ee247 lecture 10 - university of california,...

38
EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 1 EE247 Lecture 10 • Switched-capacitor filters – Effect of non-idealities (continued) – Switched-capacitor filters utilizing double sampling technique • Data converters – Areas of application – Data converter transfer characteristics – Sampling, aliasing, reconstruction – Amplitude quantization EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 2 Effect of Opamp Nonidealities on Switched Capacitor Filter Behaviour • Opamp finite gain • Opamp finite bandwidth • Sources of distortion – Finite slew rate of the opamp – Non-linearity associated with opamp output/input characteristics – Capacitor non-linearity- usually insignificant, similar to cont. time filters – Charge injection & clock feedthrough (will be covered in the oversampling data converter section)

Upload: others

Post on 30-May-2020

26 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: EE247 Lecture 10 - University of California, Berkeleyinst.eecs.berkeley.edu/~ee247/fa09/files07/lectures/L10_2_f09.pdf · EE247 Lecture 10 • Switched-capacitor filters –Effect

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 1

EE247Lecture 10

• Switched-capacitor filters– Effect of non-idealities (continued)– Switched-capacitor filters utilizing double sampling

technique

• Data converters– Areas of application– Data converter transfer characteristics– Sampling, aliasing, reconstruction– Amplitude quantization

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 2

Effect of Opamp Nonidealities on Switched Capacitor Filter Behaviour

• Opamp finite gain

• Opamp finite bandwidth

• Sources of distortion

– Finite slew rate of the opamp

– Non-linearity associated with opamp output/input characteristics

– Capacitor non-linearity- usually insignificant, similar to cont. time filters

– Charge injection & clock feedthrough (will be covered in the oversampling data converter section)

Page 2: EE247 Lecture 10 - University of California, Berkeleyinst.eecs.berkeley.edu/~ee247/fa09/files07/lectures/L10_2_f09.pdf · EE247 Lecture 10 • Switched-capacitor filters –Effect

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 3

Effect of Opamp Non-IdealitiesFinite DC Gain

Input/Output z-transformVi+

Cs-

+ Vo

CIφ1 φ2

Vi-DC Gain = a

sI s 1

I

1

Cs C C

s C a

o

o a

int g

1H( s ) f

s f

H( s )s

Q a

ωω

≈ −+ ×

−≈

+ ×

⇒ ≈

• Finite DC gain same effect in S.C. filters as for C.T. filters• If DC gain not high enough lowing of overall Q & droop in passband

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 4

Effect of Opamp Non-IdealitiesFinite Opamp Bandwidth

Input/Output z-transformVi+

Cs-

+ Vo

CIφ1 φ2

Vi-Unity-gain-freq.

= ft

Ref: K.Martin, A. Sedra, “Effect of the Opamp Finite Gain & Bandwidth on the Performance of Switched-Capacitor Filters," IEEE Trans. Circuits Syst., vol. CAS-28, no. 8, pp. 822-829, Aug 1981.

Assumption-Opamp does not slew (will be revisited)Opamp has only one pole only exponential settling

Vo

φ2

T=1/fs

settlingerror

time

Page 3: EE247 Lecture 10 - University of California, Berkeleyinst.eecs.berkeley.edu/~ee247/fa09/files07/lectures/L10_2_f09.pdf · EE247 Lecture 10 • Switched-capacitor filters –Effect

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 5

Effect of Opamp Non-IdealitiesFinite Opamp Bandwidth

actual idealIk k 1

I s

I t

I s s

t s

C1 e e ZH ( Z ) H ( Z )

C CC f

where kC C f

f Opamp unity gain frequency , f Clock frequency

π

− − −⎡ ⎤− + ×≈ ⎢ ⎥+⎣ ⎦

= × ×+

→ − − →

Ref: K.Martin, A. Sedra, “Effect of the Opamp Finite Gain & Bandwidth on the Performance of Switched-Capacitor Filters," IEEE Trans. Circuits Syst., vol. CAS-28, no. 8, pp. 822-829, Aug 1981.

Input/Output z-transformVi+

Cs-

+ Vo

CIφ1 φ2

Vi-Unity-gain-freq.

= ft

Vo

φ2

T=1/fs

settlingerror

time

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 6

Opamp Bandwidth Requirements for Switched-Capacitor Filters Compared to Continuous-Time Filters

• Finite opamp bandwidth causes phase lag at the unity-gain frequency of the integrator for both type filters

Results in negative intg. Q & thus increases overall Q and gain @ results in peaking in the passband of interest

• For given filter requirements, opamp bandwidth requirements muchless stringent for S.C. filters compared to cont. time filters

Lower power dissipation for S.C. filters (at low freq.s only due to other effects)

• Finite opamp bandwidth causes down shifting of critical frequencies in both type filters– Since cont. time filters are usually tuned tuning accounts for frequency

deviation– S.C. filters are untuned and thus frequency shift could cause problems

specially for narrow-band filters

Page 4: EE247 Lecture 10 - University of California, Berkeleyinst.eecs.berkeley.edu/~ee247/fa09/files07/lectures/L10_2_f09.pdf · EE247 Lecture 10 • Switched-capacitor filters –Effect

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 7

Effect of Opamp Nonidealities on Switched Capacitor Filter Behaviour

• Opamp finite gain

• Opamp finite bandwidth

• Sources of distortion

– Finite slew rate of the opamp

– Non-linearity associated with opamp output/input characteristics

– Capacitor non-linearity- usually insignificant, similar to cont. time filters

– Charge injection & clock feedthrough (will be covered in the oversampling data converter section)

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 8

What is Slewing?

oV

Vi+Vi-

φ2

Cs

-

+

Vin

Vo

φ2CI

Cs

CI

CL

Assumption:Integrator opamp is a simple class Atransconductance type differential pairwith fixed tail current, Iss=const.

Iss

Page 5: EE247 Lecture 10 - University of California, Berkeleyinst.eecs.berkeley.edu/~ee247/fa09/files07/lectures/L10_2_f09.pdf · EE247 Lecture 10 • Switched-capacitor filters –Effect

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 9

oV

Vi+Vi-

φ2

Cs

CI

Iss

What is Slewing?

Io

Vin

Vmax

Imax= -Iss/2

Slope ~ gm

|VCs| > Vmax Output current constant Io=Iss/2 or –Iss/2Constant current charging/discharging CI: Vo ramps down/up Slewing

After VCs is discharged enough to have: |VCs|<Vmax Io=gm VCs Output Exponential or over-shoot settling

Io

Opamp Io v.s. Vin

Imax= +Iss/2

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 10

Distortion Induced by Opamp Finite Slew Rate

Multiple pole settling

One pole settling

Output Voltage

TimeSlewing SettlingSettling (multi-pole)

Vo

Page 6: EE247 Lecture 10 - University of California, Berkeleyinst.eecs.berkeley.edu/~ee247/fa09/files07/lectures/L10_2_f09.pdf · EE247 Lecture 10 • Switched-capacitor filters –Effect

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 11

Ideal Switched-Capacitor Output Waveform

φ1

φ2

Vin

Vo

Vcs

Clock-

+

Vin

Vo

φ1CI

Cs

-

+

Vin

Vo

φ2CI

Cs

φ2 High Charge transferred from Cs to CI

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 12

Slew Limited Switched-Capacitor IntegratorOutput Slewing & Settling

φ1

φ2

Vo-real

Vo-ideal

Clock

Slewing LinearSettling

Slewing LinearSettling

Page 7: EE247 Lecture 10 - University of California, Berkeleyinst.eecs.berkeley.edu/~ee247/fa09/files07/lectures/L10_2_f09.pdf · EE247 Lecture 10 • Switched-capacitor filters –Effect

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 13

Distortion Induced by Finite Slew Rate of the Opamp

Ref: K.L. Lee, “Low Distortion Switched-Capacitor Filters," U. C. Berkeley, Department of Electrical Engineering, Ph.D. Thesis, Feb. 1986 (ERL Memorandum No. UCB/ERL M86/12).

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 14

Distortion Induced by Opamp Finite Slew Rate

• Error due to exponential settling changes linearly with signal amplitude

• Error due to slew-limited settling changes non-linearly with signal amplitude (doubling signal amplitude X4 error)

For high-linearity need to have either high slew rate or non-slewing opamp

( )( )

( )

o s

o s

2T2ok 2r s

2T 22 oo o3 o s 3

r s r s

8 sinVHD S T k k 4

8 sin fV 8 VHD for f f HDS T 15 15S f

ω

ω

π

ππ

=−

→ = << → ≈

Ref: K.L. Lee, “Low Distortion Switched-Capacitor Filters," U. C. Berkeley, Department of Electrical Engineering, Ph.D. Thesis, Feb. 1986 (ERL Memorandum No. UCB/ERL M86/12).

Page 8: EE247 Lecture 10 - University of California, Berkeleyinst.eecs.berkeley.edu/~ee247/fa09/files07/lectures/L10_2_f09.pdf · EE247 Lecture 10 • Switched-capacitor filters –Effect

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 15

Example: Slew Related Harmonic Distortion

( )o s2T

2o3r s

2oo3

r s

8 sinVHD S T 15

f8 VHD 15S f

ω

π

π

=

Ref: K.L. Lee, “Low Distortion Switched-Capacitor Filters," U. C. Berkeley, Department of Electrical Engineering, Ph.D. Thesis, Feb. 1986 (ERL Memorandum No. UCB/ERL M86/12).

Switched-capacitor filter with 4kHz bandwidth, fs=128kHz, Sr=1V/μsec, Vo=3V

12dB

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 16

Distortion Induced by Opamp Finite Slew Rate Example

-120

-100

-80

-60

-40

-20

1 10 100 1000

HD

3 [d

B]

(Slew-rate / fs ) [V]

f / fs =1/32

f / fs =1/12

Vo =1V V

o =2V

Vo =1V V

o =2V

Page 9: EE247 Lecture 10 - University of California, Berkeleyinst.eecs.berkeley.edu/~ee247/fa09/files07/lectures/L10_2_f09.pdf · EE247 Lecture 10 • Switched-capacitor filters –Effect

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 17

Distortion Induced by Finite Slew Rate of the Opamp

• Note that for a high order switched capacitor filter only the last stage slewing will affect the output linearity (as long as the previous stages settle to the required accuracy)

Can reduce slew limited non-linearities by using an amplifier with a higher slew rate only for the last stageCan reduce slew limited non-linearities by using class A/B amplifiers

• Even though the output/input characteristics is non-linear as long as the DC open-loop gain is high, the significantly higher slew rate compared to class A amplifiers helps improve slew rate induced distortion in S.C. filters

• In cases where the output is sampled by another sampled data circuit (e.g. an ADC or a S/H) no issue with the slewing of the output as long as the output settles to the required accuracy & is sampled at the right time

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 18

More Realistic Switched-Capacitor Circuit Slew Scenario

-

+

Vin

Vo

φ2CI

Cs

At the instant Cs connects to input of opamp (t=0+)Opamp not yet active at t=0+ due to finite opamp bandwidth delayFeedforward path from input to output generates a voltage spike at the output with polarity opposite to final Vo step- spike magnitude function of CI, CL , Cs

Spike increases slewing periodEventually, opamp becomes active - starts slewing followed by subsequent settling

CL

Vo

φ2CI

CsCL

t=0+

Page 10: EE247 Lecture 10 - University of California, Berkeleyinst.eecs.berkeley.edu/~ee247/fa09/files07/lectures/L10_2_f09.pdf · EE247 Lecture 10 • Switched-capacitor filters –Effect

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 19

Switched-Capacitor Circuit Opamp not Active @ t=0+

-

+

Vin

Vo

φ2CI

CsCL

Vo

φ2CI

CsCL

t=0+

( )

( )

0 0

0 0 0

0 0 0 0

0 0 0

t t I Ls Cs Cs s eq eq

I L

t t tI s Iout Cs Cs

I L s eq I L

t t t tL s I eq L s Cs Cs s L Cs Cs

t t ts Iout Cs Cs

s L I L

C CCharg e sharing : C V V C C where CC C

C C CV V VC C C C C C

Assu min g C C C C C C V V C C V V

C CV V VC C C C

Note

− +

+ + −

− + − +

+ − −

= + =+

Δ = = ×+ + +

<< << → ≈ → ≈ + → ≈

→ Δ ≈ × ≈+ +

0 0final t ts sout Cs Cs

I I

C Cthat V V VC C

+ −Δ ≈ − ≈ −

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 20

More Realistic Switched-Capacitor Circuit Slew Scenario

-

+

Vin

Vo

φ2CI

CsCL

Vo

φ2CI

CsCL

t=0+

( )0 0

0 0 0

t t I Ls Cs Cs s eq eq

I L

t t ts sCs Cs Cs

I Ls eqs

I L

C CCharg e sharing : C V V C C where CC C

C CV V V C CC C CC C

− +

+ − −

= + =+

= =+ +

+

Notice that if CL is large some of the charge stored on Cs is lost prior to opamp becoming effective operation looses accuracy

Partly responsible for S.C. filters only good for low-frequency applications

Page 11: EE247 Lecture 10 - University of California, Berkeleyinst.eecs.berkeley.edu/~ee247/fa09/files07/lectures/L10_2_f09.pdf · EE247 Lecture 10 • Switched-capacitor filters –Effect

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 21

More Realistic S.C. Slew Scenario

Vo_realIncluding t=0+spike

Slewing LinearSettling

Slewing

Spike generated at t=0+

Vo_real

Vo_ideal

Slewing LinearSettling

Slewing LinearSettling

Ref: R. Castello, “Low Voltage, Low Power Switched-Capacitor Signal Processing Techniques," U. C. Berkeley, Department of Electrical Engineering, Ph.D. Thesis, Aug. ‘84 (ERL Memorandum No. UCB/ERL M84/67).

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 22

Sources of Noise in Switched-Capacitor Filters

• Opamp Noise– Thermal noise– 1/f (flicker) noise

• Thermal noise associated with the switching process (kT/C)– Same as continuous-time filters

• Precaution regarding aliasing of noise required

Page 12: EE247 Lecture 10 - University of California, Berkeleyinst.eecs.berkeley.edu/~ee247/fa09/files07/lectures/L10_2_f09.pdf · EE247 Lecture 10 • Switched-capacitor filters –Effect

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 23

Extending the Maximum Achievable Critical Frequencyof Switched-Capacitor Filters

Consider a switched-capacitor resonator:

Regular sampling:Each opamp is busy settling only during one of the two clock phases

Idle during the other clock phase

φ1 φ2

φ2 φ1

Note: During φ1 both opamps are idle

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 24

Switched-Capacitor Resonator Using Double-Sampling

Double-sampling:

• 2nd set of switches & sampling caps added to all integrators

• While one set of switches/caps sampling the other set transfers charge into the intg. cap

• Opamps busy during both clock phases

• Effective sampling freq. twice the clock freq. while opamp bandwidth requirement remains the same

Page 13: EE247 Lecture 10 - University of California, Berkeleyinst.eecs.berkeley.edu/~ee247/fa09/files07/lectures/L10_2_f09.pdf · EE247 Lecture 10 • Switched-capacitor filters –Effect

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 25

Double-Sampling Issues

fclock fs= 2fclock

Issues to be aware of:- Jitter in the clock - Unequal clock phases -Mismatch in sampling caps.

Results in parasitic passbands Ref: Tat C. Choi, "High-Frequency CMOS Switched-Capacitor Filters," U. C. Berkeley, Department of

Electrical Engineering, Ph.D. Thesis, May 1983 (ERL Memorandum No. UCB/ERL M83/31).

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 26

Double-Sampled Fully Differential S.C. 6th Order All-Pole Bandpass Filter

Ref: Tat C. Choi, "High-Frequency CMOS Switched-Capacitor Filters," U. C. Berkeley, Department of Electrical Engineering, Ph.D. Thesis, May 1983 (ERL Memorandum No. UCB/ERL M83/31).

Page 14: EE247 Lecture 10 - University of California, Berkeleyinst.eecs.berkeley.edu/~ee247/fa09/files07/lectures/L10_2_f09.pdf · EE247 Lecture 10 • Switched-capacitor filters –Effect

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 27

Sixth Order Bandpass Filter Signal Flowgraph

γ

1Q

− 0s

ω

inV 1−

0s

ω−

1Q

−0s

ω0s

ω−

0s

ω−0

outV1γ−

γγ−

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 28

Double-Sampled Fully Differential 6th Order S.C. All-Pole Bandpass Filter

Ref: B.S. Song, P.R. Gray "Switched-Capacitor High-Q Bandpass Filters for IF Applications," IEEE Journal of Solid State Circuits, Vol. 21, No. 6, pp. 924-933, Dec. 1986.

- Cont. time termination (Q) implementation- Folded-Cascode opamp with fu = 100MHz used- Center freq. 3.1MHz (Measured error >1%), filter Q=55- Clock freq. 12.83MHz effective oversampling ratio 8.27- Measured dynamic range 46dB (IM3=1%)

Page 15: EE247 Lecture 10 - University of California, Berkeleyinst.eecs.berkeley.edu/~ee247/fa09/files07/lectures/L10_2_f09.pdf · EE247 Lecture 10 • Switched-capacitor filters –Effect

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 29

Switched-Capacitor Filter ApplicationExample: Voice-Band CODEC (Coder-Decoder) Chip

Ref: D. Senderowicz et. al, “A Family of Differential NMOS Analog Circuits for PCM Codec Filter Chip,” IEEE Journal of Solid-State Circuits, Vol.-SC-17, No. 6, pp.1014-1023, Dec. 1982.

fs= 1024kHz fs= 128kHz fs= 8kHz fs= 8kHz

fs= 8kHz fs= 128kHz fs= 128kHz

fs= 128kHz

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 30

CODEC Transmit Path Lowpass Filter Frequency Response

0 2000 4000 6000 8000-50

-40

-30

-20

-10

0

Frequency (Hz)

Mag

nitu

de (d

B)

Note: fs=128kHz

Page 16: EE247 Lecture 10 - University of California, Berkeleyinst.eecs.berkeley.edu/~ee247/fa09/files07/lectures/L10_2_f09.pdf · EE247 Lecture 10 • Switched-capacitor filters –Effect

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 31

CODEC Transmit Path Highpass Filter

1000-50

-40

-30

-20

-10

0

Frequency (Hz)

Mag

nitu

de (d

B)

1000010010

Note: fs=8kHz

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 32

CODEC Transmit Path Filter Overall Frequency Response

1000-50

-40

-30

-20

-10

0

Frequency (Hz)

Mag

nitu

de (d

B)

1000010010

Low Q bandpass (Q<1) filter shape Implemented with lowpass followed by highpass

Page 17: EE247 Lecture 10 - University of California, Berkeleyinst.eecs.berkeley.edu/~ee247/fa09/files07/lectures/L10_2_f09.pdf · EE247 Lecture 10 • Switched-capacitor filters –Effect

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 33

CODEC Transmit Path Clocking Scheme

First filter (1st order RC type) performs anti-aliasing for the next S.C. biquad

The first 2 stage filters form 3rd order elliptic with corner frequency @ 32kHz Anti-aliasing for the next S.C. lowpass filter with 3.4kHz corner freq.

The stages prior to the high-pass perform anti-aliasing for high-pass

Notice gradual lowering of clock frequency Ease of anti-aliasing

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 34

SC Filter SummaryPole and zero frequencies proportional to – Sampling frequency fs– Capacitor ratios

High accuracy and stability in responseLong time constants realizable without large R, C

Compatible with transconductance amplifiers– Reduced circuit complexity, power dissipation

Amplifier bandwidth requirements less stringent compared to CT filters (low frequencies only)Issue: Sampled-data filters require anti-aliasing prefiltering

Page 18: EE247 Lecture 10 - University of California, Berkeleyinst.eecs.berkeley.edu/~ee247/fa09/files07/lectures/L10_2_f09.pdf · EE247 Lecture 10 • Switched-capacitor filters –Effect

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 35

Switched-Capacitor Filters versus Continuous-Time Filter Limitations

Considering overall effects:

• Opamp finite unity-gain-bandwidth

• Opamp settling issues• Opamp finite slew rate• Clock feedthru &

switch charge injection• Switch+ sampling

cap. finite time-constant Filter bandwidth

Assuming constant opamp fu

MagnitudeError

5-10MHz

S.C. Filters

Cont. Time Filters

Limited switched-capacitor filter performance frequency range

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 36

SummaryFilter Performance versus Filter Topology

_

1-5%

1-5%

1-5%

1-5%

Freq. Tolerance+ Tuning

<1%40-90dB~ 10MHzSwitched Capacitor

+-40-60%40-70dB~ 100MHzGm-C

+-30-50%50-90dB~ 5MHzOpamp-MOSFET-RC

+-30-50%40-60dB~ 5MHzOpamp-MOSFET-C

+-30-50%60-90dB~10MHzOpamp-RC

Freq. Tolerance

w/o Tuning

SNDRMax. Usable

Bandwidth

Page 19: EE247 Lecture 10 - University of California, Berkeleyinst.eecs.berkeley.edu/~ee247/fa09/files07/lectures/L10_2_f09.pdf · EE247 Lecture 10 • Switched-capacitor filters –Effect

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 37

Frequency Warping• Frequency response

– Continuous time (s-plane): imaginary axis– Sampled time (z-plane): unit circle

• Continuous to sampled time transformation– Should map imaginary axis onto unit circle– How do S.C. integrators map frequencies?

12s

S.C. 11

1s2

C zH ( z )C zint

C

C j sin f Tint π

−= −−

= −

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 38

CT – SC Integrator ComparisonCT Integrator SC Integrator

int

s s

CRCf C

τ = =Identical time constants:

Set: HRC(fRC) = HSC(fSC)

⎟⎟⎠

⎞⎜⎜⎝

⎛=

s

SCsRC f

fff ππ

sin

12s

SC 11

1s2 s

C zH ( z )C zint

C

C j sin f Tint SCπ

−= −−

= −

RC1

12 RC

H ( s )s

jf

τ

π τ

= −

= −

Page 20: EE247 Lecture 10 - University of California, Berkeleyinst.eecs.berkeley.edu/~ee247/fa09/files07/lectures/L10_2_f09.pdf · EE247 Lecture 10 • Switched-capacitor filters –Effect

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 39

LDI Integration

⎟⎟⎠

⎞⎜⎜⎝

⎛=

s

SCsRC f

fff ππ

sin

• “RC” frequencies up to fs /πmap to physical (real) “SC”frequencies

• Frequencies above fs /π do not map to physical frequencies

• Mapping is symmetric about fs /2 (aliasing)

• “Accurate” only for fRC << fs0 0.1 0.2 0.30

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fRC /fs

f SC/f s

1/π

Slope=1

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 40

Material Covered in EE247Where are We?

Filters – Continuous-time filters

• Biquads & ladder type filters• Opamp-RC, Opamp-MOSFET-C, gm-C filters• Automatic frequency tuning

– Switched capacitor (SC) filters

• Data Converters– D/A converter architectures– A/D converter

• Nyquist rate ADC- Flash, Pipeline ADCs,….• Oversampled converters• Self-calibration techniques

• Systems utilizing analog/digital interfaces

Page 21: EE247 Lecture 10 - University of California, Berkeleyinst.eecs.berkeley.edu/~ee247/fa09/files07/lectures/L10_2_f09.pdf · EE247 Lecture 10 • Switched-capacitor filters –Effect

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 41

Data Converters

• Data converters– Areas of application– Data converter transfer characteristics– Sampling, aliasing, reconstruction– Amplitude quantization– Static converter error sources

• Offset• Full-scale error• Differential non-linearity (DNL)• Integral non-linearity (INL)

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 42

Data Converter Applications

Page 22: EE247 Lecture 10 - University of California, Berkeleyinst.eecs.berkeley.edu/~ee247/fa09/files07/lectures/L10_2_f09.pdf · EE247 Lecture 10 • Switched-capacitor filters –Effect

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 43

Data Converter Basics• DSPs benefited from device scaling

• However, real world signals are still analog:

– Continuous time– Continuous amplitude

• DSP can only process:– Discrete time– Discrete amplitude

Need for data conversion from analog to digital and digital to analog

Analog Postprocessing

D/AConversion

DSP

A/D Conversion

Analog Preprocessing

Analog Input

Analog Output

000...001...

110

Filters

Filters

?

?

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 44

A/D & D/A ConversionA/D Conversion

D/A Conversion

Page 23: EE247 Lecture 10 - University of California, Berkeleyinst.eecs.berkeley.edu/~ee247/fa09/files07/lectures/L10_2_f09.pdf · EE247 Lecture 10 • Switched-capacitor filters –Effect

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 45

Data Converters

• Stand alone data converters– Used in variety of systems

– Example: Analog Devices AD9235 12bit/ 65Ms/s ADC- Applications:

• Ultrasound equipment

• IF sampling in wireless receivers

• Various hand-held measurement equipment

• Low cost digital oscilloscopes

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 46

Data Converters• Embedded data converters

– Integration of data conversion interfaces along with DSPs and/or RF circuits Cost, reliability, and performance

– Main issues• Feasibility of integrating sensitive analog functions in a

technology typically optimized for digital performance• Down scaling of supply voltage as a result of downscaling of

feature sizes• Interference & spurious signal pick-up from on-chip digital

circuitry and/or high frequency RF circuits• Portable applications dictate low power consumption

Page 24: EE247 Lecture 10 - University of California, Berkeleyinst.eecs.berkeley.edu/~ee247/fa09/files07/lectures/L10_2_f09.pdf · EE247 Lecture 10 • Switched-capacitor filters –Effect

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 47

Embedded ConvertersExample: Typical Cell Phone

Contains in integrated form:• 4 Rx filters• 4 Tx filters

• 4 Rx ADCs• 4 Tx DACs• 3 Auxiliary ADCs• 8 Auxiliary DACs

Total: Filters 8

ADCs 7

DACs 12

Dual Standard, I/Q

Audio, Tx/Rx powercontrol, Battery chargecontrol, display, ...

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 48

D/A Converter Transfer Characteristics

• An ideal digital-to-analog converter:– Accepts digital inputs

b1-bn

– Produces either an analog output voltage or current

– Assumption (will be revisited)

• Uniform, binary digital encoding

• Unipolar output ranging from 0 to VFS

……

.…

b1b2

bN

Vo or Io

MSB

LSB

FS

FSN

FS2

N # of bitsV full scale output

min. s tep size 1LSBV2 V

or N log resolut ion

==

Δ = →

Δ =

= →Δ

Nomenclature:

D/A

Page 25: EE247 Lecture 10 - University of California, Berkeleyinst.eecs.berkeley.edu/~ee247/fa09/files07/lectures/L10_2_f09.pdf · EE247 Lecture 10 • Switched-capacitor filters –Effect

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 49

D/A Converter Transfer Characteristics

FS

FSN

N # of bi ts

V ful l scale output

min. step size 1LSB

V

2

=

=

Δ = →

Δ =

N

0 FSi 1

N

i 1

i

N i

biV V

2

bi 2 , bi 0 or 1

=

=

=

= Δ × × =

binary-weighted

( )imax

o FSmax

o FS N

Note : D b 1,al l iV V

11V V

2

=→ = − Δ

⎛ ⎞−→ = ⎜ ⎟⎝ ⎠

……

.…

b1b2

bN

Vo or Io

MSB

LSB

D/A

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 50

D/A Converter Exampe: D/A with 3-bit Resolution

b1 b2 b3

V0

MSB LSB

( )

( )

0 1 2 3

3FS

0

0

NFS FS

2 1 0

2 1 0

V b 2 b 2 b 2

Then : V / 2 0.1V

V 0.1V 1 2 0 2 1 2

V 0.5V

Note : MSB V / 2 & LSB V / 2

= Δ × + × + ×

Δ = =

→ = =× + × + ×

→ =

→ →

1 0 1

Example: for N=3 and VFS=0.8Vinput code 101Find the output value V0

D/A

Page 26: EE247 Lecture 10 - University of California, Berkeleyinst.eecs.berkeley.edu/~ee247/fa09/files07/lectures/L10_2_f09.pdf · EE247 Lecture 10 • Switched-capacitor filters –Effect

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 51

Ideal 3-Bit D/A Transfer Characteristic

• Ideal DAC introduces no error!

• One-to-one mapping from input to output

000 001 010 011 100 101 110 111

Step Height (1LSB =Δ)

Ideal Response

Digital InputCode

Analog OutputVFS

VFS /2

VFS /8

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 52

A/D Converter Transfer Characteristics

• An ideal analog-to-digital converter:– Accepts analog input in the

form of either voltage or current

– Produces digital output either in serial or parallel form

– Assumption (will be revisited) • Unipolar input ranging from 0

to VFS• Uniform, binary digital

encoding

……

.…

b1b2

bN

MSB

LSB

Vin

FS

FSN

FS2

N # of bi ts

V full scale output

min. resolvable input 1LSB

V2

Vor N log resolut ion

=

=

Δ = →

Δ =

= →Δ

A/D

Page 27: EE247 Lecture 10 - University of California, Berkeleyinst.eecs.berkeley.edu/~ee247/fa09/files07/lectures/L10_2_f09.pdf · EE247 Lecture 10 • Switched-capacitor filters –Effect

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 53

Ideal A/D Transfer CharacteristicExample: 3Bit A/D Converter

• Ideal ADC introduces error with max peak-to-peak:

(+-1/2 Δ) Δ = VFS /2 N

N= # of bits

• This error is called ``quantization error``

• For a given VFS as N increases quantization error decreases resolution increases

111

110

101

100

011

010

001

000

DigitalOutput

Analog input

0 Δ 2Δ 3Δ 4Δ 5Δ 6Δ 7Δ

1LSB

VFS

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 54

Non-Linear Data Converters

• So far data converter characterisitics studied are with uniform, binary digital encoding

• For some applications to maximize dynamic range non-linear coding is used e.g. Voice-band telephony, – Small signals larger # of codes– Large signals smaller # of codes

Page 28: EE247 Lecture 10 - University of California, Berkeleyinst.eecs.berkeley.edu/~ee247/fa09/files07/lectures/L10_2_f09.pdf · EE247 Lecture 10 • Switched-capacitor filters –Effect

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 55

Example: Non-Linear A/D ConverterFor Voice-Band Telephony Applications

Non-linear ADC and DAC used in voice-band CODECs

• To maximize dynamic range without need for large # of bits

• Non-linear Coding scheme called A-law & μ-law is used

• Also called companding Ref: P. R. Gray, et al. "Companded pulse-code modulation voice codec using monolithic weighted capacitor arrays," IEEE Journal of Solid-State Circuits, vol. 10, pp. 497 - 499, December 1975.

-VFS/2-VFS -VFS/4

Coder Input(ANALOG)

Coder Output(DIGITAL)

SIGNBIT

SEGMENT#

STEP#

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 56

Data Converter Performance Metrics• Data Converters are typically characterized by static, time-domain,

& frequency domain performance metrics :– Static

• Offset• Full-scale error• Differential nonlinearity (DNL)• Integral nonlinearity (INL)• Monotonicity

– Dynamic• Delay & settling time• Aperture uncertainty• Distortion- harmonic content• Signal-to-noise ratio (SNR), Signal-to-(noise+distortion) ratio (SNDR)• Idle channel noise• Dynamic range & spurious-free dynamic range (SFDR)

Page 29: EE247 Lecture 10 - University of California, Berkeleyinst.eecs.berkeley.edu/~ee247/fa09/files07/lectures/L10_2_f09.pdf · EE247 Lecture 10 • Switched-capacitor filters –Effect

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 57

Typical Sampling ProcessC.T. ⇒ S.D. ⇒ D.T.

ContinuousTime

Sampled Data(e.g. T/H signal)

Clock

Discrete Time

time

PhysicalSignals

"MemoryContent"

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 58

Discrete Time Signals

• A sequence of numbers (or vector) with discrete index time instants

• Intermediate signal values not defined(not the same as equal to zero!)

• Mathematically convenient, non-physical

• We will use the term "sampled data" for related signals that occur in real, physical interface circuits

Page 30: EE247 Lecture 10 - University of California, Berkeleyinst.eecs.berkeley.edu/~ee247/fa09/files07/lectures/L10_2_f09.pdf · EE247 Lecture 10 • Switched-capacitor filters –Effect

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 59

Uniform Sampling

• Samples spaced T seconds in time• Sampling Period T ⇔ Sampling Frequency fs=1/T• Problem: Multiple continuous time signals can yield

exactly the same discrete time signal (aliasing)

y(kT)=y(k)

t= 1T 2T 3T 4T 5T 6T ...k= 1 2 3 4 5 6 ...

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 60

Data Converters

• ADC/DACs need to sample/reconstruct to convert from continuous-time to discrete-time signals and back

• Purely mathematical discrete-time signals are different from "sampled-data signals" that carry information in actual circuits

• Question: How do we ensure that sampling/reconstruction fully preserve information?

Page 31: EE247 Lecture 10 - University of California, Berkeleyinst.eecs.berkeley.edu/~ee247/fa09/files07/lectures/L10_2_f09.pdf · EE247 Lecture 10 • Switched-capacitor filters –Effect

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 61

Aliasing

• The frequencies fx and nfs ± fx, n integer, are indistinguishable in the discrete time domain

• Undesired frequency interaction and translation due to sampling is called aliasing

• If aliasing occurs, no signal processing operation downstream of the sampling process can recover the original continuous time signal!

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 62

Frequency Domain Interpretation

fs …….. f

Am

plitu

de

fin 2fs

Am

plitu

de

f/fs

Signal scenariobefore sampling

Signal scenarioafter sampling DT

fs /2

0.5

ContinuousTime

DiscreteTime

Signals @ nfS ± fmax__signal fold back into band of interest Aliasing

Page 32: EE247 Lecture 10 - University of California, Berkeleyinst.eecs.berkeley.edu/~ee247/fa09/files07/lectures/L10_2_f09.pdf · EE247 Lecture 10 • Switched-capacitor filters –Effect

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 63

Brick Wall Anti-Aliasing Filter

Sampling at Nyquist rate (fs=2fsignal) required brick-wall anti-aliasing filters

ContinuousTime

DiscreteTime

0 fs 2fs ... f

Amplitude

0 0.5 f/fs

Filter

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 64

Practical Anti-Aliasing Filter

• Practical filter: Nonzero "transition band"• In order to make this work, we need to sample faster than 2x the

signal bandwidth• "Oversampling"

ContinuousTime

DiscreteTime

0 fs ...

DesiredSignal

0 0.5 f/fs

fs/2B

ParasiticTone

B/fs

Attenuation

fs-B f

Page 33: EE247 Lecture 10 - University of California, Berkeleyinst.eecs.berkeley.edu/~ee247/fa09/files07/lectures/L10_2_f09.pdf · EE247 Lecture 10 • Switched-capacitor filters –Effect

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 65

Data ConverterClassification

• fs > 2fmax Nyquist Sampling– "Nyquist Converters"– Actually always slightly oversampled (e.g. CODEC fsig

max =3.4kHz &ADC sampling 8kHz fs /fmax=2.35)

– Requires anti-aliasing filtering prior to A-to-D conversion

• fs >> 2fmax Oversampling– "Oversampled Converters"– Anti-alias filtering is often trivial– Oversampling is also used to reduce quantization noise, see later

in the course...

• fs < 2fmax Undersampling (sub-sampling)

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 66

Sub-Sampling

• Sub-sampling sampling at a rate less than Nyquist rate aliasing• For signals centered @ an intermediate frequency Not destructive!• Sub-sampling can be exploited to mix a narrowband RF or IF signal down

to lower frequencies

ContinuousTime

DiscreteTime

0 fs ... f

Amplitude

0 0.5 f/fs

BP Filter

Page 34: EE247 Lecture 10 - University of California, Berkeleyinst.eecs.berkeley.edu/~ee247/fa09/files07/lectures/L10_2_f09.pdf · EE247 Lecture 10 • Switched-capacitor filters –Effect

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 67

Nyquist Data Converter Topics• Basic operation of data converters

– Uniform sampling and reconstruction– Uniform amplitude quantization

• Characterization and testing• Common ADC/DAC architectures• Selected topics in converter design

– Practical implementations– Compensation & calibration for analog circuit non-idealities

• Figures of merit and performance trends

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 68

Where Are We Now?

• We now know how to preserve signal information in CT DT transition

• How do we go back from DT CT? Analog

Postprocessing

D/AConversion

DSP

A/D Conversion

Analog Preprocessing

Analog Input

Analog Output

000...001...

110

Anti-AliasingFilter

?

Sampling(+Quantization)

Page 35: EE247 Lecture 10 - University of California, Berkeleyinst.eecs.berkeley.edu/~ee247/fa09/files07/lectures/L10_2_f09.pdf · EE247 Lecture 10 • Switched-capacitor filters –Effect

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 69

Ideal Reconstruction

• Unfortunately not all that practical...

∑∞

−∞=

−⋅=k

kTtgkxtx )()()(Bt

Bttgπ

π2

)2sin()( =

• The DSP books tell us:

⇒x(k) x(t)

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 70

Zero-Order Hold Reconstruction

• How about just creating a staircase, i.e. hold each discrete time value until new information becomes available?

• What does this do to the frequency content of the signal?

• Let's analyze this in two steps...

0 10 20 30-1

-0.6

-0.2

0.2

1

Time [μs]

Am

plitu

de

sampled dataafter ZOH

0.6

Page 36: EE247 Lecture 10 - University of California, Berkeleyinst.eecs.berkeley.edu/~ee247/fa09/files07/lectures/L10_2_f09.pdf · EE247 Lecture 10 • Switched-capacitor filters –Effect

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 71

DT CT: Infinite Zero Padding

DT sequence

Time Domain Frequency Domain

......0.5

InfiniteZero paddedInterpolation:

CT Signal

......

f /fs

f /fs0.5fs 1.5fs 2.5fs

Next step: pass the samples through a sample & hold stage (ZOH)

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 72

Hold Pulse Tp=Ts Transfer Function

p

p

s

p

fTfT

TT

fHπ

π )sin(|)(| =

0 0.5 1 1.5 2 2.5 30

0.2

0.4

0.6

0.8

1

f /fs

abs(

H(f)

)

ss

Tf)Tfsin(|)f(H|

ππ=

Page 37: EE247 Lecture 10 - University of California, Berkeleyinst.eecs.berkeley.edu/~ee247/fa09/files07/lectures/L10_2_f09.pdf · EE247 Lecture 10 • Switched-capacitor filters –Effect

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 73

ZOH Spectral ShapingContinuous Time

Pulse Train Spectrum

ZOH Transfer Function

("Sinc Shaping")

ZOH output, Spectrum of

Staircase Approximation

f / fs

0 0.5 1 1.5 2 2.5 30

0.5

1

0 0.5 1 1.5 2 2.5 30

0.5

1

0 0.5 1 1.5 2 2.5 30

0.5

1

X(k)

ZOH

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 74

Smoothing Filter• Order of the filter

required is a function of oversampling ratio

• High oversampling helps reduce filter order requirement

f / fs

0 0.5 1 1.5 2 2.5 30

0.2

0.4

0.6

0.8

1

Filter out the high frequency content associated with staircase shape of the signal

Page 38: EE247 Lecture 10 - University of California, Berkeleyinst.eecs.berkeley.edu/~ee247/fa09/files07/lectures/L10_2_f09.pdf · EE247 Lecture 10 • Switched-capacitor filters –Effect

EECS 247 Lecture 10 Switched-Capacitor Filters & Data Converter Intro. © 2009 H. K. Page 75

Summary

• Sampling theorem fs > 2fmax, usually dictates anti-aliasing filter

• If theorem is met, CT signal can be recovered from DT without loss of information

• ZOH and smoothing filter reconstruct CT signal from DT vector

• Oversampling helps reduce order & complexity of anti-aliasing & smoothing filters