ee141-fall 2012 digital integrated...

12
EE141 1 EE141 EECS141 1 Lecture #17 EE141-Fall 2012 Digital Integrated Circuits Lecture 17 CMOS Scaling EE141 EECS141 2 Lecture #17 Announcements Homework #7 due today Project #1 out today, due next Thurs. Midterm 2 two weeks from today Let us know ASAP if you still don’t have a project partner

Upload: others

Post on 01-Apr-2021

18 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: EE141-Fall 2012 Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f12/... · 2012. 10. 19. · EE141 1 EECS141EE141 Lecture #17 1 EE141-Fall 2012 Digital Integrated

EE141

1

EE141EECS141 1Lecture #17

EE141-Fall 2012Digital Integrated Circuits

Lecture 17CMOS Scaling

EE141EECS141 2Lecture #17

Announcements

Homework #7 due today Project #1 out today, due next Thurs.

Midterm 2 two weeks from today

Let us know ASAP if you still don’t have a project partner

Page 2: EE141-Fall 2012 Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f12/... · 2012. 10. 19. · EE141 1 EECS141EE141 Lecture #17 1 EE141-Fall 2012 Digital Integrated

EE141

2

EE141EECS141 3Lecture #17

CMOS Transistor Scaling

EE141EECS141 4Lecture #17

Goals of Technology Scaling

Make things cheaper: Want to sell more functions (transistors)

per chip for the same money

Or build same products cheaper

Price of a transistor has to be reduced

But also want to be faster, smaller, lower power…

Page 3: EE141-Fall 2012 Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f12/... · 2012. 10. 19. · EE141 1 EECS141EE141 Lecture #17 1 EE141-Fall 2012 Digital Integrated

EE141

3

EE141EECS141 5Lecture #17

Technology Scaling

Benefits of 30% “Dennard” scaling (1974): Double transistor density

Reduce gate delay by 30% (increase operating frequency by 43%)

Reduce energy per transition by 65% (50% power savings @ 43% increase in frequency)

Die size used to increase by 14% per generation (not any more)

Technology generation spans 2-3 years

EE141EECS141 6Lecture #17

Technology Scaling Models

• Full Scaling (Constant Electrical Field)

• Fixed Voltage Scaling

• General Scaling

ideal model — dimensions and voltages scaletogether by the same factor S

most common model until 1990’sonly dimensions scale, voltages remain constant

most realistic for today’s situation —voltages and dimensions scale with different factors

Page 4: EE141-Fall 2012 Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f12/... · 2012. 10. 19. · EE141 1 EECS141EE141 Lecture #17 1 EE141-Fall 2012 Digital Integrated

EE141

4

EE141EECS141 7Lecture #17

ScalingL

x

LD

L/S

x/S

LD/S

L

W

L/S

W/S

EE141EECS141 8Lecture #17

Full Scaling (Dennard, Long-Channel)

W, L, tox: 1/S

VDD, VT: 1/S

Area: WL

Cox: 1/tox

CL: CoxWL

ID: Cox(W/L)(VDD-VT)2

Req: VDD/IDSAT

Page 5: EE141-Fall 2012 Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f12/... · 2012. 10. 19. · EE141 1 EECS141EE141 Lecture #17 1 EE141-Fall 2012 Digital Integrated

EE141

5

EE141EECS141 9Lecture #17

Full Scaling (Dennard, Long-Channel)

W, L, tox: 1/S

VDD, VT: 1/S

tp: ReqCL

Pavg: CLVDD2/tp

Pavg/A: CoxVDD2/tp

EE141EECS141 10Lecture #17

Scaling Relationships for Long Channel Devices

Page 6: EE141-Fall 2012 Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f12/... · 2012. 10. 19. · EE141 1 EECS141EE141 Lecture #17 1 EE141-Fall 2012 Digital Integrated

EE141

6

EE141EECS141 11Lecture #17

Full Scaling (Dennard, Short-Channel)

W, L, tox: 1/S

VDD, VT: 1/S

Area: WL

Cox: 1/tox

CL: CoxWL

ID: WCoxvsat(VDD-VT)2/(VDD-VT-EcritL)

Req: VDD/IDSAT

EE141EECS141 12Lecture #17

Full Scaling (Dennard, Short-Channel)

W, L, tox: 1/S

VDD, VT: 1/S

tp: ReqCL

Pavg: CLVDD2/tp

Pavg/A: CoxVDD2/tp

Page 7: EE141-Fall 2012 Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f12/... · 2012. 10. 19. · EE141 1 EECS141EE141 Lecture #17 1 EE141-Fall 2012 Digital Integrated

EE141

7

EE141EECS141 13Lecture #17

Transistor Scaling(Velocity-Saturated Devices)

EE141EECS141 14Lecture #17

Interconnect Scaling

Page 8: EE141-Fall 2012 Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f12/... · 2012. 10. 19. · EE141 1 EECS141EE141 Lecture #17 1 EE141-Fall 2012 Digital Integrated

EE141

8

EE141EECS141 15Lecture #17

Interconnect Length Distribution

From Magen et al., “Interconnect Power Dissipation in a Microprocessor”

SLocal = STechnology

SGlobal = SDie

EE141EECS141 16Lecture #17

Resistance Scaling (local)

W

L

H

Scale W, H, and L:

Rw = ρL/(WH)

Rw α (1/S) / [(1/S) (1/S)]

Rw α S

(R/□ α S)

Page 9: EE141-Fall 2012 Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f12/... · 2012. 10. 19. · EE141 1 EECS141EE141 Lecture #17 1 EE141-Fall 2012 Digital Integrated

EE141

9

EE141EECS141 17Lecture #17

Resistance Scaling (global)

W

L

H

Scale W, H, constant L:

Rw = ρL/(WH)

Rw α 1/[(1/S) (1/S)]

Rw α S2

EE141EECS141 18Lecture #17

Local Wire Scaling (Scenario 1)

Cpp α WL/H Cpp’ α 1/SCfringe α ~L Cfringe’α 1/SRw α L/(WT) Rw’α Stpwire α RwCw tpwire’ const.

Bad news: gates speed up by S…

Page 10: EE141-Fall 2012 Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f12/... · 2012. 10. 19. · EE141 1 EECS141EE141 Lecture #17 1 EE141-Fall 2012 Digital Integrated

EE141

10

EE141EECS141 19Lecture #17

Local Wire Scaling (Scenario 2)

Cpp α WL/H Cpp’ α 1/SCfringe α ~L Cfringe’α 1/SRw α L/(WT) Rw’ const.tpwire α RwCw tpwire’ α 1/S

Better (wire RC tracks inverters), but…

EE141EECS141 20Lecture #17

Scenario 2: Intralayer Capacitance

Cpp,side α LT/D Cpp,side’ const.

• Cpp,side/Length increases Crosstalk, coupling issues get worse

• Aspect ratio limited – eventually have to scale T• Different metal layers have different T

W

L

D W/S

L/S

D/S

Page 11: EE141-Fall 2012 Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f12/... · 2012. 10. 19. · EE141 1 EECS141EE141 Lecture #17 1 EE141-Fall 2012 Digital Integrated

EE141

11

EE141EECS141 21Lecture #17

Global Wire Scaling (Scenario 2)

Cpp α WL/H Cpp’ constCfringe α ~L Cfringe’ ~constRw α L/(WT) Rw’ α Stpwire α RwCw tpwire’ α S

Very bad: wire delay S2 worse than gates

EE141EECS141 22Lecture #17

Modern Interconnect

90nm process

Page 12: EE141-Fall 2012 Digital Integrated Circuitsbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f12/... · 2012. 10. 19. · EE141 1 EECS141EE141 Lecture #17 1 EE141-Fall 2012 Digital Integrated

EE141

12

EE141EECS141 23Lecture #17

Next Lecture

Ratioed and Pass Transistor Logic