two)  •  Maximum  modula@on  rate  is  twice  NRZ  

Page 16: ECE2305’Lecture’Slides’ - spinlab: The Signal ...spinlab.wpi.edu/courses/ece2305_2014/digital_signaling.pdf · ECE2305’Lecture’Slides ... HDB3 = high-density bipolar—3

Modula@on  Rate  

Minimum 101010. . . Maximum NRZ-L 0 (all 0s or 1s) 1.0 1.0

NRZI 0 (all 0s) 0.5 1.0 (all 1s)

Bipolar-AMI 0 (all 0s) 1.0 1.0

Pseudoternary 0 (all 1s) 1.0 1.0

Manchester 1.0 (1010 . . .) 1.0 2.0 (all 0s or 1s)

Differential Manchester 1.0 (all 1s) 1.5 2.0 (all 0s)

D =

R

L=

R

log2 M•  D  =  modula@on  rate  (baud)  •  R  =  data  rate  (bits/sec)  •  M  =  alphabet  size  (number  of  

different  signal  elements)  •  L  =  number  of  bits  per  signal  

element  

Page 17: ECE2305’Lecture’Slides’ - spinlab: The Signal ...spinlab.wpi.edu/courses/ece2305_2014/digital_signaling.pdf · ECE2305’Lecture’Slides ... HDB3 = high-density bipolar—3

Scrambling:  A  workaround  for  the  problems  with  mul@level  modula@on  

•  Use  scrambling  to  replace  sequences  that  result  in  long  periods  of  constant  voltage  

•  The  replacement  sequences  must  –  produce  enough  transi@ons  to  maintain  sync  –  be  recognized  by  receiver  &  replaced  with  the  original  (intended)  sequence  

–  be  same  length  as  the  original  sequence  •  Design  goals  –  have  no  dc  (zero-­‐frequency)  component  –  have  no  long  dura@on  of  constant  voltage  –  have  no  reduc@on  in  data  rate  –  provide  some  error  detec@on  capability  

Page 18: ECE2305’Lecture’Slides’ - spinlab: The Signal ...spinlab.wpi.edu/courses/ece2305_2014/digital_signaling.pdf · ECE2305’Lecture’Slides ... HDB3 = high-density bipolar—3

Bipolar  with  8-­‐zeros  subs@tu@on  (B8ZS)  •  Based  on  bipolar-­‐AMI  –  Recall  that  a  long  string  of  zeros  causes  a  long  period  with  no  signal  transi@ons,  which  could  lead  to  loss  of  synchroniza@on  

•  Scrambling  specifics:  –  Data  is  buffered  to  detect  strings  of  eight  consecu@ve  zeros  (prior  to  transmission)  

–  Rather  than  sending  0V  for  eight  signal  periods  we  send:  •  000+-­‐0-­‐+  if  the  last  voltage  pulse  preceding  the  8  consecu@ve  zeros  was  posi@ve  

•  000-­‐+0+-­‐  if  the  last  voltage  pulse  preceding  the  8  consecu@ve  zeros  was  nega@ve  

–  Note  that  these  cause  illegal  paNerns  in  AMI.  The  receiver  detects  this  and  interprets  these  paNerns  as  eight  consecu@ve  zeros.  

Page 19: ECE2305’Lecture’Slides’ - spinlab: The Signal ...spinlab.wpi.edu/courses/ece2305_2014/digital_signaling.pdf · ECE2305’Lecture’Slides ... HDB3 = high-density bipolar—3

High-­‐Density  Bipolar-­‐3  Zeros  (HDB3)  

•  Also  based  on  bipolar-­‐AMI  •  Scrambling  specifics:  

–  Data  is  buffered  to  detect  strings  of  four  consecu@ve  zeros  prior  to  transmission  

–  Subs@tu@on  based  on  polarity  of  preceding  pulse  (P)  and  number  of  ones  transmiNed  since  last  subs@tu@on  (N)  •  000-­‐  if  P=-­‐  and  N=odd  number  •  000+  if  P=+  and  N=odd  number  •  +00+  if  P=-­‐  and  N=even  number  •  -­‐00-­‐  if  P=+  and  N=even  number  

–  As  before,  these  signals  are  illegal  for  bipolar-­‐AMI.  The  receiver  knows  to  interpret  these  paNerns  as  four  consecu@ve  zeros.  

Page 20: ECE2305’Lecture’Slides’ - spinlab: The Signal ...spinlab.wpi.edu/courses/ece2305_2014/digital_signaling.pdf · ECE2305’Lecture’Slides ... HDB3 = high-density bipolar—3

B8ZS  and  HDB3  

Page 21: ECE2305’Lecture’Slides’ - spinlab: The Signal ...spinlab.wpi.edu/courses/ece2305_2014/digital_signaling.pdf · ECE2305’Lecture’Slides ... HDB3 = high-density bipolar—3

Bandwidth picture

Spectrum  Comparison  

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.2 0.4 0.6

NRZ-l,NRZI

B8ZS, HDB3

AMI, pseudoternary

Mea

n sq

uare

vol

tage

per

uni

t ban

dwid

th

Normalized frequency (f/R)

Figure 5.3 Spectral Density of Various Signal Encoding Schemes

AMI = alternate mark inversionB8ZS = bipolar with 8 zeros substitutionHDB3 = high-density bipolar—3 zerosNRZ-L = nonreturn to zero levelNRZI = nonreturn to zero invertedf = frequencyR = data rate

Manchesterdifferential Manchester

0.8 1.0 1.2 1.4 1.6 1.8 2.0

Page 22: ECE2305’Lecture’Slides’ - spinlab: The Signal ...spinlab.wpi.edu/courses/ece2305_2014/digital_signaling.pdf · ECE2305’Lecture’Slides ... HDB3 = high-density bipolar—3

Ethernet  Standards  and  Signaling  Standard   Signaling  

10BASE-­‐T  (copper)   Manchester  coded  

100BASE-­‐TX  (copper)   MLT-­‐3  (three-­‐level  signaling  similar  to  bipolar  AMI)  

100BASE-­‐FX  (fiber)   NRZI  

1000BASE-­‐T  (copper)   5-­‐level  signaling  (PAM-­‐5)  

1000BASE-­‐SX  (fiber)   NRZ