elasticity, caged dynamics and thermodynamics: three (related) scalings of the relaxation in...

43
Elasticity, caged dynamics and thermodynamics: three (related) scalings of the relaxation in glassforming systems Francesco Puosi 1 , Dino Leporini 2,3 1 LIPHY, Université Joseph Fourier, Saint Martin d’Hères, France 2 Dipartimento di Fisica “Enrico Fermi”, Universita’ di Pisa, Pisa, Italia 3 IPCF/CNR, UoS Pisa, Italia

Upload: landen-higson

Post on 16-Dec-2015

217 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Elasticity, caged dynamics and thermodynamics: three (related) scalings of the relaxation in glassforming systems Francesco Puosi 1, Dino Leporini 2,3

Elasticity, caged dynamics and thermodynamics: three (related) scalings of

the relaxation in glassforming systems

Francesco Puosi 1, Dino Leporini 2,3

1 LIPHY, Université Joseph Fourier, Saint Martin d’Hères, France2 Dipartimento di Fisica “Enrico Fermi”, Universita’ di Pisa, Pisa, Italia

3 IPCF/CNR, UoS Pisa, Italia

Page 2: Elasticity, caged dynamics and thermodynamics: three (related) scalings of the relaxation in glassforming systems Francesco Puosi 1, Dino Leporini 2,3

Debenedetti and Stillinger, 2001

Structural arrest

< u2 >1/2

Random walk: cage effect

Structural arrest and particle trapping in deeply supercooled states

Log

h

(Poi

se)

Page 3: Elasticity, caged dynamics and thermodynamics: three (related) scalings of the relaxation in glassforming systems Francesco Puosi 1, Dino Leporini 2,3

Debenedetti and Stillinger, 2001

Structural arrest

OUTLINE

• Cage scaling: ta , h vs. Debye-Waller factor <u2>

< u2 >1/2

Structural arrest and particle trapping in deeply supercooled states

Log

h

(Poi

se)

Random walk: cage effect

Page 4: Elasticity, caged dynamics and thermodynamics: three (related) scalings of the relaxation in glassforming systems Francesco Puosi 1, Dino Leporini 2,3

Debenedetti and Stillinger, 2001

Structural arrest

OUTLINE

• Cage scaling: ta , h vs. Debye-Waller factor <u2>

• Elastic scaling: ta , h vs. elastic modulus G

- Elastic scaling and cage scaling: <u2> vs. G/T

< u2 >1/2

Structural arrest and particle trapping in deeply supercooled states

Log

h

(Poi

se)

Random walk: cage effect

Page 5: Elasticity, caged dynamics and thermodynamics: three (related) scalings of the relaxation in glassforming systems Francesco Puosi 1, Dino Leporini 2,3

Debenedetti and Stillinger, 2001

Structural arrest

OUTLINE

• Cage scaling: ta , h vs. Debye-Waller factor <u2>

• Elastic scaling: ta , h vs. elastic modulus G

- Elastic scaling and cage scaling: <u2> vs. G/T

• Thermodynamic scaling: ta , h vs. rg/T, (density r and temperature T )

- Thermodynamic scaling and cage scaling: <u2> vs. rg/T

< u2 >1/2

Structural arrest and particle trapping in deeply supercooled states

Log

h

(Poi

se)

Random walk: cage effect

Page 6: Elasticity, caged dynamics and thermodynamics: three (related) scalings of the relaxation in glassforming systems Francesco Puosi 1, Dino Leporini 2,3

Debenedetti and Stillinger, 2001

Structural arrest

OUTLINE

• Cage scaling: ta , h vs. Debye-Waller factor <u2>

• Elastic scaling: ta , h vs. elastic modulus G

- Elastic scaling and cage scaling: <u2> vs. G/T

• Thermodynamic scaling: ta , h vs. rg/T, (density r and temperature T )

- Thermodynamic scaling and cage scaling: <u2> vs. rg/T

• Conclusions

< u2 >1/2

Structural arrest and particle trapping in deeply supercooled states

Log

h

(Poi

se)

Random walk: cage effect

Page 7: Elasticity, caged dynamics and thermodynamics: three (related) scalings of the relaxation in glassforming systems Francesco Puosi 1, Dino Leporini 2,3

<u2> = f(G/T ) <u2> = y(rg/T )

ta = F[ f(G/T )] ta = F[y(rg/T ) ]

ta = F[ <u2> ]

Elastic scaling

“universal” master curve

Thermodynamic scaling

material-dependent master curve

< u2 >1/2

Cage scaling

Page 8: Elasticity, caged dynamics and thermodynamics: three (related) scalings of the relaxation in glassforming systems Francesco Puosi 1, Dino Leporini 2,3

ta = F[ <u2> ]

< u2 >1/2

Cage scaling

…echoes the Lindemann melting criterion

Hall & Wolynes 87, Buchenau & Zorn 92, Ngai 2000, Starr et al 2002, Harrowell et al 2006, Larini et al 2008…

Page 9: Elasticity, caged dynamics and thermodynamics: three (related) scalings of the relaxation in glassforming systems Francesco Puosi 1, Dino Leporini 2,3

Log t

Log

MSD

Log <u2>

Log t*F. Puosi, DL, JPCB (2011)

Log ta

Cage scaling: evidence from the Van Hove function

< u2 >1/2

MSD(t*) = <u2>

Page 10: Elasticity, caged dynamics and thermodynamics: three (related) scalings of the relaxation in glassforming systems Francesco Puosi 1, Dino Leporini 2,3

Log t

Log

MSD

Log <u2>

Log t*F. Puosi, DL, JPCB (2011)

Log ta

Cage scaling: evidence from the Van Hove function

Gs(X) (r, t*) = Gs

(Y) (r, t*) Gs(X) (r, t a ) = Gs

(Y) (r, , t a )

X, Y : generic states

< u2 >1/2

MSD(t*) = <u2>

Page 11: Elasticity, caged dynamics and thermodynamics: three (related) scalings of the relaxation in glassforming systems Francesco Puosi 1, Dino Leporini 2,3

Log t

Log

MSD

Log <u2>

Log t*F. Puosi, DL, JPCB (2011)

Log ta

Cage scaling: evidence from the Van Hove function

Polymer melt

Gs(X) (r, t*) = Gs

(Y) (r, t*) Gs(X) (r, t a ) = Gs

(Y) (r, , t a )

X, Y : generic states

< u2 >1/2

MSD(t*) = <u2>

Page 12: Elasticity, caged dynamics and thermodynamics: three (related) scalings of the relaxation in glassforming systems Francesco Puosi 1, Dino Leporini 2,3

Log t

Log

MSD

Log <u2>

Log t*F. Puosi, DL, JPCB (2011)

Log ta

Cage scaling: evidence from the Van Hove function

Polymer melt

Gs(X) (r, t*) = Gs

(Y) (r, t*) Gs(X) (r, t a ) = Gs

(Y) (r, , t a )

Jumps !

X, Y : generic states

< u2 >1/2

MSD(t*) = <u2>

Page 13: Elasticity, caged dynamics and thermodynamics: three (related) scalings of the relaxation in glassforming systems Francesco Puosi 1, Dino Leporini 2,3

Log

MSD

Log <u2>

F. Puosi, C. De Michele, DL, JCP 138, 12A532 (2013)

Binary mixture

Log tLog t* Log ta

Cage scaling: evidence from the Van Hove function

Gs(X) (r, t*) = Gs

(Y) (r, t*) Gs(X) (r, t a ) = Gs

(Y) (r, , t a )

X, Y : generic states

< u2 >1/2

MSD(t*) = <u2>

Page 14: Elasticity, caged dynamics and thermodynamics: three (related) scalings of the relaxation in glassforming systems Francesco Puosi 1, Dino Leporini 2,3

Log

MSD

Log <u2>

Log tLog t* Log ta

Cage scaling: implications

Polymer melt

< u2 >1/2

t*

MSD(t*) = <u2>

Page 15: Elasticity, caged dynamics and thermodynamics: three (related) scalings of the relaxation in glassforming systems Francesco Puosi 1, Dino Leporini 2,3

A. Ottochian, C. De Michele, DL, JCP (2009)

Binary mixture, polymer melt

Cage scaling: implications

“rule of thumb 1”

Log

MSD

Log <u2>

Log tLog t* Log ta

< u2 >1/2

MSD(t*) = <u2>

Page 16: Elasticity, caged dynamics and thermodynamics: three (related) scalings of the relaxation in glassforming systems Francesco Puosi 1, Dino Leporini 2,3

C. De Michele, E. Del Gado, DL, Soft Matter (2011)

Cage scaling: implications

“rule of thumb 1”

Log

MSD

Log <u2>

Log tLog t* Log ta

< u2 >1/2

Colloidal gel

MSD(t*) = <u2>

Page 17: Elasticity, caged dynamics and thermodynamics: three (related) scalings of the relaxation in glassforming systems Francesco Puosi 1, Dino Leporini 2,3

C. De Michele, DL, unpublishedF. Puosi, DL, JPCB (2011)

Binary mixturePolymer melt

Cage scaling: implications

“rule of thumb 2”

t

Page 18: Elasticity, caged dynamics and thermodynamics: three (related) scalings of the relaxation in glassforming systems Francesco Puosi 1, Dino Leporini 2,3

Cage scaling: experimental evidence

L. Larini et al, Nature Phys. (2008)

• Master curve taken from MD simulation• 1 adjustable parameter: t0 or h0

Page 19: Elasticity, caged dynamics and thermodynamics: three (related) scalings of the relaxation in glassforming systems Francesco Puosi 1, Dino Leporini 2,3

<u2> = f(G/T )

ta = F[ f(G/T )]

ta = F[ <u2> ]

Elastic scaling

< u2 >1/2

Cage scaling

Elastic models: see RMP review by Dyre (2006)

Page 20: Elasticity, caged dynamics and thermodynamics: three (related) scalings of the relaxation in glassforming systems Francesco Puosi 1, Dino Leporini 2,3

Log t

G(t)

Gp = G(t*)

Initial affine response, total force per particle unbalanced

F.Puosi, DL, JCP 041104 (2012)

Elastic scaling in polymer melts

N.B.:MSD(t*) = <u2>

Transient shear modulus

Page 21: Elasticity, caged dynamics and thermodynamics: three (related) scalings of the relaxation in glassforming systems Francesco Puosi 1, Dino Leporini 2,3

Log t

G(t)

Gp = G(t*)“Inherent” dynamics:particle moved to the local potential energy minimum

Initial affine response, total force per particle unbalanced

Fast mechanical equilibration

F.Puosi, DL, JCP 041104 (2012)

Elastic scaling in polymer melts

N.B.:MSD(t*) = <u2>

Transient shear modulus

Page 22: Elasticity, caged dynamics and thermodynamics: three (related) scalings of the relaxation in glassforming systems Francesco Puosi 1, Dino Leporini 2,3

G(t)

G∞

Gp

t* ~ 1-10 ps Log tta

Affine elasticity

F.Puosi, DL, JCP 041104 (2012)

Elastic scaling in polymer melts

Page 23: Elasticity, caged dynamics and thermodynamics: three (related) scalings of the relaxation in glassforming systems Francesco Puosi 1, Dino Leporini 2,3

G(t)

G∞

Gp

Log tta F.Puosi, DL, JCP 041104 (2012)

Elastic scaling in polymer melts

t* ~ 1-10 ps

Page 24: Elasticity, caged dynamics and thermodynamics: three (related) scalings of the relaxation in glassforming systems Francesco Puosi 1, Dino Leporini 2,3

Master curve: Log ta = a + b G/T + g [ G/T ]2 a, , :b g constants

Modulus term matters: evidence from one isothermal set

Not another variant of the Vogel-Fulcher law t a = f(T)…

Elastic scaling in polymer melts

No adjustments

Page 25: Elasticity, caged dynamics and thermodynamics: three (related) scalings of the relaxation in glassforming systems Francesco Puosi 1, Dino Leporini 2,3

1/ <

u2 >Elastic scaling: building the master curve

MD simulations: polymer

G/ T

• The elastic scaling works for the Debye-Waller factor <u2>,

F.Puosi, DL, arXiv:1108.4629v1, to be submitted

Page 26: Elasticity, caged dynamics and thermodynamics: three (related) scalings of the relaxation in glassforming systems Francesco Puosi 1, Dino Leporini 2,3

1/ <

u2 >

MD simulations: polymer

G/ T

• The elastic scaling works for the Debye-Waller factor <u2>,

Elastic scaling: building the master curve

F.Puosi, DL, arXiv:1108.4629v1, to be submitted

Page 27: Elasticity, caged dynamics and thermodynamics: three (related) scalings of the relaxation in glassforming systems Francesco Puosi 1, Dino Leporini 2,3

1/ <

u2 >

ta = F[ <u2> ]

<u 2> = f(G/T )

MD simulations: polymer

G/ T

ta = F[ f(G/T )]

• The elastic scaling works for the Debye-Waller factor <u2>,

Elastic scaling: building the master curve

F.Puosi, DL, arXiv:1108.4629v1, to be submitted

Page 28: Elasticity, caged dynamics and thermodynamics: three (related) scalings of the relaxation in glassforming systems Francesco Puosi 1, Dino Leporini 2,3

ta = F[ f(G/T )]

1/ <

u2 >

G/ T

ta = F[ <u2> ]

<u 2> = f(G/T )

Experiments

G/T • ( Tg /Gg )

• The elastic scaling works for the Debye-Waller factor <u2>,

• the experimental master curve follows from the MD simulations

Elastic scaling: building the master curve

F.Puosi, DL, arXiv:1108.4629v1, to be submitted

Page 29: Elasticity, caged dynamics and thermodynamics: three (related) scalings of the relaxation in glassforming systems Francesco Puosi 1, Dino Leporini 2,3

<u2> = y(rg/T )

ta = F[y(rg/T ) ]

ta = F[ <u2> ]

Thermodynamic scaling

< u2 >1/2

Cage scaling

Thermodynamic scaling: see review by Roland et al, Rep. Prog. Phys. (2005)

Page 30: Elasticity, caged dynamics and thermodynamics: three (related) scalings of the relaxation in glassforming systems Francesco Puosi 1, Dino Leporini 2,3

Thermodynamic scaling in Kob-Andersen binary mixture

F. Puosi, C. De Michele, DL, JCP 138, 12A532 (2013)

• The thermodynamic scaling works for the Debye-Waller factor <u2>,

rg/T

Page 31: Elasticity, caged dynamics and thermodynamics: three (related) scalings of the relaxation in glassforming systems Francesco Puosi 1, Dino Leporini 2,3

Thermodynamic scaling in Kob-Andersen binary mixture

rg/T F. Puosi, C. De Michele, DL, JCP 138, 12A532 (2013)

• The thermodynamic scaling works for the Debye-Waller factor <u2>,

Cage scaling fails for ta < 1

Page 32: Elasticity, caged dynamics and thermodynamics: three (related) scalings of the relaxation in glassforming systems Francesco Puosi 1, Dino Leporini 2,3

Thermodynamic scaling in Kob-Andersen binary mixture

rg/T F. Puosi, C. De Michele, DL, JCP 138, 12A532 (2013)

<u 2> = y(r g/T )

ta = F[y(rg/T )]

ta = F[ <u2> ]

Cage scaling fails for ta < 1

• The thermodynamic scaling works for the Debye-Waller factor <u2>,

Page 33: Elasticity, caged dynamics and thermodynamics: three (related) scalings of the relaxation in glassforming systems Francesco Puosi 1, Dino Leporini 2,3

propylen carbonate

F. Puosi, O. Chulkin, S. Capaccioli, DL to be submitted

The master curve of the thermodynamic scaling follows from the MD simulations with one adjustable parameter: the isochoric fragility

Thermodynamic scaling from Debye-Waller factor: comparison with the experiment

preliminary results

Page 34: Elasticity, caged dynamics and thermodynamics: three (related) scalings of the relaxation in glassforming systems Francesco Puosi 1, Dino Leporini 2,3

< u2 >1/2

Conclusions

• Cage scaling ( ta vs <u2> ): - Results suggest that <u2> is a “universal” picosecond predictor of the a relaxation. - Tested on different MD models: polymers, binary atomic mixtures, colloidal gels…- The MD master curve fits (with one adjustable parameter) the scaling of the experimental data covering over ~ 18 decades in t a drawn by glassformers in the fragility range 20 ≤ m ≤ 190.

Page 35: Elasticity, caged dynamics and thermodynamics: three (related) scalings of the relaxation in glassforming systems Francesco Puosi 1, Dino Leporini 2,3

< u2 >1/2

Conclusions

• Cage scaling ( ta vs <u2> ): - Results suggest that <u2> is a “universal” picosecond predictor of the a relaxation. - Tested on different MD models: polymers, binary atomic mixtures, colloidal gels…- The MD master curve fits (with one adjustable parameter) the scaling of the experimental data covering over ~ 18 decades in t a drawn by glassformers in the fragility range 20 ≤ m ≤ 190.

• Elastic scaling ( ta vs G/T):- Intermediate-time shear elasticity and <u2> are highly correlated.

- MD master curve ta vs G/T drawn by using the cage scaling.

- The MD master curve fits (with one adjustable parameter) the scaling of the experimental data covering over ~ 18 decades in t a drawn by glassformers in the fragility range 20 ≤ m ≤ 115.

Page 36: Elasticity, caged dynamics and thermodynamics: three (related) scalings of the relaxation in glassforming systems Francesco Puosi 1, Dino Leporini 2,3

< u2 >1/2

Conclusions

• Cage scaling ( ta vs <u2> ): - Results suggest that <u2> is a “universal” picosecond predictor of the a relaxation. - Tested on different MD models: polymers, binary atomic mixtures, colloidal gels…- The MD master curve fits (with one adjustable parameter) the scaling of the experimental data covering over ~ 18 decades in t a drawn by glassformers in the fragility range 20 ≤ m ≤ 190.

• Elastic scaling ( ta vs G/T):- Intermediate-time shear elasticity and <u2> are highly correlated.

- MD master curve ta vs G/T drawn by using the cage scaling.

- The MD master curve fits (with one adjustable parameter) the scaling of the experimental data covering over ~ 18 decades in t a drawn by glassformers in the fragility range 20 ≤ m ≤ 115.

• Thermodynamic scaling ( ta vs rg/T )- <u2> scales with rg/T . Extensive MD simulations in progress- MD master curve ta vs rg/T drawn by using the cage scaling.

- Good comparison with the experimental data on a single glassformer (13 decades in t a ) by adjusting the isochoric fragility only. Work in progress…

Page 37: Elasticity, caged dynamics and thermodynamics: three (related) scalings of the relaxation in glassforming systems Francesco Puosi 1, Dino Leporini 2,3

Collaborators:

• C. De Michele, Ric TD Roma• L. Larini, Ass. Prof. Rutgers University• A. Ottochian, Postdoc ’Ecole Centrale Paris• F. Puosi, Postdoc Univ. Grenoble 1• S. Bernini PhD Pisa• O. Chulkin Postdoc Odessa• M. Barucco Graduate Pisa

Credits

Page 38: Elasticity, caged dynamics and thermodynamics: three (related) scalings of the relaxation in glassforming systems Francesco Puosi 1, Dino Leporini 2,3

1/ <

u2 >

G/ T

<u2 >

rg / T

Page 39: Elasticity, caged dynamics and thermodynamics: three (related) scalings of the relaxation in glassforming systems Francesco Puosi 1, Dino Leporini 2,3

t* ~ 1-10 psLog t

Log ta

Log

< D

r 2 (t

) >

Log <u2>

Log t*

Log t

Log

F s (

q m

ax , t

)

< u2 >1/2

Page 40: Elasticity, caged dynamics and thermodynamics: three (related) scalings of the relaxation in glassforming systems Francesco Puosi 1, Dino Leporini 2,3

C. De Michele, F. Puosi, DL, unpublishedF. Puosi, DL, JPCB (2011)

Page 41: Elasticity, caged dynamics and thermodynamics: three (related) scalings of the relaxation in glassforming systems Francesco Puosi 1, Dino Leporini 2,3

MD simulations

Density r

Temperature T

Chain length M (polymer) Potential: p, q

Page 42: Elasticity, caged dynamics and thermodynamics: three (related) scalings of the relaxation in glassforming systems Francesco Puosi 1, Dino Leporini 2,3

1017 s (eta’ dell’universo)t a ~ 10 26 s< u2 >1/2

First “universal” scaling: structural relaxation time ta or viscosity h vs.Debye-Waller factor < u2> (rattling amplitude in the cage)

Page 43: Elasticity, caged dynamics and thermodynamics: three (related) scalings of the relaxation in glassforming systems Francesco Puosi 1, Dino Leporini 2,3

Log

MSD

Log <u2>

Log tLog t* Log ta

Cage scaling: implications

Gs(X) (r, t*) = Gs

(Y) (r, t*) Gs(X) (r, t a ) = Gs

(Y) (r, , t a )

Polymer melt