ee5311- digital ic designjanakiraman/courses/ee5311/lecture_notes/module... · ee5311- digital ic...

37
EE5311- Digital IC Design Module 3 - The Inverter Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute of Technology Madras Chennai September 3, 2018 Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 1/37

Upload: trandung

Post on 03-Mar-2019

479 views

Category:

Documents


24 download

TRANSCRIPT

Page 1: EE5311- Digital IC Designjanakiraman/courses/EE5311/lecture_notes/module... · EE5311- Digital IC Design Module 3 - The Inverter ... pLH Fall delay ... tot = (C LV 2 DD +V DDI peakt

EE5311- Digital IC DesignModule 3 - The Inverter

Janakiraman V

Assistant ProfessorDepartment of Electrical EngineeringIndian Institute of Technology Madras

Chennai

September 3, 2018

Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 1/37

Page 2: EE5311- Digital IC Designjanakiraman/courses/EE5311/lecture_notes/module... · EE5311- Digital IC Design Module 3 - The Inverter ... pLH Fall delay ... tot = (C LV 2 DD +V DDI peakt

Learning Objectives

Explain the functioning of a CMOS inverter

Explain the Voltage Transfer Characteristics of an inverter

Derive an expression for the trip point of an inverter

Derive an expression for the delay of an inverter driving aload

Derive expressions for Static, Dynamic and Short Circuitpower of an inverter.

Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 2/37

Page 3: EE5311- Digital IC Designjanakiraman/courses/EE5311/lecture_notes/module... · EE5311- Digital IC Design Module 3 - The Inverter ... pLH Fall delay ... tot = (C LV 2 DD +V DDI peakt

Outline

Switch Model

Transfer Characteristics

Switching Threshold

Noise Margin

Supply Voltage Scaling

Propagation Delay

Power Dynamic Short circuit Leakage

Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 3/37

Page 4: EE5311- Digital IC Designjanakiraman/courses/EE5311/lecture_notes/module... · EE5311- Digital IC Design Module 3 - The Inverter ... pLH Fall delay ... tot = (C LV 2 DD +V DDI peakt

Inverters - Robust Configuration

0 → VDDVDD

0 → VDD − VTn

VDD

VDD → 0 VDD → |VTp|

Pull down to GND with NMOS

Pull up to VDD with PMOS

Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 4/37

Page 5: EE5311- Digital IC Designjanakiraman/courses/EE5311/lecture_notes/module... · EE5311- Digital IC Design Module 3 - The Inverter ... pLH Fall delay ... tot = (C LV 2 DD +V DDI peakt

Load Line

G

S

SD

DVout

Vin

Figure: The CMOS Inverter

IDSp = −IDSn

VGSn = Vin

VGSp = Vin − VDD

VDSn = Vout

VDSp = Vout − VDD

Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 5/37

Page 6: EE5311- Digital IC Designjanakiraman/courses/EE5311/lecture_notes/module... · EE5311- Digital IC Design Module 3 - The Inverter ... pLH Fall delay ... tot = (C LV 2 DD +V DDI peakt

Load Line

Vin = 0.7VDD

Vin = VDD

Vin = 0.4VDD

IDn

Vin = 0

Vin = VDDVin = 0

Vout

Vin = 0.5VDD

Vin = 0.4VDD

Vin = 0.7VDD

Figure: Solid lines- NMOS, Dashed lines - PMOS

Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 6/37

Page 7: EE5311- Digital IC Designjanakiraman/courses/EE5311/lecture_notes/module... · EE5311- Digital IC Design Module 3 - The Inverter ... pLH Fall delay ... tot = (C LV 2 DD +V DDI peakt

Voltage Transfer Characterisitcs

2 53 41

Vin = VOut = VM

Vin

Vin

Vout

Vout

CL

Figure: VTC of a CMOS Inverter

Region NMOS PMOS1 Off Lin2 Sat Lin3 Sat Sat4 Lin Sat5 Lin Off

Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 7/37

Page 8: EE5311- Digital IC Designjanakiraman/courses/EE5311/lecture_notes/module... · EE5311- Digital IC Design Module 3 - The Inverter ... pLH Fall delay ... tot = (C LV 2 DD +V DDI peakt

Switching Threshold

2 53 41

Vin = VOut =

Vin

Vin

Vout

Vout

CL

Figure: Switching Threshold

Both NMOS and PMOS are in saturation

Assume velocity saturation

Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 8/37

Page 9: EE5311- Digital IC Designjanakiraman/courses/EE5311/lecture_notes/module... · EE5311- Digital IC Design Module 3 - The Inverter ... pLH Fall delay ... tot = (C LV 2 DD +V DDI peakt

Switching Threshold

IDSp = −IDSn

VGSn = Vin

VGSp = Vin − VDD

VDSn = Vout

VDSp = Vout − VDD

Vin = Vout

Both NMOS and PMOS are in saturation

Assume velocity saturation

Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 9/37

Page 10: EE5311- Digital IC Designjanakiraman/courses/EE5311/lecture_notes/module... · EE5311- Digital IC Design Module 3 - The Inverter ... pLH Fall delay ... tot = (C LV 2 DD +V DDI peakt

Switching Threshold

Ignoring channel length modulation

IDSn = k ′n

Wn

L(VM − VTn −

VDSATn

2)VDSATn

IDSp = k ′p

Wp

L(VM − VDD − VTp −

VDSATp

2)VDSATp

VM =VTn +

VDSATn

2+ r(VDD + VTp +

VDSATp

2)

1 + r

r =k ′p(Wp/L)VDSATp

k ′n(Wn/L)VDSATn

=Wpvsatp

Wnvsatn

VM ≈r

r + 1VDD

Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 10/37

Page 11: EE5311- Digital IC Designjanakiraman/courses/EE5311/lecture_notes/module... · EE5311- Digital IC Design Module 3 - The Inverter ... pLH Fall delay ... tot = (C LV 2 DD +V DDI peakt

Switing Threshold

Increasing r

Vout

Vin

Vin = VOut = VM

Figure: VTC Trip Point

Ratio of Wp

Wndetermines VM

Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 11/37

Page 12: EE5311- Digital IC Designjanakiraman/courses/EE5311/lecture_notes/module... · EE5311- Digital IC Design Module 3 - The Inverter ... pLH Fall delay ... tot = (C LV 2 DD +V DDI peakt

Switing Threshold Without Velocity Saturation

VM =VTn + r(VDD + VTp)

1 + r

r =

−kp

kn

Left as an exercise

Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 12/37

Page 13: EE5311- Digital IC Designjanakiraman/courses/EE5311/lecture_notes/module... · EE5311- Digital IC Design Module 3 - The Inverter ... pLH Fall delay ... tot = (C LV 2 DD +V DDI peakt

Noise MarginVout

VOH

VOL

VIHVIL Vin

VOL

VIH

VIL

VOH

NMH

NML

Figure: Noise Margin of a CMOS Inverter

Logic levels from the driver should be recognized by theload

Points of slope -1 provide the noise margin levels

NMH = VOH − VIH

NML = VIL − VOL

Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 13/37

Page 14: EE5311- Digital IC Designjanakiraman/courses/EE5311/lecture_notes/module... · EE5311- Digital IC Design Module 3 - The Inverter ... pLH Fall delay ... tot = (C LV 2 DD +V DDI peakt

Noise Margin Approximation

VIH

Vout

Vin

VM

VIL

Figure: Noise Margin approximation of a CMOS Inverter

Extend the tangent at VM

Slope is the gain (g) of the VTC

NMH = VDD − VIH = VDD − VM +VM

g

NML = VIL = VM +VDD − VM

g

Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 14/37

Page 15: EE5311- Digital IC Designjanakiraman/courses/EE5311/lecture_notes/module... · EE5311- Digital IC Design Module 3 - The Inverter ... pLH Fall delay ... tot = (C LV 2 DD +V DDI peakt

Noise Margin Calculations

Need to consider channel length modulation

Slope is the gain (g = dVout

dVin) of the VTC

IDSn = I no−clmDSn (1 + λnVout)

IDSp = I no−clmDSp (1 + λp(Vout − VDD))

g = −1

ID(VM)

knVDSATn + kpVDSATp

λn − λp

g ≈1 + r

(VM − VTn − VDSATn/2)(λn − λp)

r =kpVDSATp

knVDSATn

Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 15/37

Page 16: EE5311- Digital IC Designjanakiraman/courses/EE5311/lecture_notes/module... · EE5311- Digital IC Design Module 3 - The Inverter ... pLH Fall delay ... tot = (C LV 2 DD +V DDI peakt

Pass Transistors

VD

vC(0−) = 0

vC(0−) = VDD

VG

VG

VD

vC (t) = min(VG − VTn,VD)

vC (t) = max(VG − VTp,VD)

Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 16/37

Page 17: EE5311- Digital IC Designjanakiraman/courses/EE5311/lecture_notes/module... · EE5311- Digital IC Design Module 3 - The Inverter ... pLH Fall delay ... tot = (C LV 2 DD +V DDI peakt

Switch Model

CL

Vin = VDDVin = 0

Rp

Rn

VoutVin

Figure: The CMOS Inverter

The high and low logic levels are VDD and GND(0)

Logic levels are independent of sizes - Ratioless Logic

Low output impedance (kΩ) - Immune to noise

Large input impedance - Infinite fanout

No conduction path from supply to ground in steady state

Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 17/37

Page 18: EE5311- Digital IC Designjanakiraman/courses/EE5311/lecture_notes/module... · EE5311- Digital IC Design Module 3 - The Inverter ... pLH Fall delay ... tot = (C LV 2 DD +V DDI peakt

Switch Model Dynamic Behaviour

Vin ↓ 0

Rp

Rn

CL

High → LowLow → High

Vin ↑ VDD

CL

Figure: Dynamic Behaviour of CMOS Inverter

τrise = RpCL

τfall = RnCL

Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 18/37

Page 19: EE5311- Digital IC Designjanakiraman/courses/EE5311/lecture_notes/module... · EE5311- Digital IC Design Module 3 - The Inverter ... pLH Fall delay ... tot = (C LV 2 DD +V DDI peakt

Delay

Propagation Delay - 50% input to 50% output Rise delay. Output goes from L ↑ H - tpLH Fall delay . Output goes from H ↓ L - tpHL Propagation delay is defined as tp =

tpHL+tpLH2

Slew Rise time - Time taken for output to go from 10% to

90% Fall time - TIme taken for output to go from 90% to

10%

Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 19/37

Page 20: EE5311- Digital IC Designjanakiraman/courses/EE5311/lecture_notes/module... · EE5311- Digital IC Design Module 3 - The Inverter ... pLH Fall delay ... tot = (C LV 2 DD +V DDI peakt

Delay

Vout

CL

tpHL tpLH

t

Vin

VinVout

Figure: Delay

tpHL = ReqnCL

tpLH = ReqpCL

tp = CL

Reqn + Reqp

2

Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 20/37

Page 21: EE5311- Digital IC Designjanakiraman/courses/EE5311/lecture_notes/module... · EE5311- Digital IC Design Module 3 - The Inverter ... pLH Fall delay ... tot = (C LV 2 DD +V DDI peakt

Transistor Sizing - Symmetric delay

Rising propagation delay should be identical to fallingpropagation delay.

This also ensures a symmeteric VTC

tpHL = tpLH

Reqn = Reqp

CLVDD

2IDSATn

=CLVDD

2IDSATp

Wnµn = Wpµp

Wp ≈ 2Wn

Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 21/37

Page 22: EE5311- Digital IC Designjanakiraman/courses/EE5311/lecture_notes/module... · EE5311- Digital IC Design Module 3 - The Inverter ... pLH Fall delay ... tot = (C LV 2 DD +V DDI peakt

Transistor Sizing - Minimum delay

CL = Cdp1 + Cdn1 + Cgn2 + Cgp2 + Cwire

tp = CL

Reqn + Reqp

2

tp = (0.5)[(1 + β)(Cgn2 + Cdn1) + Cwire ]Reqn(1 +α

β)

α =Reqp

Reqn

@Wp = Wn; β =Wp

Wn

∂tp∂β

= 0

βopt =

α

(

1 +Cwire

Cdn1 + Cgn2

)

Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 22/37

Page 23: EE5311- Digital IC Designjanakiraman/courses/EE5311/lecture_notes/module... · EE5311- Digital IC Design Module 3 - The Inverter ... pLH Fall delay ... tot = (C LV 2 DD +V DDI peakt

Power Dissipation

Energy lost as heat disspation in the devices

Dynamic - Charge/ Discharging of cpacitance

Short Circuit - Conductive path from VDD → GND

Static - Leakage even when no activity happens

Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 23/37

Page 24: EE5311- Digital IC Designjanakiraman/courses/EE5311/lecture_notes/module... · EE5311- Digital IC Design Module 3 - The Inverter ... pLH Fall delay ... tot = (C LV 2 DD +V DDI peakt

Dynamic PowerVin ↓ 0

Rp

Rn

CL

High → LowLow → High

Vin ↑ VDD

CL

Figure: Capacitor charge and discharge

L ↑ H

EVDD =

∫ ∞

0

iVDD(t)VDDdt

EC =

∫ ∞

0

iVDD(t)Voutdt

Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 24/37

Page 25: EE5311- Digital IC Designjanakiraman/courses/EE5311/lecture_notes/module... · EE5311- Digital IC Design Module 3 - The Inverter ... pLH Fall delay ... tot = (C LV 2 DD +V DDI peakt

Dynamic Power

L ↑ H

EVDD =

∫ ∞

0

iVDD(t)VDDdt

EVDD =

∫ ∞

0

CL

dvout

dtVDDdt

EVDD =

∫ VDD

0

CLVDDdvout

EVDD = CLV2DD

EC =CLV

2DD

2

Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 25/37

Page 26: EE5311- Digital IC Designjanakiraman/courses/EE5311/lecture_notes/module... · EE5311- Digital IC Design Module 3 - The Inverter ... pLH Fall delay ... tot = (C LV 2 DD +V DDI peakt

Dynamic Power

L ↑ H - Load capacitor charges and disspatesCLV

2DD

2in

PMOS

H ↓ L - Load capacitor discharges and disspatesCLV

2DD

2in

NMOS

Note that the energy dissipated is independent of size

Depends on Probability of switching (P0→1) - Activity factor Frequency of operation (f )

Pdyn = CLV2DD f0→1

Pdyn = CLV2DDP0→1f

Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 26/37

Page 27: EE5311- Digital IC Designjanakiraman/courses/EE5311/lecture_notes/module... · EE5311- Digital IC Design Module 3 - The Inverter ... pLH Fall delay ... tot = (C LV 2 DD +V DDI peakt

Short Circuit Power

IscVT

VDD − VT

Ipeak

Vin

CL

Vout

Figure: Both NMOS and PMOS conduct

Esc = VDD

Ipeaktsc

2+ VDD

IPeaktsc

2Psc = tscVDD Ipeak f

tsc =VDD + VTp − VTn

VDD

ts

Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 27/37

Page 28: EE5311- Digital IC Designjanakiraman/courses/EE5311/lecture_notes/module... · EE5311- Digital IC Design Module 3 - The Inverter ... pLH Fall delay ... tot = (C LV 2 DD +V DDI peakt

Static Power

ON

ONVDD VDD 00

Isubn

Isubp

Figure: NMOS or PMOS leaks current

Pstat = IstatVDD

Ptot = Pdyn + Psc + Pstat

Ptot = (CLV2DD + VDD Ipeakts)f0→1 + VDD Ileak

Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 28/37

Page 29: EE5311- Digital IC Designjanakiraman/courses/EE5311/lecture_notes/module... · EE5311- Digital IC Design Module 3 - The Inverter ... pLH Fall delay ... tot = (C LV 2 DD +V DDI peakt

Stacking Effect The intermedaite node : 0 < VX < VDD

Exponentially reduces the leakage of the series stack(I2 << I1)

Increase in VTH of the top transistor due to body effect

IBOT = ITOP

VDD0

0

0

VX

VDD0 I1

I2

VGS = 0

VGS = −VX , VSB = VX

ITOP ∝ e(−VX−VTn)/nφt

IBOT ∝ e(−VTn)/nφt

0

Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 29/37

Page 30: EE5311- Digital IC Designjanakiraman/courses/EE5311/lecture_notes/module... · EE5311- Digital IC Design Module 3 - The Inverter ... pLH Fall delay ... tot = (C LV 2 DD +V DDI peakt

Process Variations

Impossible to manufacture tiny dimensions accurately

Variations are not avoidable

Process Parameters : TOX , NA, Le xj , µn, µp seevariations

Performance Parameters: Currents and Voltages

Process variation information (µ, σ) are provided todesigners

Performance parameter variation in simulation shouldmatch measured variations

Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 30/37

Page 31: EE5311- Digital IC Designjanakiraman/courses/EE5311/lecture_notes/module... · EE5311- Digital IC Design Module 3 - The Inverter ... pLH Fall delay ... tot = (C LV 2 DD +V DDI peakt

Process Variations

SHOULD MATCH

MA

NU

FAC

TU

RIN

G

WAFER : 200mm (8 in) or 300mm (12 in)

SIM

UL

AT

ION

IMEASD,1

IMEASD,2

IMEASD,3

NA

Le

ISIMD

Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 31/37

Page 32: EE5311- Digital IC Designjanakiraman/courses/EE5311/lecture_notes/module... · EE5311- Digital IC Design Module 3 - The Inverter ... pLH Fall delay ... tot = (C LV 2 DD +V DDI peakt

Global Variations

WAFER : 200mm (8 in) or 300mm (12 in)

CHIP 1

IMEASD,1

IMEASD,1

DIFFERENT

SAME

IMEASD,2

IMEASD,2

CHIP 2

All transistors within a chip affected in the same way

Transistors in different chips across the wafer affecteddifferently

Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 32/37

Page 33: EE5311- Digital IC Designjanakiraman/courses/EE5311/lecture_notes/module... · EE5311- Digital IC Design Module 3 - The Inverter ... pLH Fall delay ... tot = (C LV 2 DD +V DDI peakt

Global Variations

SLO

W P

WAFER : 200mm (8 in) or 300mm (12 in)

CHIP 2CHIP 1

FAST

PSLO

W N

FAST

N

IMEASDP,1

IMEASDP,2

IMEASDN,2

IMEASDN,1

Manufacturing process of (N and P)MOS are different Transistors end up being Fast (F), Slow (S) or Typical (T) All N can get biased in one direction All P can get biased in another Corner simulation (N,P) : (TT, FS, FF, SF, SS)

Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 33/37

Page 34: EE5311- Digital IC Designjanakiraman/courses/EE5311/lecture_notes/module... · EE5311- Digital IC Design Module 3 - The Inverter ... pLH Fall delay ... tot = (C LV 2 DD +V DDI peakt

Local Variations

Transistors sitting right next to each other will be different

Happens mainly due to Random Dopant Fluctuation

Large transistors are affect lesser than small ones(σLocal ∝

1√LW

)

Requires large number of statistical simulations to ensurecorrect functionality

Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 34/37

Page 35: EE5311- Digital IC Designjanakiraman/courses/EE5311/lecture_notes/module... · EE5311- Digital IC Design Module 3 - The Inverter ... pLH Fall delay ... tot = (C LV 2 DD +V DDI peakt

Ring Oscillators Excellent process monitors Good representative of all digital circuits Can be added by the FAB in Kerf regions or by designers

in their chip Measure the frequency of oscilations to determine the

global process corner Can be added in multiple corners of a large chip to

measure any across chip variation

2N + 1 Inverters

TP

Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 35/37

Page 36: EE5311- Digital IC Designjanakiraman/courses/EE5311/lecture_notes/module... · EE5311- Digital IC Design Module 3 - The Inverter ... pLH Fall delay ... tot = (C LV 2 DD +V DDI peakt

Ring Oscillators

2N + 1 Inverters

EN

TP

TP ≈ 2x(2N + 1)τinv

EN = 0 prevents any oscillations - Saves dynamic power

Usually a couple of 100 INV long

Very high frequency of oscillations

Divided several times before being brought out of the chip

Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 36/37

Page 37: EE5311- Digital IC Designjanakiraman/courses/EE5311/lecture_notes/module... · EE5311- Digital IC Design Module 3 - The Inverter ... pLH Fall delay ... tot = (C LV 2 DD +V DDI peakt

References

The material presented here is based on the following books/lecture notes

1. Digital Integrated Circuits Jan M. Rabaey, AnanthaChandrakasan and Borivoje Nikolic 2nd Edition, PrenticeHall India

Janakiraman, IITM EE5311- Digital IC Design, Module 3 - The Inverter 37/37