electronic supplementary info · 2017-09-15 · electronic supplementary info mono-, di- and...

26
S1 Electronic Supplementary Info Mono-, di- and tetrarhenium Fischer carbene complexes with thienothiophene substituents Zandria Lamprecht, a Shankara Radhakrishnan, a Alexander Hildebrandt, b Heinrich Lang, b David C. Liles, a Nora- ann Weststrate, a, and Simon Lotz a and Daniela I. Bezuidenhout, a,c* a. Department of Chemistry, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa. b. Technische Universität Chemnitz, Fakultät für Naturwissenschaften, Institut für Chemie, Anorganische Chemie, D-09107 Chemnitz, Germany. c. Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa. Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2017

Upload: others

Post on 04-Apr-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Electronic Supplementary Info · 2017-09-15 · Electronic Supplementary Info Mono-, di- and tetrarhenium Fischer carbene complexes with thienothiophene substituents Zandria Lamprecht,a

S1

Electronic Supplementary Info

Mono-, di- and tetrarhenium Fischer carbene complexes with thienothiophene substituents

Zandria Lamprecht,a Shankara Radhakrishnan,

a Alexander Hildebrandt,

b Heinrich Lang,

b David C. Liles,

a Nora-

ann Weststrate,a,

and Simon Lotza

and Daniela I. Bezuidenhout,a,c*

a. Department of Chemistry, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa.

b. Technische Universität Chemnitz, Fakultät für Naturwissenschaften, Institut für Chemie, Anorganische Chemie, D-09107 Chemnitz, Germany.

c. Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa.

Electronic Supplementary Material (ESI) for Dalton Transactions.This journal is © The Royal Society of Chemistry 2017

Page 2: Electronic Supplementary Info · 2017-09-15 · Electronic Supplementary Info Mono-, di- and tetrarhenium Fischer carbene complexes with thienothiophene substituents Zandria Lamprecht,a

S2

Contents:

Figure S1: Atom numbering scheme used in NMR spectral assignment. ................................................................................ S4

Figure S2: 1H NMR spectrum of 1a in CDCl3. ............................................................................................................................ S5

Figure S3: 13

C NMR spectrum of 1a in CDCl3. ........................................................................................................................... S5

Figure S4: 2D [1H,

13C] HSQC NMR spectrum of 1a in CDCl3. ................................................................................................... S6

Figure S5: 1H NMR spectrum of 2a in CDCl3. ............................................................................................................................ S6

Figure S6: 13

C NMR spectrum of 2a in CDCl3. ........................................................................................................................... S7

Figure S7: 1H NMR spectrum of 3a in CDCl3. ............................................................................................................................ S7

Figure S8: 13

C NMR spectrum of 3a in CDCl3. ........................................................................................................................... S8

Figure S9: 2D [1H,

13C] HSQC NMR spectrum of 3a in CDCl3. ................................................................................................... S8

Figure S10: 1H NMR spectrum of 4a in CDCl3. .......................................................................................................................... S9

Figure S11: 13

C NMR spectrum of 4a in CDCl3. ......................................................................................................................... S9

Figure S12: 1H NMR spectrum of 5a in CDCl3. ........................................................................................................................ S10

Figure S13: 13

C NMR spectrum of 5a in CDCl3. ....................................................................................................................... S10

Figure S14: 2D [1H,

13C] HSQC NMR spectrum of 5a in CDCl3. ............................................................................................... S11

Figure S15: 1H NMR spectrum of 1b in CDCl3. ........................................................................................................................ S11

Figure S16: 13

C NMR spectrum of 1b in CDCl3. ....................................................................................................................... S12

Figure S17: 2D [1H,

13C] HSQC NMR spectrum of 1b in CDCl3. ............................................................................................... S12

Figure S18: 1H NMR spectrum of 3b in CDCl3. ........................................................................................................................ S13

Figure S19: 13

C NMR spectrum of 3b in CDCl3. ....................................................................................................................... S13

Figure S20: 2D [1H,

13C] HSQC NMR spectrum of 3b in CDCl3. ............................................................................................... S14

Figure S21: Cyclic voltammograms of 1a at positive potentials (red) and negative potentials (blue), at a glassy carbon

electrode, scan rate 0.1 Vs-1

in CH2Cl2 with the internal standard marked as FcH. ................................................................ S15

Figure S22: Cyclic voltammograms of 2a at positive potentials (red) and negative potentials (blue), at a glassy carbon

electrode, scan rate 0.1 Vs-1

in CH2Cl2 with the internal standard marked as FcH. ................................................................ S15

Figure S23: Cyclic voltammograms of 3a at positive potentials (red) and negative potentials (blue), at a glassy carbon

electrode, scan rate 0.1 Vs-1

in CH2Cl2 with the internal standard marked as FcH. ................................................................ S15

Figure S24: Cyclic voltammograms of 5a at positive potentials (red) and negative potentials (blue), at a glassy carbon

electrode, scan rate 0.1 Vs-1

in CH2Cl2 with the internal standard marked as FcH. ................................................................ S16

Figure S25: Cyclic voltammograms of 1b at positive potentials (red) and negative potentials (blue), at a glassy carbon

electrode, scan rate 0.1 Vs-1

in CH2Cl2 with the internal standard marked as FcH. ................................................................ S16

Figure S26: Cyclic voltammograms of 3b at positive potentials (red) and negative potentials (blue), at a glassy carbon

electrode, scan rate 0.1 Vs-1

in CH2Cl2 with the internal standard marked as FcH. ................................................................ S16

Figure S27: SEC-IR of 1a upon reduction. Red: neutral compound; blue: reduced compound. ............................................ S17

Figure S28: SEC-IR of 3a upon reduction. Red: neutral compound; blue: reduced compound. ............................................ S17

Figure S29: Intramolecular and intermolecular interactions found in the crystal packing of 3a and 3b. .............................. S18

Table S1: Crystal data and structure refinement for complexes 1a, 2a, 3a, 5a, 1b and 3b. .................................................. S19

Table S2: Chemical potential (µ), hardness/MO energy gap (ƞ) and electrophilicity index (ω) reported in eV for 1a, 1b, 3a

and 3b. ................................................................................................................................................................................... S20

Table S3: Major experimental UV-Vis transitions their corresponding calculated molecular orbitals for 1a. ....................... S21

Figure S30: Normal Transition orbitals (NTOs) for the major absorption bands of 1a. ......................................................... S21

Figure S31: Normal Transition orbitals (NTOs) for the major absorption bands of 1a−−−−. ........................................................ S22

Figure S32: Spin population of 1a−−−− and 1a

+ on the left and right hand side respectively. ..................................................... S22

Table S4: Major experimental UV-Vis transitions their corresponding calculated molecular orbitals for 1b…….……………….S23

Figure S33: Normal Transition orbitals (NTOs) for the major absorption bands of 1b. ......................................................... S23

Figure S34: Normal Transition orbitals (NTOs) for the major absorption bands of 1b−−−−. ........................................................ S24

Figure S35: Spin population of 1b−−−− and 1b

+ on the left and right hand side respectively. ..................................................... S24

Figure S36: Changes in UV-Vis absorption spectrum of 2a during the reduction event in CH2Cl2 containing 0.1 M

NnBu4[B(C6F5)4] electrolyte, applied voltage range: -1.1 to -1.4 V; The inset shows the appearance of a 1600 nm

Intervalence charge transfer (IVCT) feature at an applied voltage -1.4 V. (Legend: Increasing cathodic voltages from black to

light green) ............................................................................................................................................................................. S25

Page 3: Electronic Supplementary Info · 2017-09-15 · Electronic Supplementary Info Mono-, di- and tetrarhenium Fischer carbene complexes with thienothiophene substituents Zandria Lamprecht,a

S3

Figure S37: Changes in UV-Vis absorption spectrum of 3a during the reduction event in CH2Cl2 containing 0.1 M

NnBu4[B(C6F5)4] electrolyte, applied voltage range: -1.1 to -1.4 V (Legend: Increasing cathodic voltages from black to light

green)..................................................................................................................................................................................... S25

Figure S38: Changes in UV-Vis absorption spectrum of 3b during the reduction event in CH2Cl2 containing 0.1 M

NnBu4[B(C6F5)4] electrolyte, applied voltage range: -1.1 to -1.4 V (Legend: Increasing cathodic voltages from black to light

green)..................................................................................................................................................................................... S26

Page 4: Electronic Supplementary Info · 2017-09-15 · Electronic Supplementary Info Mono-, di- and tetrarhenium Fischer carbene complexes with thienothiophene substituents Zandria Lamprecht,a

S4

ReX

COC

CO

COOC

EtO S

X = Re(CO)5, Br, Cl

S

ReX

COC

CO

COOC

Me2N/EtO S

5

4

3

2

4'

5'

S

ReX

COC

CO

COOC

EtO S

S

5

4

3

2

4'

5'

ReX

COC

CO

COOC

EtO S

5

4

3

2

S

Re

X

C

OC

CO

CO

CO

OEt

Re

X

C

OC

CO

CO

CO

OEt

5

4

1a, 3a, 5a 2a, 4a

1b, 3b 2b

5

4

3

2 5

4

Figure S1: Atom numbering scheme used in NMR spectral assignment.

Page 5: Electronic Supplementary Info · 2017-09-15 · Electronic Supplementary Info Mono-, di- and tetrarhenium Fischer carbene complexes with thienothiophene substituents Zandria Lamprecht,a

S5

Figure S2: 1H NMR spectrum of 1a in CDCl3.

Figure S3: 13

C NMR spectrum of 1a in CDCl3.

1.52.02.53.03.54.04.55.05.56.06.57.07.58.0f1 (ppm)

-5E+07

0

5E+07

1E+08

2E+08

2E+08

2E+08

3E+08

4E+08

4E+08

4E+08

5E+08

6E+08

6E+08

6E+08

7E+08

3.11

2.04

1.02

0.99

1.00

A (s)

7.99

B (d)

7.36

C (d)

7.30

D (q)

4.58

E (t)

1.63

7.26

CDCl3

102030405060708090110130150170190210230250270290f1 (ppm)

-5E+07

0

5E+07

1E+08

2E+08

2E+08

2E+08

3E+08

4E+08

4E+08

4E+08

14.55

77.00 CDCl3

77.63

121.03

127.30

129.50

145.14

146.26

161.09

192.30

291.10

Page 6: Electronic Supplementary Info · 2017-09-15 · Electronic Supplementary Info Mono-, di- and tetrarhenium Fischer carbene complexes with thienothiophene substituents Zandria Lamprecht,a

S6

Figure S4: 2D [1H, 13C] HSQC NMR spectrum of 1a in CDCl3.

Figure S5: 1H NMR spectrum of 2a in CDCl3.

1.52.02.53.03.54.04.55.05.56.06.57.07.58.0f1 (ppm)

-5E+07

0

5E+07

1E+08

2E+08

2E+08

2E+08

3E+08

4E+08

4E+08

4E+08

5E+08

6E+08

6E+08

6E+08

7E+08

3.11

2.15

1.00

A (s)8.02

B (q)4.54

C (t)1.64

7.26 CDCl3

Page 7: Electronic Supplementary Info · 2017-09-15 · Electronic Supplementary Info Mono-, di- and tetrarhenium Fischer carbene complexes with thienothiophene substituents Zandria Lamprecht,a

S7

Figure S6: 13C NMR spectrum of 2a in CDCl3.

Figure S7: 1H NMR spectrum of 3a in CDCl3.

2030405060708090100110120130140150160170180190200210220230240250260270280290f1 (ppm)

-5E+06

0

5E+06

1E+07

2E+07

2E+07

2E+07

3E+07

4E+07

4E+07

4E+07

5E+07

6E+07

6E+07

6E+07

7E+07

14.48

77.00 CDCl3

78.05

127.43

144.90

149.36

162.49

291.61

1.52.02.53.03.54.04.55.05.56.06.57.07.58.08.5f1 (ppm)

-5E+07

0

5E+07

1E+08

2E+08

2E+08

2E+08

3E+08

4E+08

4E+08

4E+08

5E+08

6E+08

3.34

2.38

1.06

1.09

1.00

A (d)

7.42

B (d)7.40

C (s)

8.81

D (q)

5.31

E (t)

1.69

7.26 CDCl3

Page 8: Electronic Supplementary Info · 2017-09-15 · Electronic Supplementary Info Mono-, di- and tetrarhenium Fischer carbene complexes with thienothiophene substituents Zandria Lamprecht,a

S8

Figure S8: 13C NMR spectrum of 3a in CDCl3.

Figure S9: 2D [1H, 13C] HSQC NMR spectrum of 3a in CDCl3.

2030405060708090100110120130140150160170180190200210220230240250260270f1 (ppm)

-5E+07

0

5E+07

1E+08

2E+08

2E+08

2E+08

3E+08

4E+08

4E+08

4E+08

5E+08

15.02

77.00 CDCl3

79.11

121.89

130.56

140.77

147.71

152.11

158.28

184.14

184.33

185.59

270.21

Page 9: Electronic Supplementary Info · 2017-09-15 · Electronic Supplementary Info Mono-, di- and tetrarhenium Fischer carbene complexes with thienothiophene substituents Zandria Lamprecht,a

S9

Figure S10: 1H NMR spectrum of 4a in CDCl3.

Figure S11: 13C NMR spectrum of 4a in CDCl3.

3.82

2.21

1.00

7.26 CDCl3

2030405060708090100110120130140150160170180190200210220230240250260270280f1 (ppm)

-2E+07

0

2E+07

4E+07

6E+07

8E+07

1E+08

1E+08

1E+08

2E+08

2E+08

2E+08

2E+08

2E+08

3E+08

3E+08

3E+08

3E+08

Page 10: Electronic Supplementary Info · 2017-09-15 · Electronic Supplementary Info Mono-, di- and tetrarhenium Fischer carbene complexes with thienothiophene substituents Zandria Lamprecht,a

S10

Figure S12: 1H NMR spectrum of 5a in CDCl3.

Figure S13: 13C NMR spectrum of 5a in CDCl3.

3.58

3.50

0.98

1.04

1.00

7.26

CDCl3

46.85

53.54

77.00 CDCl3

112.34

120.20

128.38

136.39

145.82

156.99

189.13

193.69

194.87

197.79

242.08

Page 11: Electronic Supplementary Info · 2017-09-15 · Electronic Supplementary Info Mono-, di- and tetrarhenium Fischer carbene complexes with thienothiophene substituents Zandria Lamprecht,a

S11

Figure S14: 2D [1H, 13C] HSQC NMR spectrum of 5a in CDCl3.

Figure S15: 1H NMR spectrum of 1b in CDCl3.

3.22

2.20

1.01

1.01

1.00

7.26

CDCl3

Page 12: Electronic Supplementary Info · 2017-09-15 · Electronic Supplementary Info Mono-, di- and tetrarhenium Fischer carbene complexes with thienothiophene substituents Zandria Lamprecht,a

S12

Figure S16: 13C NMR spectrum of 1b in CDCl3.

Figure S17: 2D [1H, 13C] HSQC NMR spectrum of 1b in CDCl3.

14.58

77.00 CDCl3

77.55

119.75

126.19

132.76

139.40

144.68

159.55

193.29

292.25

Page 13: Electronic Supplementary Info · 2017-09-15 · Electronic Supplementary Info Mono-, di- and tetrarhenium Fischer carbene complexes with thienothiophene substituents Zandria Lamprecht,a

S13

Figure S18: 1H NMR spectrum of 3b in CDCl3.

Figure S19: 13C NMR spectrum of 3b in CDCl3.

3.25

2.18

1.03

1.10

1.00

7.26

CDCl3

15.05

77.00 CDCl3

79.07

120.11

138.10

140.12

140.75

149.91

156.93

184.17

184.37

185.60

270.93

Page 14: Electronic Supplementary Info · 2017-09-15 · Electronic Supplementary Info Mono-, di- and tetrarhenium Fischer carbene complexes with thienothiophene substituents Zandria Lamprecht,a

S14

Figure S20: 2D [1H, 13C] HSQC NMR spectrum of 3b in CDCl3.

Page 15: Electronic Supplementary Info · 2017-09-15 · Electronic Supplementary Info Mono-, di- and tetrarhenium Fischer carbene complexes with thienothiophene substituents Zandria Lamprecht,a

S15

Figure S21: Cyclic voltammograms of 1a at positive potentials (red) and negative potentials (blue), at a glassy carbon electrode, scan rate 0.1 Vs-1 in CH2Cl2 with the internal standard marked as FcH.

Figure S22: Cyclic voltammograms of 2a at positive potentials (red) and negative potentials (blue), at a glassy carbon electrode, scan rate 0.1 Vs-1 in CH2Cl2 with the internal standard marked as FcH.

Figure S23: Cyclic voltammograms of 3a at positive potentials (red) and negative potentials (blue), at a glassy carbon electrode, scan rate 0.1 Vs-1 in CH2Cl2 with the internal standard marked as FcH.

Page 16: Electronic Supplementary Info · 2017-09-15 · Electronic Supplementary Info Mono-, di- and tetrarhenium Fischer carbene complexes with thienothiophene substituents Zandria Lamprecht,a

S16

Figure S24: Cyclic voltammograms of 5a at positive potentials (red) and negative potentials (blue), at a glassy carbon electrode, scan rate 0.1 Vs-1 in CH2Cl2 with the internal standard marked as FcH.

Figure S25: Cyclic voltammograms of 1b at positive potentials (red) and negative potentials (blue), at a glassy carbon electrode, scan rate 0.1 Vs-1 in CH2Cl2 with the internal standard marked as FcH.

Figure S26: Cyclic voltammograms of 3b at positive potentials (red) and negative potentials (blue), at a glassy carbon electrode, scan rate 0.1 Vs-1 in CH2Cl2 with the internal standard marked as FcH.

Page 17: Electronic Supplementary Info · 2017-09-15 · Electronic Supplementary Info Mono-, di- and tetrarhenium Fischer carbene complexes with thienothiophene substituents Zandria Lamprecht,a

S17

18001900200021002200

1995,963

2102,029

1972,821

2088,529

A'4

A'1

-1600 mV

Wavenumber cm-1

-1100 mV

Figure S27: SEC-IR of 1a upon reduction. Red: neutral compound; blue: reduced compound.

18001900200021002200

2001,748

1972,821

A'2-1500 mV

Wavenumber cm-1

-1100 mV

Figure S28: SEC-IR of 3a upon reduction. Red: neutral compound; blue: reduced compound.

Page 18: Electronic Supplementary Info · 2017-09-15 · Electronic Supplementary Info Mono-, di- and tetrarhenium Fischer carbene complexes with thienothiophene substituents Zandria Lamprecht,a

S18

Figure S29: Intramolecular and intermolecular interactions found in the crystal packing of 3a and 3b.

2.964

2.964

2.991

2.947

2.809

2.787

Intramolecular interactions Intermolecular interactions

3b

3a

Page 19: Electronic Supplementary Info · 2017-09-15 · Electronic Supplementary Info Mono-, di- and tetrarhenium Fischer carbene complexes with thienothiophene substituents Zandria Lamprecht,a

S19

Table S1: Crystal data and structure refinement for complexes 1a, 2a, 3a, 5a, 1b and 3b.

1a 2a 3a 5a 1b 3b

Empirical formula C18H8O10Re2S2 C30H12O20Re4S2 C13H8BrO5ReS2 C13H9ClNO4ReS2 C18H8O10Re2S2 C13H8BrO5ReS2

Formula weight 820.76 1501.32 574.42 528.98 820.76 574.42

Temperature/K 150(2) 150(2) 150(2) 294(2) 150(2) 150(2)

Crystal system monoclinic monoclinic monoclinic monoclinic monoclinic orthorhombic

Space group P21/c P21/n P21/c P21 P21/n P212121

a/Å 9.6980(5) 10.1212(7) 17.2340(9) 6.5331(8) 9.6861(4) 7.3951(4)

b/Å 13.1478(6) 13.5273(11) 6.4087(4) 11.7969(16) 12.7974(5) 14.2116(10)

c/Å 17.4834(9) 14.1208(12) 16.2660(8) 10.8497(15) 17.8103(8) 15.5998(11)

α/° 90 90 90 90 90 90

β/° 106.099(2) 96.857(4) 116.6180(17) 91.742(5) 104.336(2) 90

γ/° 90 90 90 90 90 90

Volume/Å3 2141.84(19) 1919.5(3) 1606.13(15) 835.80(19) 2138.96(16) 1639.48(19)

Z 4 2 4 2 4 4

ρcalcg/cm3 2.545 2.598 2.376 2.102 2.549 2.327

μ/mm-1 11.542 12.76 10.331 7.692 11.557 10.121

F(000) 1512 1368 1072 500 1512 1072

Crystal size/mm3 0.314 × 0.263 ×

0.216 0.360 × 0.080 ×

0.040 0.194 × 0.169 ×

0.163 0.219 × 0.183 ×

0.101 0.210 × 0.190 ×

0.170 0.380 × 0.260 ×

0.220

Radiation MoKα

(λ = 0.71073)

MoKα

(λ = 0.71073)

MoKα

(λ = 0.71073)

MoKα

(λ = 0.71073)

MoKα

(λ = 0.71073)

MoKα

(λ = 0.71073)

2Θ range for data collection/°

4.85 to 63.298 4.696 to 54.198 5.01 to 65.296 5.102 to 54.2 4.398 to 61.014 5.222 to 56.694

Index ranges

-14 ≤ h ≤ 14,

-19 ≤ k ≤ 19,

-25 ≤ l ≤ 25

-12 ≤ h ≤ 12,

-17 ≤ k ≤ 17,

-18 ≤ l ≤ 18

-26 ≤ h ≤ 26,

-9 ≤ k ≤ 9,

-24 ≤ l ≤ 24

-8 ≤ h ≤ 8,

-15 ≤ k ≤ 15,

-13 ≤ l ≤ 13

-13 ≤ h ≤ 13,

-18 ≤ k ≤ 18,

-25 ≤ l ≤ 25

-9 ≤ h ≤ 9,

-18 ≤ k ≤ 18,

-20 ≤ l ≤ 20

Reflections collected

110751 16102 84514 17956 99281 78470

Independent reflections

7210

[Rint = 0.1020, Rsigma = 0.0438]

4222

[Rint = 0.0608, Rsigma = 0.0412]

5897

[Rint = 0.0828, Rsigma = 0.0389]

3683

[Rint = 0.0725, Rsigma = 0.0677]

6527

[Rint = 0.0947, Rsigma = 0.0368]

4087

[Rint = 0.0950, Rsigma = 0.0322]

Data/restraints/

parameters 7210/0/291 4222/0/290 5897/0/200 3683/51/224 6527/0/290 4087/12/201

Goodness-of-fit

on F2 1.061 1.061 1.06 0.94 1.066 1.178

Final R indexes

[I>=2σ (I)]

R1 = 0.0296, wR2 = 0.0665

R1 = 0.0303, wR2 = 0.0563

R1 = 0.0315, wR2 = 0.0487

R1 = 0.0354, wR2 = 0.0565

R1 = 0.0247, wR2 = 0.0497

R1 = 0.0269, wR2 = 0.0612

Final R indexes

[all data]

R1 = 0.0432, wR2 = 0.0713

R1 = 0.0396, wR2 = 0.0589

R1 = 0.0468, wR2 = 0.0520

R1 = 0.0574, wR2 = 0.0623

R1 = 0.0359, wR2 = 0.0531

R1 = 0.0287, wR2 = 0.0617

Largest diff. peak/hole / e Å-3

1.64/-1.99 0.98/-1.43 1.50/-1.73 1.16/-0.61 1.21/-1.88 0.98/-2.15

Flack parameter 0.025(17) 0.406(13)

CCDC No. 1554899 1554895 1554898 1554896 1554900 1554897

Page 20: Electronic Supplementary Info · 2017-09-15 · Electronic Supplementary Info Mono-, di- and tetrarhenium Fischer carbene complexes with thienothiophene substituents Zandria Lamprecht,a

S20

Table S2: Chemical potential (µ), hardness/MO energy gap (ƞ) and electrophilicity index (ω) reported in eV for 1a, 1b, 3a and 3b.

1a 1b 3a 3b

ELUMO -3.3214235 -3.3861866 -3.3616964 -3.4561199

EHOMO -6.3603926 -6.3620253 -6.4657008 -6.4363124

µ -4.84090805 -4.87410595 -4.9136986 -4.94621615

ƞ 3.0389691 2.9758387 3.1040044 2.9801925

ω 7.7112962 7.983265 7.7784793 8.209219

Page 21: Electronic Supplementary Info · 2017-09-15 · Electronic Supplementary Info Mono-, di- and tetrarhenium Fischer carbene complexes with thienothiophene substituents Zandria Lamprecht,a

S21

Table S3: Major experimental UV-Vis transitions their corresponding calculated molecular orbitals for 1a.

Major Contributing Excitation (%) Transition energy

(nm)

Oscillator

Strength

λλλλexp (nm) εεεεexp (M-1

cm-1

)

1a HOMO → LUMO (98) 493 0.223 450 14835

HOMO−1→LUMO (80) HOMO →LUMO+3 (12)

393 0.219 390 12265

HOMO→LUMO+1 (29) HOMO→LUMO+3 (49)

341 0.228 320 20995

(1a)−−−− HOMOα→LUMO+7α (32)

HOMOα→LUMO+8α (51)

538 0.0187 540 315

HOMOα→LUMO+12α (20),

HOMOβ→LUMOβ (17), HOMOβ→LUMO+3β (19)

403 0.1039 390 6100

Figure S30: Normal Transition orbitals (NTOs) for the major absorption bands of 1a.

Page 22: Electronic Supplementary Info · 2017-09-15 · Electronic Supplementary Info Mono-, di- and tetrarhenium Fischer carbene complexes with thienothiophene substituents Zandria Lamprecht,a

S22

Figure S31: Normal Transition orbitals (NTOs) for the major absorption bands of 1a−−−−.

Figure S32: Spin population of 1a−−−− and 1a

+ on the left and right hand side respectively.

Page 23: Electronic Supplementary Info · 2017-09-15 · Electronic Supplementary Info Mono-, di- and tetrarhenium Fischer carbene complexes with thienothiophene substituents Zandria Lamprecht,a

S23

Table S4: Major experimental UV-Vis transitions their corresponding calculated molecular orbitals for 1b.

Major Contributing Excitation (%) Transition energy

(nm)

Oscillator

Strength

λλλλexp (nm) εεεεexp (M-1

cm-1

)

1b HOMO→LUMO (99)

497 0.2773 455 14165

H-1→LUMO (82)

406 0.3036 395 12546

H-5→LUMO (10)

HOMO→L+1 (14)

HOMO→L+3 (50)

338 0.1797 322 18907

(1b)−−−− HOMO(A) →L+5(A) (57)

HOMO(A) →L+8(A) (10)

HOMO(A)->L+9(A) (10)

528 0.0126 540 391

H-1(A) →L+1(A) (14)

HOMO(A) →L+8(A) (14)

HOMO(B) →LUMO(B) (19) HOMO(B) →L+2(B) (35)

434

0.1213 405 18793

Figure S33: Normal Transition orbitals (NTOs) for the major absorption bands of 1b.

Page 24: Electronic Supplementary Info · 2017-09-15 · Electronic Supplementary Info Mono-, di- and tetrarhenium Fischer carbene complexes with thienothiophene substituents Zandria Lamprecht,a

S24

Figure S34: Normal Transition orbitals (NTOs) for the major absorption bands of 1b

−−−−.

Figure S35: Spin population of 1b−−−− and 1b

+ on the left and right hand side respectively.

Page 25: Electronic Supplementary Info · 2017-09-15 · Electronic Supplementary Info Mono-, di- and tetrarhenium Fischer carbene complexes with thienothiophene substituents Zandria Lamprecht,a

S25

Figure S36: Changes in UV-Vis absorption spectrum of 2a during the reduction event in CH2Cl2 containing 0.1 M NnBu4[B(C6F5)4] electrolyte, applied voltage range: -1.1 to -1.4 V; The inset shows the appearance of a 1600 nm

Intervalence charge transfer (IVCT) feature at an applied voltage -1.4 V. (Legend: Increasing cathodic voltages from black to

light green)

Figure S37: Changes in UV-Vis absorption spectrum of 3a during the reduction event in CH2Cl2 containing 0.1 M

NnBu4[B(C6F5)4] electrolyte, applied voltage range: -1.1 to -1.4 V (Legend: Increasing cathodic voltages from black to light

green)

Page 26: Electronic Supplementary Info · 2017-09-15 · Electronic Supplementary Info Mono-, di- and tetrarhenium Fischer carbene complexes with thienothiophene substituents Zandria Lamprecht,a

S26

Figure S38: Changes in UV-Vis absorption spectrum of 3b during the reduction event in CH2Cl2 containing 0.1 M

NnBu4[B(C6F5)4] electrolyte, applied voltage range: -1.1 to -1.4 V (Legend: Increasing cathodic voltages from black to light

green)