edge tutorial 2000

Upload: asamsulfat

Post on 29-May-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 Edge Tutorial 2000

    1/72

    Enhanced Data-rates for Global

    Evolution (EDGE) :

    An Overview

  • 8/9/2019 Edge Tutorial 2000

    2/72

    Executive Summary

  • 8/9/2019 Edge Tutorial 2000

    3/72

    WIRELESS COMPUTING

    WIRELESS

    GROWTH

    INTERNET

    GROWTH

    RF & DIGITAL

    TECHNOLOGY

    MOBILE

    SOFTWARE

  • 8/9/2019 Edge Tutorial 2000

    4/72

    DRIVERS FOR

    WIRELESS DATA

    1995 2000

    0

    100

    90

    80

    70

    60

    50

    40

    30

    20

    10

    cellular + PCS subs

    Milli

    ons

    annual laptop sales

    laptop users

    Internet users

    USA market

  • 8/9/2019 Edge Tutorial 2000

    5/72

    Wireless Data Terminals

    Nokia 9110 Nokia3G visionSierra PCMCIA

    CDPD ModemThe new

    Ericsson R380

    phone, which

    features wireless

    data functions

  • 8/9/2019 Edge Tutorial 2000

    6/72

    EDGE Technology

    Evolutionary path to 3G services for GSM and TDMA

    operators

    Builds on General Packet Radio Service (GPRS) airinterface and networks

    Phase 1 (Release99 & 2002 deployment) supports best

    effort packet data at speeds up to about 384 kbps

    Phase 2 (Release2000 & 2003 deployment) will add Voice

    over IP capability

  • 8/9/2019 Edge Tutorial 2000

    7/72

    GPRS Airlink

    General Packet Radio Service (GPRS)

    Same GMSK modulation as GSM

    4 channel coding modes Packet-mode supporting up to about 144 kbps

    Flexible time slot allocation (1-8)

    Radio resources shared dynamically between speech and

    data services

    Independent uplink and downlink resource allocation

  • 8/9/2019 Edge Tutorial 2000

    8/72

    EDGE Airlink

    Extends GPRS packet data with adaptive modulation/coding

    2x spectral efficiency of GPRS for best effort data

    8-PSK/GMSK at 271 ksps in 200 KHz RF channels supports

    8.2 to 59.2 kbps per time slot

    Supports peak rates over 384 kbps Requires linear amplifiers with < 3 dB peak to average power

    ratio using linearized GMSK pulses

    Initial deployment with less than 2x 1 MHz using 1/3 reuse

    with EDGE Compact as a complementary data service

  • 8/9/2019 Edge Tutorial 2000

    9/72

    GPRS Networks

    consists of packet wireless access network and IP-based

    backbone

    shares mobility databases with circuit voice services and

    adds new packet switching nodes (SGSN & GGSN)

    will support GPRS, EDGE & WCDMA airlinks

    provides an access to packet data networks

    Internet

    X.25

    provides services to different mobile classes ranging from 1-slot to 8-slot capable

    radio resources shared dynamically between speech and

    data services

  • 8/9/2019 Edge Tutorial 2000

    10/72

    EDGE System Performance

    0

    10

    20

    30

    40

    50

    6070

    80

    90

    100

    0 10 20 30 40 50 60 70

    Probability throughput < = X per timeslot

    X (kb/s)

    26 users/sector at 3.84 kbps average load per user

    010

    20

    30

    40

    50

    6070

    80

    90

    100

    0 1000 2000 3000 4000 5000

    Probability packet delay < = X

    X (msec)

    %%

  • 8/9/2019 Edge Tutorial 2000

    11/72

    EDGE Evolution

    Best effort IP packet data on EDGE

    Voice over IP on EDGE circuit bearers

    Voice over IP with statistical radio resource multiplexing

    Network based intelligent resource assignment

    Smart antennas & adaptive antennas

    Downlink speeds at several Mbps based on wideband

    OFDM and/or multiple virtual channels

  • 8/9/2019 Edge Tutorial 2000

    12/72

    EDGE for 3G Wireless: Outline

    3G Wireless Data Overview

    EDGE history & standards activity

    The EDGE radio link & radio system GPRS/EDGE networks

    EDGE Classic and EDGE Compact

    Technology Roadmap for PerformanceEnhancements

    Conclusions

  • 8/9/2019 Edge Tutorial 2000

    13/72

    3G according to ITU

    The ITU vision of global wireless access in the 21st century,

    including mobile and fixed access, IMT is aimed at providing

    direction to the many related technological developments in

    this area to assist the convergence of these essentially

    competing wireless access technologies..

    3G Proposals

    http://www.itu.int/imt/2-radio-dev/index.html/

  • 8/9/2019 Edge Tutorial 2000

    14/72

    IMT-2000:

    Terrestrial RTT Harmonization

    TD-SCDMAGlobal

    CDMA IUTRAWIMS WCDMA/NA

    Global

    CDMA IIUWC-136W-CDMA DECTcdma2000

    WP-CDMA

    3GPP2

    TDMACDMA

    IMT-2000GOAL

    3GPP

    KoreaUSA USA USAJapanEurope China Europe

  • 8/9/2019 Edge Tutorial 2000

    15/72

    KEY APPLICATIONS

    Current: ~10 kb/s, circuit/packet

    Fax

    Short-messaging

    Being evolved to ~50-100 kb/s peak rate

    Needed to make wireless data attractive:

    Web Browsing - downlink bandwidth hungry

    FTP or Emails with file attachment - both links

    3G: Multimedia, mainly packet

    Wide-area, low mobility, 384 kb/s

    Wide-area, high mobility, 144 kb/s

    Indoor, 2 Mb/s

    Beyond 3G ?

  • 8/9/2019 Edge Tutorial 2000

    16/72

    Radio Technology Evolution

    High Speed Services

    Nominal Rates:

    At least 144 kbps macrocell

    At least 384 kbps outdoor pedestrian

    At least 2 Mbps indoor

    => 1-2 Mbps or higher in macrocell

    Support emerging IP-based services

    Real-time and non real-time

    Optimized for packet-switched operation Support appropriate QoS definitions

    Data and multimedia services

  • 8/9/2019 Edge Tutorial 2000

    17/72

    IMT-2000 Spectrum

    WRC 92

    50+ MHz x 2

    1900 and 2100 MHz

    Prospects Europe - UMTS spectrum similar

    Japan - yes

    Asia - mixed but positive

    US - 1900 spectrum allocated for PCS (requiresspectrum clearing for 3G; WCDMA is not attractive)

    ~30 MHz at 700 MHz to be auctioned

  • 8/9/2019 Edge Tutorial 2000

    18/72

    Technology Evolution to IMT-

    2000 RadioAccess

    GSM

    PDC

    TDMA

    (IS-136)

    CDMA

    (IS-95)

    GSM+GPRS

    TDMA

    IS-136+

    CDMA 3G-1X

    UWC-136 HS

    (EDGE)

    UMTS/W-CDMA

    EDGE/GPRS

    cdma2000

    IMT-2000

    Systems

    Existing

    SpectrumNew

    Spectrum

    ?

    ?

  • 8/9/2019 Edge Tutorial 2000

    19/72

    Current Cellular Approaches

    Cellularcoverage is designed for voice service

    Area outage, e.g. < 10% or < 5%.

    Minimal, but equal, service everywhere.

    Cellularsystems are designed for voice 20 ms framing structure Strong FEC, interleaving and decoding delays.

    Spectral Efficiency

    around 0.04-0.07 bps/Hz/sector

    comparable for TDMA and CDMA

  • 8/9/2019 Edge Tutorial 2000

    20/72

    Data Service Approaches

    Bursty: Circuit => Packet

    Need to widen the data pipe:

    Multi-bearer: multi-slot, multi-code Enhanced TX rate:

    TDMA: Enhanced/adaptive modulation/coding and Incremental

    Redundancy (Generalized Hybrid Type II ARQ) e.g., EDGE

    CDMA: Variable processing gain, e.g., WCDMA

    New systems, e.g., OFDM with dynamic packet assignment

  • 8/9/2019 Edge Tutorial 2000

    21/72

    EDGE for 3G Wireless: Outline

    3G Wireless Data Overview

    EDGE history & standards activity

    The EDGE radio link & radio system GPRS/EDGE networks

    EDGE Classic and EDGE Compact

    Technology Roadmap for PerformanceEnhancements

    Conclusions

  • 8/9/2019 Edge Tutorial 2000

    22/72

    GPRS-136 HS

    UWCC sets high speed packet data

    requirements (Jan 98)

    must support 384kbps packet data

    must be deployed within 1 MHz High spectrum efficiency

    economy of scale

    Results: GPRS-136HS EDGE

  • 8/9/2019 Edge Tutorial 2000

    23/72

    History

    In June of 1998 UWCC decided to create a

    standard for TDMA Packet Data based on

    the GPRS technology

    This gave the benefit in economies of scalefor development and production of both

    mobile stations and network infrastructure

  • 8/9/2019 Edge Tutorial 2000

    24/72

    History...

    Another benefit of this choice was that the existingGPRS standard could be use as a baseline,allowing for a standard that could be developed

    very quickly The decision was connected to the decision toutilize the EDGE structure for the 136HS outdoorcomponent of the UWC-136 3G RTT proposal toITU

    The use of EDGE channels for TDMA packet datawill be standardized during 1999 and is calledGPRS-136HS

  • 8/9/2019 Edge Tutorial 2000

    25/72

    GPRS-136HS

    UWCC has developed an RTT candidate for IMT-

    2000 called UWC-136

    UWC-136 outdoor component allows for a user bit

    rate of 384 kbps and an initial deployment that doesnot require clearance of more than 1 MHz of

    spectrum

    The work to develop this standard will be done in

    the UWCC/GTF/PDFG and TIA TR-45.3 and will beusing the physical layer and the RLC/MAC layers

    from EDGE

  • 8/9/2019 Edge Tutorial 2000

    26/72

    Global TDMA Convergence

    UWC-136 GSM

    Global EDGE

    UWCC

    PDFG

    EDGE

    Compact

    ETSISMG2

    EDGE

    Classic

  • 8/9/2019 Edge Tutorial 2000

    27/72

    GSMNetwork

    ANSI-136Network

    ANSI-136 GSM

    IW MAPIW MAPIWIW ANSI-41ANSI-41

    EGPRSEGPRS

    UWC-136/EDGEUWC-136/EDGE

    TCP/IP

    Network

    Mobility Gateway

    Global TDMA Convergence

  • 8/9/2019 Edge Tutorial 2000

    28/72

    EDGE for 3G Wireless: Outline

    3G Wireless Data Overview

    EDGE history & standards activity

    The EDGE radio link & radio system GPRS/EDGE networks

    EDGE Classic and EDGE Compact

    Technology Roadmap for PerformanceEnhancements

    Conclusions

  • 8/9/2019 Edge Tutorial 2000

    29/72

    EDGE modulations

  • 8/9/2019 Edge Tutorial 2000

    30/72

    Multi-mode radio link

    Scheme Modulation Maximum

    rate [kb/s]

    Code Rate Header Code

    Rate

    Blocks

    per 20 ms

    Family

    MCS-9 59.2 1.0 0.36 2 A

    MCS-8 54.4 0.92 0.36 2 A

    MCS-7 44.8 0.76 0.36 2 B

    MCS-6 29.6 / 27.2 0.49 1/3 1 A

    MCS-5

    8PSK

    22.4 0.37 1/3 1 B

    MCS-4 17.6 1.0 0.53 1 C

    MCS-3 14.8 / 13.6 0.80 0.53 1 A

    MCS-2 11.2 0.66 0.53 1 B

    MCS-1

    GMSK

    8.8 0.53 0.53 1 C

  • 8/9/2019 Edge Tutorial 2000

    31/72

  • 8/9/2019 Edge Tutorial 2000

    32/72

    Example: Family A

    Coding and puncturing for MCS-9; uncoded 8PSK,two RLC

    blocks per 20 ms

    P2 P3P1 P2

    puncturingpuncturing

    1836 bits

    USFRLC/MAC

    Hdr.

    36 bits

    Rate 1/3 convolutional coding

    135 bits

    612 bits

    612 bits124 bits36 bitsSB = 8

    1392 bits

    45 bits

    Data = 592 bits BCS TB

    612 bits

    612 b its 612 b its

    1836 bits

    Rate 1/3 convolutional coding

    EFBIData = 592 bits BCS TBEFBI

    612 bits 612 bits 612 bits

    P3 P1

    3 bits

    HCS

    puncturing

  • 8/9/2019 Edge Tutorial 2000

    33/72

    Example: Family A...

    Coding and puncturing for MCS-6; rate 0.49 8PSK,

    one RLC block per 20 ms

    P2P1

    puncturing

    1836 bits

    USFRLC/MAC

    Hdr.Data = 74 octets = 592 bits BCS

    36 bits

    Rate 1/3 convolutional coding

    99 bits

    612 bits

    1248 bits100 bits36 bitsSB = 8

    1392 bits

    33 bits

    TBFBI EHCS

    3 bits

    1248 bits

    +1 bit

  • 8/9/2019 Edge Tutorial 2000

    34/72

    Example: Family A...

    Coding and puncturing for MCS-3; rate 0.80 GMSK,

    one RLC block per 20 ms

    P1 P3P2

    puncturing

    948 bits

    USFRLC/MAC

    Hdr.Data = 37 octets = 296 bits BCS

    12 bits

    Rate 1/3 convolutional coding

    108 bits

    316 bits

    372 bits68 bits12 bitsSB = 12

    464 bits

    36 bits

    TBFBI EHCS

    3 bits

    372 bits 372 bits

    puncturing

  • 8/9/2019 Edge Tutorial 2000

    35/72

    EDGE Link Throughput

    9

    GMSK

    8-PSK

    MCS-1

    MCS-9

    8-PSK

    GMSK

  • 8/9/2019 Edge Tutorial 2000

    36/72

    0

    5 0

    1 0 0

    1 5 0

    2 0 0

    2 5 0

    3 0 0

    9 1 8 2 7 3 6 4 5

    s ing le -s lo t

    Mult i - s lo t

    Average User Throughput (kb/s)

    Multi-slot Gain

    Ave. # of users per sector

  • 8/9/2019 Edge Tutorial 2000

    37/72

    Incremental Redundancy(IR)

    Send redundancy only ifnecessary

    Generalized Type-II ARQ

    Finer granularity of code rate Example Data Parity

    Rate 11st attempt

    Rate 1/22nd attempt

    Rate 1/33rd attempt

    Transmitter

    Receiver

  • 8/9/2019 Edge Tutorial 2000

    38/72

    State Diagram for IR

    DataBlock

    ErrorDetection

    ARQ

    Error

    Detection

    Accept data

    block

    Block

    in error

    No error

    Initial data

    transmission

    Block

    in error

    Transmit

    parity or

    data sub-block

    No error

    Deliver to upper layer

  • 8/9/2019 Edge Tutorial 2000

    39/72

    IR Gain

    Avg..

    throughput

    vs..

    Loading

  • 8/9/2019 Edge Tutorial 2000

    40/72

    EDGE for 3G Wireless:

    Outline

    3G Wireless Data Overview

    EDGE history & standards activity

    The EDGE radio link & radio system GPRS/EDGE networks

    EDGE Classic and EDGE Compact

    Technology Roadmap for PerformanceEnhancements

    Conclusions

  • 8/9/2019 Edge Tutorial 2000

    41/72

    Network Architecture Example

    GPRSGPRS+

    IPX.25new

    protocol ?

    GSMGPRSEDGE

    WCDMA

    Wireless AccessNetwork

    CoreNetwork

    (IP based)

    Packet DataNetwork

  • 8/9/2019 Edge Tutorial 2000

    42/72

    Deployment Scenario

    GPRSbackbone

    SGSNGGSN

    GGSN

    BG

    PublicInternet

    Backbone

    router

    routerserver

    router

    SGSN

    Edge

    Edge

    GPRSbackbone

    GGSN

    GGSNBG

    SGSN

    WCDMA

    Inter-operator

    GPRS

  • 8/9/2019 Edge Tutorial 2000

    43/72

    GPRS-136 Architecture

    Gf GiGn

    Gb'

    C-D

    Gp

    Gs'

    Signalling and Data Transfer Interface

    Signalling Interface

    TE MT BS TEPDN

    R Um'

    GrGPRS

    HLR

    Other PLMN

    SGSN

    GGSN

    ANSI-41

    HLR/AC

    GGSN

    EIR

    SGSN

    Gn

    ANSI-41

    Serving

    MSC/VLR

    ANSI-41

    Gateway-

    MSC/VLR

    E

    ANSI-41

    MC/OTAF

    N

    SME

    MQ

    C-D

    Gc

  • 8/9/2019 Edge Tutorial 2000

    44/72

    Relay

    NetworkService

    GTP

    ApplicationIP / X.25

    SNDCP

    LLC

    RLC

    MAC

    GSM RF

    SNDCP

    LLC

    BSSGP

    L1bis

    RLC

    MAC

    GSM RF

    BSSGP

    L1bis

    Relay

    L2

    L1

    IP

    L2

    L1

    IP

    GTP

    IP / X.25

    Um Gb Gn GiMS BSS SGSN GGSN

    NetworkService

    UDP /TCP

    UDP /TCP

    GTP GPRS TunnelingProtocolSNDCP Sub-network Dependent Convergence ProtocolBSSGP Base Station System GPRS ProtocolLLC Logical Link ControlRLC Radio Link Control

    Protocol Stack:Transmission Plane

  • 8/9/2019 Edge Tutorial 2000

    45/72

    GSM Architecture

  • 8/9/2019 Edge Tutorial 2000

    46/72

    E l f k t

  • 8/9/2019 Edge Tutorial 2000

    47/72

    Example for packet

    routing in GPRS

    E l f GPRS I t t

  • 8/9/2019 Edge Tutorial 2000

    48/72

    Example of GPRS Internet

    Connection

  • 8/9/2019 Edge Tutorial 2000

    49/72

    EDGE for 3G Wireless: Outline

    3G Wireless Data Overview

    EDGE history & standards activity

    The EDGE radio link & radio system GPRS/EDGE networks

    EDGE Classic and EDGE Compact

    Technology Roadmap for PerformanceEnhancements

    Conclusions

  • 8/9/2019 Edge Tutorial 2000

    50/72

    Compact versus Classic

    Fundamental difference is the frequency reuse and

    minimum startup spectrum: Compact (1/3 and 2x 600 kHz)

    and for Classic (4/12 and 2x 2.4 MHz)

    Classic is specified by ETSI SMG2

    Compact is specified by the PDFG of the UWCC Compact achieves 4/12 reuse on control channels by

    combining 4/4 time reuse with 1/3 space reuse

    Compact achieves 2x spectral efficiency of Classic on

    traffic channels by combining 1/3 reuse with partial

    loading

  • 8/9/2019 Edge Tutorial 2000

    51/72

  • 8/9/2019 Edge Tutorial 2000

    52/72

    1/3 Frequency Re-use

  • 8/9/2019 Edge Tutorial 2000

    53/72

    1/3 Frequency Re-use

    (EDGE Compact)

    3 x 200 kHz carrier, reused in every site

  • 8/9/2019 Edge Tutorial 2000

    54/72

    Control Channels for Compact

    F2

    Time

    Group 3

    F1

    Time

    Group 4

    F1

    Time

    Group 1

    F3Time

    Group 3

    F2

    Time

    Group 2

    F1Time

    Group 2

    F3

    Time

    Group 4

    F2

    Time

    Group 1F3

    Time

    Group 2

    F2

    Time

    Group 4

    F1

    Time

    Group 3

    F3Time

    Group 1

    F3

    Time

    Group 2

    F2

    Time

    Group 4

    F1

    Time

    Group 3

    F3Time

    Group 1

    F2

    Time

    Group 3

    F1Time

    Group 4

    F3

    Time

    Group 2

    F1

    Time

    Group 2

    F1Time

    Group 4

    F3

    Time

    Group 2

    F2

    Time

    Group 3

    F1

    Time

    Group 4

    F1

    Time

    Group 2

    F3

    Time

    Group 4

    F2

    Time

    Group 1

    F3

    Time

    Group 3

    F2

    Time

    Group 4F3

    Time

    Group 1

    F2

    Time

    Group 2

    F2

    Time

    Group 1

    F3

    Time

    Group 3

    F2

    Time

    Group 2

    F3

    Time

    Group 4

    4/99,UWCC.GTF.PDFG: agreed on a time-reusesolution to provide control channels with good reliability

  • 8/9/2019 Edge Tutorial 2000

    55/72

  • 8/9/2019 Edge Tutorial 2000

    56/72

    Compact Prerequisites

    Base Station Frame Synchronization - so that all

    base stations can be switched on/off synchronously

    to achieve reuse in time

    Modified air-interface protocols - to be able to

    handle the resulting discontinuous nature of

    transmissions

  • 8/9/2019 Edge Tutorial 2000

    57/72

    Control/Traffic Channel

    Reuse for Compact

    Reuse for control and reuse for traffic channels are

    independent of each other

    The actual reuse employed - for traffic or control - is operator

    controlled and limited only by the available spectrum Typically, 4/12 is used for control and 1/3 for traffic.

    However, other combinations are also possible subject to

    performance requirements, environment and spectrum

    availability.

  • 8/9/2019 Edge Tutorial 2000

    58/72

    010

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0 10 20 30 40 50 60 70 80 90 100

    3/9 reuse

    4/12 reuse

    Prob. (BLER > =X) (%)

    X

    (%)

    Control Channel Performance

  • 8/9/2019 Edge Tutorial 2000

    59/72

    EDGE for 3G Wireless: Outline

    3G Wireless Data Overview

    EDGE history & standards activity

    The EDGE radio link & radio system

    GPRS/EDGE networks

    EDGE Classic and EDGE Compact

    Technology Roadmap for PerformanceEnhancements

    Conclusions

  • 8/9/2019 Edge Tutorial 2000

    60/72

    Performance Enhancements for EDGE

    Link Improvement:

    Terminal diversity and interference suppression

    Base smart antennas

    Base and terminal diversity: MIMO Transmit diversity: e.g., S-T codes

    Medium Access Control:

    Mode 0

    Time-slot management (Dynamic Packet Assignment)

  • 8/9/2019 Edge Tutorial 2000

    61/72

    Improvement by Terminal Diversity and

  • 8/9/2019 Edge Tutorial 2000

    62/72

    0

    1 0

    2 0

    3 0

    4 0

    5 0

    6 0

    7 0

    8 0

    9 0

    1 0 0

    0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0

    Bps/Hz/site (%)

    Ave. # of users per sector

    0

    2000

    4000

    6000

    8000

    10000

    100 200 300 400 500

    Ave. User Packet Delay (msec)

    Throughput per site (kb/s)

    Improvement by Terminal Diversity and

    Interference Suppression for Compact: System

    Implication

    Improvement by Downlink Smart Antenna

  • 8/9/2019 Edge Tutorial 2000

    63/72

    p o e e t by o S a t te a

    for Compact: User Experience

    010

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0 10 20 30 40 50 60 70

    Baseline

    Smart Antenna

    Prob. (throughput

  • 8/9/2019 Edge Tutorial 2000

    64/72

    0

    1 0

    2 0

    3 0

    4 0

    5 0

    6 0

    7 0

    8 0

    9 0

    1 0 0

    0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0

    Bps/Hz/site (%)

    Ave. # of users per sector

    0

    2000

    4000

    6000

    8000

    10000

    100 200 300 400 500

    Ave. User Packet Delay (msec)

    Throughput per site (kb/s)

    Improvement by Downlink Smart Antenna for

    Compact: System Implication

    4 beams/sector; fixed

  • 8/9/2019 Edge Tutorial 2000

    65/72

    Mode 0

    No transmission mode: Mode 0 Delay assigning resource to a user if its channel quality is not

    good

    Cutoff Threshold to delay transmissions

    Features Reduce unnecessary retransmissions

    Control traffic load

    Improve spectrum efficiency

  • 8/9/2019 Edge Tutorial 2000

    66/72

    Improvement by Mode-0for Compact:

    User Experience

    010

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0 10 20 30 40 50 60 70

    w/o Mode-0

    with Mode-0

    Prob. (throughput

  • 8/9/2019 Edge Tutorial 2000

    67/72

    Improvement by Mode-0:

    System Implication

    Bps/Hz/site (%)

    Ave. # of users per sector

    0

    2000

    4000

    6000

    8000

    10000

    100 200 300 400 500

    Without Mode-0

    With Mode-0

    Ave. User Packet Delay (msec)

    Throughput per site (kb/s)

    Interference Management

  • 8/9/2019 Edge Tutorial 2000

    68/72

    Synch CDMA

    Dynamic Power Channel Allocation Algor 1

    Dynamic Power Channel Allocation Algor 2

    Dynamic Channel Allocation Algor 1

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    5 7.5 10 12.5 15

    SNR (dB)

    Efficie

    ncy

    Results are from G. J. Pottie, System Design Choices in Personal Communications,

    IEEE Personal Communications Magazine, Oct. 1995, Vol. 2, No. 5, pp. 50-67.

    g

    (Averaging vs. Avoidance)

    Efficiency: IS-136 4%; IS-95 4 to 7%; GSM 4%(3 Sectors/cell)

    TDMA with Dynamic Assignment

    can achieve better efficiency than CDMA!

    Measurement Based

  • 8/9/2019 Edge Tutorial 2000

    69/72

    Measurement-Based

    Dynamic Packet Assignment

    RPA: random packet

    assignment

    LI-DPA: least interference

    based dynamic packet

    assignment

    15%-30% gain in capacity

    Implementation requirements

    SINR measurements at

    terminal

    Low latency signaling

    channel over the air

    240 320280

  • 8/9/2019 Edge Tutorial 2000

    70/72

    EDGE for 3G Wireless: Outline

    3G Wireless Data Overview

    EDGE history & standards activity

    The EDGE radio link & radio system

    GPRS/EDGE networks

    EDGE Classic and EDGE Compact

    Technology Roadmap for PerformanceEnhancements

    Conclusions

    C l i

  • 8/9/2019 Edge Tutorial 2000

    71/72

    Conclusions

    EDGE is a 3G technology offering a common migration

    path and convergence for GSM and TDMA operators

    EDGE Compact can be deployed with < 2x 1 MHz of

    spectrum

    EDGE supports IP packet data at peak rates > 384 kbps Voice over IP is planned for EDGE R2000 standards

  • 8/9/2019 Edge Tutorial 2000

    72/72

    Conclusions, cont.

    Link adaptation and Incremental Redundancy improve wireless datathroughput

    High rates @ good SIR, smoothly adapting to low rates

    Less redundancy transmitted if not needed

    Tight reuse (1/3) improves spectrum efficiency

    Soft capacity with partial loading Also good for initial startup with small spectrum

    Uses time reuse with synchronized base stations to address common

    control channel performance issues

    Possible Enhancements:

    PHY: Diversity & Interference Suppression, smart antennas, MIMO... MAC: Intelligent channel assignment