francesco puosi 1 , dino leporini 2,3

43
Elasticity, caged dynamics and thermodynamics: three (related) scalings of the relaxation in glassforming systems Francesco Puosi 1 , Dino Leporini 2,3 1 LIPHY, Université Joseph Fourier, Saint Martin d’Hères, France 2 Dipartimento di Fisica “Enrico Fermi”, Universita’ di Pisa, Pisa, Italia 3 IPCF/CNR, UoS Pisa, Italia

Upload: lavi

Post on 23-Feb-2016

49 views

Category:

Documents


1 download

DESCRIPTION

Elasticity, caged dynamics and thermodynamics: three (related) scalings of the relaxation in glassforming systems. Francesco Puosi 1 , Dino Leporini 2,3 1 LIPHY , Université Joseph Fourier , Saint Martin d’Hères , France - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Francesco  Puosi 1 ,  Dino Leporini  2,3

Elasticity, caged dynamics and thermodynamics: three (related) scalings of

the relaxation in glassforming systems

Francesco Puosi 1, Dino Leporini 2,3

1 LIPHY, Université Joseph Fourier, Saint Martin d’Hères, France2 Dipartimento di Fisica “Enrico Fermi”, Universita’ di Pisa, Pisa, Italia

3 IPCF/CNR, UoS Pisa, Italia

Page 2: Francesco  Puosi 1 ,  Dino Leporini  2,3

Debenedetti and Stillinger, 2001

Structural arrest

< u2 >1/2

Random walk: cage effect

Structural arrest and particle trapping in deeply supercooled states

Log h

(Poi

se)

Page 3: Francesco  Puosi 1 ,  Dino Leporini  2,3

Debenedetti and Stillinger, 2001

Structural arrest

OUTLINE

• Cage scaling: ta , h vs. Debye-Waller factor <u2>

< u2 >1/2

Structural arrest and particle trapping in deeply supercooled states

Log h

(Poi

se)

Random walk: cage effect

Page 4: Francesco  Puosi 1 ,  Dino Leporini  2,3

Debenedetti and Stillinger, 2001

Structural arrest

OUTLINE

• Cage scaling: ta , h vs. Debye-Waller factor <u2>

• Elastic scaling: ta , h vs. elastic modulus G

- Elastic scaling and cage scaling: <u2> vs. G/T

< u2 >1/2

Structural arrest and particle trapping in deeply supercooled states

Log h

(Poi

se)

Random walk: cage effect

Page 5: Francesco  Puosi 1 ,  Dino Leporini  2,3

Debenedetti and Stillinger, 2001

Structural arrest

OUTLINE

• Cage scaling: ta , h vs. Debye-Waller factor <u2>

• Elastic scaling: ta , h vs. elastic modulus G

- Elastic scaling and cage scaling: <u2> vs. G/T

• Thermodynamic scaling: ta , h vs. rg/T, (density r and temperature T )

- Thermodynamic scaling and cage scaling: <u2> vs. rg/T

< u2 >1/2

Structural arrest and particle trapping in deeply supercooled states

Log h

(Poi

se)

Random walk: cage effect

Page 6: Francesco  Puosi 1 ,  Dino Leporini  2,3

Debenedetti and Stillinger, 2001

Structural arrest

OUTLINE

• Cage scaling: ta , h vs. Debye-Waller factor <u2>

• Elastic scaling: ta , h vs. elastic modulus G

- Elastic scaling and cage scaling: <u2> vs. G/T

• Thermodynamic scaling: ta , h vs. rg/T, (density r and temperature T )

- Thermodynamic scaling and cage scaling: <u2> vs. rg/T

• Conclusions

< u2 >1/2

Structural arrest and particle trapping in deeply supercooled states

Log h

(Poi

se)

Random walk: cage effect

Page 7: Francesco  Puosi 1 ,  Dino Leporini  2,3

<u2> = f(G/T ) <u2> = y(rg/T )

ta = F[ f(G/T )] ta = F[y(rg/T ) ]

ta = F[ <u2> ]

Elastic scaling

“universal” master curve

Thermodynamic scaling

material-dependent master curve

< u2 >1/2

Cage scaling

Page 8: Francesco  Puosi 1 ,  Dino Leporini  2,3

ta = F[ <u2> ]

< u2 >1/2

Cage scaling

…echoes the Lindemann melting criterion

Hall & Wolynes 87, Buchenau & Zorn 92, Ngai 2000, Starr et al 2002, Harrowell et al 2006, Larini et al 2008…

Page 9: Francesco  Puosi 1 ,  Dino Leporini  2,3

Log t

Log

MSD

Log <u2>

Log t*F. Puosi, DL, JPCB (2011)

Log ta

Cage scaling: evidence from the Van Hove function

< u2 >1/2

MSD(t*) = <u2>

Page 10: Francesco  Puosi 1 ,  Dino Leporini  2,3

Log t

Log

MSD

Log <u2>

Log t*F. Puosi, DL, JPCB (2011)

Log ta

Cage scaling: evidence from the Van Hove function

Gs(X) (r, t*) = Gs

(Y) (r, t*) Gs(X) (r, ta ) = Gs

(Y) (r, , ta )

X, Y : generic states

< u2 >1/2

MSD(t*) = <u2>

Page 11: Francesco  Puosi 1 ,  Dino Leporini  2,3

Log t

Log

MSD

Log <u2>

Log t*F. Puosi, DL, JPCB (2011)

Log ta

Cage scaling: evidence from the Van Hove function

Polymer melt

Gs(X) (r, t*) = Gs

(Y) (r, t*) Gs(X) (r, ta ) = Gs

(Y) (r, , ta )

X, Y : generic states

< u2 >1/2

MSD(t*) = <u2>

Page 12: Francesco  Puosi 1 ,  Dino Leporini  2,3

Log t

Log

MSD

Log <u2>

Log t*F. Puosi, DL, JPCB (2011)

Log ta

Cage scaling: evidence from the Van Hove function

Polymer melt

Gs(X) (r, t*) = Gs

(Y) (r, t*) Gs(X) (r, ta ) = Gs

(Y) (r, , ta )

Jumps !

X, Y : generic states

< u2 >1/2

MSD(t*) = <u2>

Page 13: Francesco  Puosi 1 ,  Dino Leporini  2,3

Log

MSD

Log <u2>

F. Puosi, C. De Michele, DL, JCP 138, 12A532 (2013)

Binary mixture

Log tLog t* Log ta

Cage scaling: evidence from the Van Hove function

Gs(X) (r, t*) = Gs

(Y) (r, t*) Gs(X) (r, ta ) = Gs

(Y) (r, , ta )

X, Y : generic states

< u2 >1/2

MSD(t*) = <u2>

Page 14: Francesco  Puosi 1 ,  Dino Leporini  2,3

Log

MSD

Log <u2>

Log tLog t* Log ta

Cage scaling: implications

Polymer melt

< u2 >1/2

t*

MSD(t*) = <u2>

Page 15: Francesco  Puosi 1 ,  Dino Leporini  2,3

A. Ottochian, C. De Michele, DL, JCP (2009)

Binary mixture, polymer melt

Cage scaling: implications

“rule of thumb 1”

Log

MSD

Log <u2>

Log tLog t* Log ta

< u2 >1/2

MSD(t*) = <u2>

Page 16: Francesco  Puosi 1 ,  Dino Leporini  2,3

C. De Michele, E. Del Gado, DL, Soft Matter (2011)

Cage scaling: implications

“rule of thumb 1”

Log

MSD

Log <u2>

Log tLog t* Log ta

< u2 >1/2

Colloidal gel

MSD(t*) = <u2>

Page 17: Francesco  Puosi 1 ,  Dino Leporini  2,3

C. De Michele, DL, unpublishedF. Puosi, DL, JPCB (2011)

Binary mixturePolymer melt

Cage scaling: implications

“rule of thumb 2”

t

Page 18: Francesco  Puosi 1 ,  Dino Leporini  2,3

Cage scaling: experimental evidence

L. Larini et al, Nature Phys. (2008)

• Master curve taken from MD simulation• 1 adjustable parameter: t0 or h0

Page 19: Francesco  Puosi 1 ,  Dino Leporini  2,3

<u2> = f(G/T )

ta = F[ f(G/T )]

ta = F[ <u2> ]

Elastic scaling

< u2 >1/2

Cage scaling

Elastic models: see RMP review by Dyre (2006)

Page 20: Francesco  Puosi 1 ,  Dino Leporini  2,3

Log t

G(t)

Gp = G(t*)

Initial affine response, total force per particle unbalanced

F.Puosi, DL, JCP 041104 (2012)

Elastic scaling in polymer melts

N.B.:MSD(t*) = <u2>

Transient shear modulus

Page 21: Francesco  Puosi 1 ,  Dino Leporini  2,3

Log t

G(t)

Gp = G(t*)“Inherent” dynamics:particle moved to the local potential energy minimum

Initial affine response, total force per particle unbalanced

Fast mechanical equilibration

F.Puosi, DL, JCP 041104 (2012)

Elastic scaling in polymer melts

N.B.:MSD(t*) = <u2>

Transient shear modulus

Page 22: Francesco  Puosi 1 ,  Dino Leporini  2,3

G(t)

G∞

Gp

t* ~ 1-10 ps Log tta

Affine elasticity

F.Puosi, DL, JCP 041104 (2012)

Elastic scaling in polymer melts

Page 23: Francesco  Puosi 1 ,  Dino Leporini  2,3

G(t)

G∞

Gp

Log tta F.Puosi, DL, JCP 041104 (2012)

Elastic scaling in polymer melts

t* ~ 1-10 ps

Page 24: Francesco  Puosi 1 ,  Dino Leporini  2,3

Master curve: Log ta = a + b G/T + g [ G/T ]2 a, b, g : constants

Modulus term matters: evidence from one isothermal set

Not another variant of the Vogel-Fulcher law ta = f(T)…

Elastic scaling in polymer melts

No adjustments

Page 25: Francesco  Puosi 1 ,  Dino Leporini  2,3

1/ <

u2 >Elastic scaling: building the master curve

MD simulations: polymer

G/ T

• The elastic scaling works for the Debye-Waller factor <u2>,

F.Puosi, DL, arXiv:1108.4629v1, to be submitted

Page 26: Francesco  Puosi 1 ,  Dino Leporini  2,3

1/ <

u2 >

MD simulations: polymer

G/ T

• The elastic scaling works for the Debye-Waller factor <u2>,

Elastic scaling: building the master curve

F.Puosi, DL, arXiv:1108.4629v1, to be submitted

Page 27: Francesco  Puosi 1 ,  Dino Leporini  2,3

1/ <

u2 >

ta = F[ <u2> ]

<u 2> = f(G/T )

MD simulations: polymer

G/ T

ta = F[ f(G/T )]

• The elastic scaling works for the Debye-Waller factor <u2>,

Elastic scaling: building the master curve

F.Puosi, DL, arXiv:1108.4629v1, to be submitted

Page 28: Francesco  Puosi 1 ,  Dino Leporini  2,3

ta = F[ f(G/T )]

1/ <

u2 >

G/ T

ta = F[ <u2> ]

<u 2> = f(G/T )

Experiments

G/T • ( Tg /Gg )

• The elastic scaling works for the Debye-Waller factor <u2>,

• the experimental master curve follows from the MD simulations

Elastic scaling: building the master curve

F.Puosi, DL, arXiv:1108.4629v1, to be submitted

Page 29: Francesco  Puosi 1 ,  Dino Leporini  2,3

<u2> = y(rg/T )

ta = F[y(rg/T ) ]

ta = F[ <u2> ]

Thermodynamic scaling

< u2 >1/2

Cage scaling

Thermodynamic scaling: see review by Roland et al, Rep. Prog. Phys. (2005)

Page 30: Francesco  Puosi 1 ,  Dino Leporini  2,3

Thermodynamic scaling in Kob-Andersen binary mixture

F. Puosi, C. De Michele, DL, JCP 138, 12A532 (2013)

• The thermodynamic scaling works for the Debye-Waller factor <u2>,

rg/T

Page 31: Francesco  Puosi 1 ,  Dino Leporini  2,3

Thermodynamic scaling in Kob-Andersen binary mixture

rg/T F. Puosi, C. De Michele, DL, JCP 138, 12A532 (2013)

• The thermodynamic scaling works for the Debye-Waller factor <u2>,

Cage scaling fails for ta < 1

Page 32: Francesco  Puosi 1 ,  Dino Leporini  2,3

Thermodynamic scaling in Kob-Andersen binary mixture

rg/T F. Puosi, C. De Michele, DL, JCP 138, 12A532 (2013)

<u 2> = y(r g/T )

ta = F[y(rg/T )]

ta = F[ <u2> ]

Cage scaling fails for ta < 1

• The thermodynamic scaling works for the Debye-Waller factor <u2>,

Page 33: Francesco  Puosi 1 ,  Dino Leporini  2,3

propylen carbonate

F. Puosi, O. Chulkin, S. Capaccioli, DL to be submitted

The master curve of the thermodynamic scaling follows from the MD simulations with one adjustable parameter: the isochoric fragility

Thermodynamic scaling from Debye-Waller factor: comparison with the experiment

preliminary results

Page 34: Francesco  Puosi 1 ,  Dino Leporini  2,3

< u2 >1/2

Conclusions

• Cage scaling ( ta vs <u2> ): - Results suggest that <u2> is a “universal” picosecond predictor of the a relaxation. - Tested on different MD models: polymers, binary atomic mixtures, colloidal gels…- The MD master curve fits (with one adjustable parameter) the scaling of the experimental data covering over ~ 18 decades in ta drawn by glassformers in the fragility range 20 ≤ m ≤ 190.

Page 35: Francesco  Puosi 1 ,  Dino Leporini  2,3

< u2 >1/2

Conclusions

• Cage scaling ( ta vs <u2> ): - Results suggest that <u2> is a “universal” picosecond predictor of the a relaxation. - Tested on different MD models: polymers, binary atomic mixtures, colloidal gels…- The MD master curve fits (with one adjustable parameter) the scaling of the experimental data covering over ~ 18 decades in ta drawn by glassformers in the fragility range 20 ≤ m ≤ 190.

• Elastic scaling ( ta vs G/T):- Intermediate-time shear elasticity and <u2> are highly correlated.

- MD master curve ta vs G/T drawn by using the cage scaling.

- The MD master curve fits (with one adjustable parameter) the scaling of the experimental data covering over ~ 18 decades in ta drawn by glassformers in the fragility range 20 ≤ m ≤ 115.

Page 36: Francesco  Puosi 1 ,  Dino Leporini  2,3

< u2 >1/2

Conclusions

• Cage scaling ( ta vs <u2> ): - Results suggest that <u2> is a “universal” picosecond predictor of the a relaxation. - Tested on different MD models: polymers, binary atomic mixtures, colloidal gels…- The MD master curve fits (with one adjustable parameter) the scaling of the experimental data covering over ~ 18 decades in ta drawn by glassformers in the fragility range 20 ≤ m ≤ 190.

• Elastic scaling ( ta vs G/T):- Intermediate-time shear elasticity and <u2> are highly correlated.

- MD master curve ta vs G/T drawn by using the cage scaling.

- The MD master curve fits (with one adjustable parameter) the scaling of the experimental data covering over ~ 18 decades in ta drawn by glassformers in the fragility range 20 ≤ m ≤ 115.

• Thermodynamic scaling ( ta vs rg/T )- <u2> scales with rg/T . Extensive MD simulations in progress- MD master curve ta vs rg/T drawn by using the cage scaling.

- Good comparison with the experimental data on a single glassformer (13 decades in ta ) by adjusting the isochoric fragility only. Work in progress…

Page 37: Francesco  Puosi 1 ,  Dino Leporini  2,3

Collaborators:

• C. De Michele, Ric TD Roma• L. Larini, Ass. Prof. Rutgers University• A. Ottochian, Postdoc ’Ecole Centrale Paris• F. Puosi, Postdoc Univ. Grenoble 1• S. Bernini PhD Pisa• O. Chulkin Postdoc Odessa• M. Barucco Graduate Pisa

Credits

Page 38: Francesco  Puosi 1 ,  Dino Leporini  2,3

1/ <

u2 >

G/ T

<u2 >

rg / T

Page 39: Francesco  Puosi 1 ,  Dino Leporini  2,3

t* ~ 1-10 psLog t

Log ta

Log

< Dr

2 (t

) >

Log <u2>

Log t*

Log t

Log

F s (

q max

, t)

< u2 >1/2

Page 40: Francesco  Puosi 1 ,  Dino Leporini  2,3

C. De Michele, F. Puosi, DL, unpublishedF. Puosi, DL, JPCB (2011)

Page 41: Francesco  Puosi 1 ,  Dino Leporini  2,3

MD simulations

Density r

Temperature T

Chain length M (polymer) Potential: p, q

Page 42: Francesco  Puosi 1 ,  Dino Leporini  2,3

1017 s (eta’ dell’universo)t a ~ 10 26 s< u2 >1/2

First “universal” scaling: structural relaxation time ta or viscosity h vs.Debye-Waller factor < u2> (rattling amplitude in the cage)

Page 43: Francesco  Puosi 1 ,  Dino Leporini  2,3

Log

MSD

Log <u2>

Log tLog t* Log ta

Cage scaling: implications

Gs(X) (r, t*) = Gs

(Y) (r, t*) Gs(X) (r, ta ) = Gs

(Y) (r, , ta )

Polymer melt