ee147 247a optical mems 2016 s - eecs at uc berkeleypister/147fa16/... · 2016. 11. 9. · wu-2...

24
Wu-1 EE 147 / 247A Guest Lecture: Optical MEMS Ming C. Wu University of California, Berkeley Electrical Engineering & Computer Sciences Dept. & Berkeley Sensor and Actuator Center (BSAC)

Upload: others

Post on 04-Feb-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

  • Wu-1

    EE  147  /  247A  Guest  Lecture:Optical  MEMS

    Ming  C.  Wu

    University  of  California,  Berkeley

    Electrical  Engineering  &  Computer  Sciences  Dept.&  Berkeley  Sensor  and  Actuator  Center  (BSAC)

  • Wu-2

    Optical  MEMS

    • MEMS  are  well-suited  for  interaction  with  light– Structural  dimensions  ~  wavelength– Small  displacement  has  large  effect (e.g.,  ON-OFF  switching)

    • Interferometric devices  :    Dd ~  0.25  l• Scanning  devices  :  Dq ~  a  few  degrees

    – Photon  has  no  mass• Does  not  need  large-force  actuators

    – MEMS  enables  large-scale  systems• E.g.,  1000x1000  display  or  optical  switches

  • Wu-3

    Texas  Instruments  Digital  Micromirror  Devices  (DMD)

    ~  1  million  DMD’s  on  a  chiphttp://www.dlp.com/dlp/resources/dmmd.asp

    “25  Microchips  That  Shook  the  World”  IEEE  Spectrum,  May  2009

  • Wu-4

    Grating  Light  Valve  (GLV)

  • Wu-5

    Qualcomm  MEMS’  Interferometric Modulator  (iMOD)

    http://www.qualcomm.com/qmt/

    • Reflection  display  based  on  MEMS  interferometric modulator  (iMOD)• Similar  to  Fabry-Perot  etalon,  Fast  response  (10s  microseconds)• Manufactured  in  FPD  fab lines

  • Wu-6

    Pixtronix Digital  MEMS  Shutter(PerfectLight)

    http://www.pixtronix.com/technology/index.asp

    • Same  backlight  unit  as  LCD• MEMS  on  glass  substrate  with  TFT  circuits

    • Leverage  on  LCD  manufacturing• Time  multiplexed  3-color  LED• Low  temperature  process

    Digital  Micro  Shutter  (DMS)

    • 105%  NTSC  color  gamut,  • 24  bit  color  depth,  • 170° viewing  angle  • Backlight  efficiency  =  60%• High  contrast  (1000:1)

  • Wu-7

    LIDAR

  • Wu-8

    Optical  Phased  Array  using  Digital  Micromirrors

    L  x  W  x  H  =16  cm  x  9  cm  x  8  cm

    In  collaboration  with  Texas  Instruments

  • Wu-9

    3D  Imaging:  Kinect

  • Wu-10

    Glass

  • Wu-11

    Google  Cardboard

  • Wu-12

    Basic  Optics  for  Virtual  Reality  Display

  • Wu-13

    Optofluidics

    • Tutorials  on  Microfluidics

    • Tunable  lens  (zoom  lens)

    • Display– Electrowetting,  E-ink

    • Optical  manipulation– Optical  tweezers– Optoelectronic  tweezers– Near  field  trapping  (plasmonic tweezers,  slot  waveguide)

    • Zero  mode  waveguide  for  single  molecule  analysis– Next  Gen  sequencing

    • Optofluidic microscope

    • Bubble  switch

  • Wu-14

    E-Ink  Electronic  Paper  Display  (EPD)

    www.eink.com

    Portable  Reader

    (600x800,  167  ppi)

    Flexible  Wall  Clock

    Amazon  Kindle

    Citizen

  • Wu-15

    Electrofluidic Display

    HeikenfeldJ,  ZhouK,  KreitE,  RajB,  YangS,  SunB,  MilarcikA,  ClappL,  and  SchwartzR,  "Electrofluidic displays  using  Young-Laplace  transposition  of  brilliant  pigment  dispersions,"  Nat  Photon,  vol.  3,  pp.  292-296,  2009.

    Pigment  Droplet

    Self-Assembly  of  Pigment  Liquid

  • Wu-16

    Zero  Mode  Waveguide  for  Single  Molecule  Analysis

  • Wu-17

    Optoelectronic  Tweezers

    P.Y.  Chiou,  A.T.  Ohta,  M.C.  Wu,  Nature, 2005

    Optical  Conveyor  Belt

    • Programmable:  Trapping  and  manipulation  using  a  digital  projector

    • 10,000x  lower  power  than  conventional  optical  tweezers

    • Massively  parallel:  30,000  individually  controlled  traps

  • Wu-18

    Digital  Micromirrors

  • 19DLP  Pico  Development  Kit  Info,  May  27,  2009

    DLP® Chip  – Micromirrors

    DLP  slides  courtesy  ofDr.  Larry  Hornbeck  (TI)

  • Wu-20

    History  of  DMD

    http://www.dlp.com/technology/dlp-history/default.aspx

  • Wu-21

    Digital  Micromirror  Device  (DMD)Texas  Instruments

    Top  View  of  DMD

    L.  Hornbeck,  Electronic  Imaging,  1997

  • Wu-22

    Grey  Scale  of  DMD  Projector:Pulsewidth  Modulation  Technique

    L.  Hornbeck,  Electronic  Imaging,  1997

  • Wu-23

    Projection  Display  UsingDigital  Micromirror  Display  (DMD)

  • Wu-24

    References

    • L.  J.  Hornbeck,  “Combining  Digital  Optical  MEMS,  CMOS  and  Algorithms  for  Unique  Display  Solutions,”  in  Electron  Devices  Meeting,  2007.  IEDM  2007.  IEEE  International,  2007,  pp.  17–24.

    • D.  Dudley,  W.  M.  Duncan,  and  J.  Slaughter,  “Emerging  digital  micromirror device  (DMD)  applications,”  2003,  vol.  4985,  pp.  14–25.

    • P.  F.  van  Kessel,  L.  J.  Hornbeck,  R.  E.  Meier,  and  M.  R.  Douglass,  “A  MEMS-based  projection  display,”  Proceedings  of  the  IEEE,  vol.  86,  no.  8,  pp.  1687–1704,  1998.

    • L.  J.  Hornbeck,  “Digital  Light  Processing  for  high-brightness  high-resolution  applications,”  1997,  vol.  3013,  pp.  27–40.

    • L.  J.  Hornbeck,  “Multi-level  deformable  mirror  device,”  508385728-Jan-1992.

    • L.  J.  Hornbeck,  “Deformable-Mirror  Spatial  Light  Modulators,”  1990,  vol.  1150,  pp.  86–103.

    • http://www.dlp.com/