electronic excitation in atomic collision cascades cosires 2004, helsinki c. staudt andreas...

28
Electronic Excitation in Atomic Collision Cascades COSIRES 2004, Helsinki C. Staudt Andreas Duvenbeck Zdenek Sroubek Filip Sroubek Andreas Wucher Barbara Garrison

Post on 22-Dec-2015

216 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Electronic Excitation in Atomic Collision Cascades COSIRES 2004, Helsinki C. Staudt Andreas Duvenbeck Zdenek SroubekFilip Sroubek Andreas Wucher Barbara

Electronic Excitation in Atomic Collision Cascades

COSIRES 2004, Helsinki

C. Staudt

Andreas Duvenbeck

Zdenek Sroubek

Filip Sroubek

Andreas Wucher

Barbara Garrison

Page 2: Electronic Excitation in Atomic Collision Cascades COSIRES 2004, Helsinki C. Staudt Andreas Duvenbeck Zdenek SroubekFilip Sroubek Andreas Wucher Barbara

kinetic excitation

• atomic motion in collision cascade• electronic excitation in inelastic collisions

• electron emission, charge state of sputtered particles

,eT r t

space and time dependent electron temperature ?

Page 3: Electronic Excitation in Atomic Collision Cascades COSIRES 2004, Helsinki C. Staudt Andreas Duvenbeck Zdenek SroubekFilip Sroubek Andreas Wucher Barbara

excitation model (1)

• energy transfer

– kinetic energy electronic excitation

– electronic stopping power (Lindhard):

vKdx

dE kinEAvKdt

dE 2

Sroubek & Falcone 1988

i

ikin

source

el trEAtrdt

dE,,

total energy fed into electronic system :

Page 4: Electronic Excitation in Atomic Collision Cascades COSIRES 2004, Helsinki C. Staudt Andreas Duvenbeck Zdenek SroubekFilip Sroubek Andreas Wucher Barbara

electronic friction ?

kinE

elE

kinA E dt

• ab-initio simulation of H adsorption on Al(111)

(E. Pehlke et al., unpublished)

Lindhard formula works well for low energies

Page 5: Electronic Excitation in Atomic Collision Cascades COSIRES 2004, Helsinki C. Staudt Andreas Duvenbeck Zdenek SroubekFilip Sroubek Andreas Wucher Barbara

excitation model (2)

• diffusive transport

– diffusion coefficient may vary in space and time

• „instant“ thermalization

– electronic heat capacity depends on Te !

2 ,el elel

source

E dED E r t

t dt

2, ,e elT r t E r t

C21

2e

e e B eF

TC n k C T

T

Page 6: Electronic Excitation in Atomic Collision Cascades COSIRES 2004, Helsinki C. Staudt Andreas Duvenbeck Zdenek SroubekFilip Sroubek Andreas Wucher Barbara

instant thermalization ?

• ab-initio simulation of H adsorption on Al(111)

(E. Pehlke et al., unpublished)geometry

electronic states

Fermi-like electron energy distribution at all times !

Page 7: Electronic Excitation in Atomic Collision Cascades COSIRES 2004, Helsinki C. Staudt Andreas Duvenbeck Zdenek SroubekFilip Sroubek Andreas Wucher Barbara

diffusion coefficient

• fundamental relation :

• electron mean free path :

• relaxation time :

• lattice disorder :

1

3 F eD v

Fermi velocity

e F ev

21 1 1e L

e e e e ph

a T b T

22

1 1

3 Fe L

D vaT bT

lattice temperatureelectron temperature

2

2

1,

3 , ,F

e L

vD r t

aT r t bT r t

te interatomic distance

Page 8: Electronic Excitation in Atomic Collision Cascades COSIRES 2004, Helsinki C. Staudt Andreas Duvenbeck Zdenek SroubekFilip Sroubek Andreas Wucher Barbara

numerics

• Green's function

• explicit finite differences

21

3 20

1( , ) ( , ) exp

44 ( )

im k

el k i kin m ni nn m i n

E t A t E tD t tD t t

r rr r

1

3

,2

1

, ,

, , 2 ,, ,

el k i el k i

el k i el k i el k ie L kin k i

E t E t

t

E re t E re t E tD T T A E t

r

r r

r r rr

,e k iT tr ,L k iT tr

solution of diffusion equation by

crystallographic order (rk,ti)

Page 9: Electronic Excitation in Atomic Collision Cascades COSIRES 2004, Helsinki C. Staudt Andreas Duvenbeck Zdenek SroubekFilip Sroubek Andreas Wucher Barbara

0elE

boundary conditions

0elE

2 2 0elE y

y

x

z

42 Å

0elE

• finite differences• Green's function

y

x

z

0elE

0elE

0elE

Page 10: Electronic Excitation in Atomic Collision Cascades COSIRES 2004, Helsinki C. Staudt Andreas Duvenbeck Zdenek SroubekFilip Sroubek Andreas Wucher Barbara

MD Simulation

5 keV Ag Ag(111)

• trajectory 952 • trajectory 207

Ytot = 16 Ytot = 48

4500 atoms

Page 11: Electronic Excitation in Atomic Collision Cascades COSIRES 2004, Helsinki C. Staudt Andreas Duvenbeck Zdenek SroubekFilip Sroubek Andreas Wucher Barbara

lattice temperature

• N atoms in cell

0 100 200 300 400 500 600 700 800100

101

102

103

104

105

106

tem

per

atu

re (

K)

time (fs)

traj. 207

1

1 Ni

kin kini

E EN

2

3kin

LB

ET

k

220D cm s

even at Te = 0 !

averaged over entire surface

calculated TL

limitation of D

Page 12: Electronic Excitation in Atomic Collision Cascades COSIRES 2004, Helsinki C. Staudt Andreas Duvenbeck Zdenek SroubekFilip Sroubek Andreas Wucher Barbara

constant diffusivity

– differences at small times (< 100 fs)– same temperature variation at larger times

0 100 200 300 400 500 600 7000

5000

10000

15000

20000

25000

30000

Neumann boundary at surface

traj. 207

Tel(K

)

time(fs)

r = 0 Å r = 3 Å r = 6 Å r = 9 Å r = 12 Å r = 15 Å r = 18 Å

D = 0.5 cm2/s

0 100 200 300 400 500 600 7000

5000

10000

15000

20000

25000

30000

D = 0.5 cm2/s

traj. 207

Te (

K)

time (fs)

r = 0 r = 4 Å r = 8 Å r = 12 Å r = 16 Å r = 20 Å

Green's function

finite differences

5t fs 310t fs

Page 13: Electronic Excitation in Atomic Collision Cascades COSIRES 2004, Helsinki C. Staudt Andreas Duvenbeck Zdenek SroubekFilip Sroubek Andreas Wucher Barbara

0 100 200 300 400 500 600 7000

5000

10000

15000

20000

traj. 207

D = D(Te(r,t),T

L=104K)

r = 0 Å r = 3 Å r = 6 Å r = 9 Å r = 12 Å r = 15 Å r = 18 Å

Te(

K)

time(fs)

electron temperature dependence

0 100 200 300 400 500 600 7000

5000

10000

15000

20000

traj. 207

D = 5.4 cm2/s

r = 0 Å r = 3 Å r = 6 Å r = 9 Å r = 12 Å r = 15 Å r = 18 Å

Te(

K)

time(fs)

D = const (TL = 104 K)

Te variable, TL = const

• Te - dependence small for t > 100 fs

Page 14: Electronic Excitation in Atomic Collision Cascades COSIRES 2004, Helsinki C. Staudt Andreas Duvenbeck Zdenek SroubekFilip Sroubek Andreas Wucher Barbara

0 100 200 300 400 500 600 7000

20

40

60

80

100

traj. 207

D = D(Te(r,t),T

L(r,t))

r = 0 Å r = 3 Å r = 6 Å r = 9 Å r = 12 Å r = 15 Å r = 18 Å

time(fs)

Te(

103 K

)

full temperature dependence

0 100 200 300 400 500 600 7000

20

40

60

80

100

traj. 207

D = D(Te(r,t),T

L=104K)

r = 0 Å r = 3 Å r = 6 Å r = 9 Å r = 12 Å r = 15 Å r = 18 Å

Te(

103 K

)

time(fs)

TL constant, Te variable TL variable, Te variable

• TL dependence strong ! • Te < 1000 K for t > 100 fs

Page 15: Electronic Excitation in Atomic Collision Cascades COSIRES 2004, Helsinki C. Staudt Andreas Duvenbeck Zdenek SroubekFilip Sroubek Andreas Wucher Barbara

0 100 200 300 400 500 600 7000.0

0.2

0.4

0.6

0.8

1.0

total crystal volume partial crystal volume

time (fs)

atomic disorder

0 2 4 6 8 10 12 14 16 18 20

traj. 207

interatomic distance (Å)

6 fs 100 fs 200 fs 300 fs 500 fs 2500 fs

time dependence of crystallographic order (traj. 207)

pair correlation function order parameter

1

3 x y z

• N atoms in cell

1

21cos

Ni

xxi

x

N a

Page 16: Electronic Excitation in Atomic Collision Cascades COSIRES 2004, Helsinki C. Staudt Andreas Duvenbeck Zdenek SroubekFilip Sroubek Andreas Wucher Barbara

0 100 200 300 400 500 600 7000

1000

2000

3000

4000

5000

6000

traj. 207

Te(

K)

time(fs)

r=0 Å r=3 Å r=6 Å r=9 Å r=12Å r=15Å r=18Å

D = 20 --> 0.5 cm2/s in 300fs

order dependence

0 100 200 300 400 500 600 7000

1000

2000

3000

4000

5000

6000

traj. 207

D = 20 --> 0.5 cm2/s in 300 fs

Te (

K)

time (fs)

r = 0 Å r = 4 Å r = 8 Å r = 12 Å r = 16 Å r = 20 Å

• linear variation of D between 20 and 0.5 cm2/s within 300 fs

Green's function finite differences

lattice disorder extremely important !

Page 17: Electronic Excitation in Atomic Collision Cascades COSIRES 2004, Helsinki C. Staudt Andreas Duvenbeck Zdenek SroubekFilip Sroubek Andreas Wucher Barbara

e-ph coupling

0 100 200 300 400 500 600 700 800102

103

104

105

D=20 --> 0.5 cm2/s in 300 fs

tem

per

atu

re (

K)

time (fs)

lattice electrons

traj. 207

0 100 200 300 400 500 600 700 80010-6

10-5

10-4

10-3

10-2

10-1

100

101

D=20 --> 0.5 cm2/s in 300 fs

ener

gy

den

sity

(eV

/Å3 )

time (fs)

electronic kinetic

traj. 207

surface energy density surface temperature

negligible back-flow of energy from electrons to lattice !

• two-temperature model :

e LE

const T Tt

Page 18: Electronic Excitation in Atomic Collision Cascades COSIRES 2004, Helsinki C. Staudt Andreas Duvenbeck Zdenek SroubekFilip Sroubek Andreas Wucher Barbara

Summary & Outlook

• MD simulation– source of electronic excitation

• diffusive treatment of excitation transport– include space and time variation of diffusivity by

• temperature dependence• lattice disorder

• MD simulation

– calculate Eel and Te as function of

– position

– time of emission t

• Calculate excitation and ionization probability individually for every sputtered atom

,tr

r

of sputtered atoms

Page 19: Electronic Excitation in Atomic Collision Cascades COSIRES 2004, Helsinki C. Staudt Andreas Duvenbeck Zdenek SroubekFilip Sroubek Andreas Wucher Barbara

0 200 400 600 800 1000 12000.0

0.5

1.0

P(t

) /

P(t

=0

)

time (fs)

r = 4.1 A r = 5.1 A r = 5.8 A r = 6.5 A

Diffusion Coefficient

• peak value vs. time (normalized)

• time dependent diffusion coefficient :

D

r

Page 20: Electronic Excitation in Atomic Collision Cascades COSIRES 2004, Helsinki C. Staudt Andreas Duvenbeck Zdenek SroubekFilip Sroubek Andreas Wucher Barbara

0 200 400 600 800 1000 12000.000

0.003

0.006

0.009

0.012

0.015

0.018

D = 14.4 ---> 0.88 in 150 fs

traj. 952

Pex

c

time (fs)

0 4 8 12 16 20

excitation probability

Excited atoms emitted later in cascade

excitation probability electronic energy density

r (A)

Page 21: Electronic Excitation in Atomic Collision Cascades COSIRES 2004, Helsinki C. Staudt Andreas Duvenbeck Zdenek SroubekFilip Sroubek Andreas Wucher Barbara

Time Dependence

0 100 200 300 400 5000.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

r (A) =

D = 14.4 a.u.

traj 207

en

erg

y d

en

sity

Ee

(eV

/ A

3 )

time (fs)

0 4 8 12 16 20

r

Page 22: Electronic Excitation in Atomic Collision Cascades COSIRES 2004, Helsinki C. Staudt Andreas Duvenbeck Zdenek SroubekFilip Sroubek Andreas Wucher Barbara

Electron Temperature

0 100 200 300 400 5000

1000

2000

3000

4000

r (A) =

D = 14.4 a.u.

traj 207

ele

ctro

n t

em

pe

ratu

re T

e (K

)

time (fs)

0 4 8 12 16 20

r

Page 23: Electronic Excitation in Atomic Collision Cascades COSIRES 2004, Helsinki C. Staudt Andreas Duvenbeck Zdenek SroubekFilip Sroubek Andreas Wucher Barbara

electron temperature

0 200 400 600 800 1000 12000

1000

2000

3000

4000

5000

D = 14.4 ---> 0.88 in 150 fs

traj. 952

average electron temperature

T

e (K

)

t (fs)

Page 24: Electronic Excitation in Atomic Collision Cascades COSIRES 2004, Helsinki C. Staudt Andreas Duvenbeck Zdenek SroubekFilip Sroubek Andreas Wucher Barbara

Energy Spectrum

• excitation probability time dependent

– small for t < 300 fs

– large for t > 300 fs

First (crude) estimate :

• simulation of energy spectrum

– no account of excitation

– count all atoms for ground state

– count only atoms emitted after 300 fs for excited state

simulationexperiment

Page 25: Electronic Excitation in Atomic Collision Cascades COSIRES 2004, Helsinki C. Staudt Andreas Duvenbeck Zdenek SroubekFilip Sroubek Andreas Wucher Barbara

Summary & Outlook

• MD simulation

– calculate Eel and Te as function of

– position

– time of emission t

• Qualitative explanation of

– order of magnitude

– velocity dependence of excitation probability (Ag* , Cu*)

• Calculate excitation and ionization probability individually for every sputtered atom

• Quantitative correlation between order parameter and electron mean free path

tr ,

r

of sputtered atoms

Page 26: Electronic Excitation in Atomic Collision Cascades COSIRES 2004, Helsinki C. Staudt Andreas Duvenbeck Zdenek SroubekFilip Sroubek Andreas Wucher Barbara

Electron Energy Distribution

• 3 x 3 x 3 Å cell grid

• numerical solution of diffusion equation

• variable diffusion coefficient D

– Te dependence

– TL dependence

– lattice disorder

electron energy density at the surface

,,el i

el kin ii

E tD E t A E

t

r

r r r

Page 27: Electronic Excitation in Atomic Collision Cascades COSIRES 2004, Helsinki C. Staudt Andreas Duvenbeck Zdenek SroubekFilip Sroubek Andreas Wucher Barbara

Excitation

Co atoms sputtered from Cobalt

ground state

excited state

population partition

V. Philipsen, Doctorate thesis 2001

Page 28: Electronic Excitation in Atomic Collision Cascades COSIRES 2004, Helsinki C. Staudt Andreas Duvenbeck Zdenek SroubekFilip Sroubek Andreas Wucher Barbara

Excitation

Ni atoms sputtered from polycrystalline Nickel by 5-keV Ar+ ions

ground state

excited state

velocity distribution

V. Philipsen, Doctorate thesis 2001