electronics b - massachusetts institute of technology

36
JV: 2.372J/6.777J Spring 2007, Lecture 7E - 1 Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. Electronics B Joel Voldman Massachusetts Institute of Technology

Upload: others

Post on 04-Feb-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

JV: 2.372J/6.777J Spring 2007, Lecture 7E - 1

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Electronics B

Joel Voldman

Massachusetts Institute of Technology

JV: 2.372J/6.777J Spring 2007, Lecture 7E - 2

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Outline> Elements of circuit analysis

> Elements of semiconductor physics• Semiconductor diodes and resistors• The MOSFET and the MOSFET inverter/amplifier

> Op-ampsTODAY

JV: 2.372J/6.777J Spring 2007, Lecture 7E - 3

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Elements of semiconductor physics> Discrete molecules (e.g., hydrogen

atom) have discrete energy levels that the electrons can occupy

• Determined via quantum mechanics

> Adding a discrete amount of energy to the electrons (via light, thermal energy, etc.) can excite an electron from its ground state to an excited state

> Different atoms have different number of filled states

• All the action typically happens at the highest unoccupied state

> Two distinct molecules have identical and independent energy-level structures

Razeghi, Fundamentals of Solid State Engineering

Paschen series

Balmer series

Lyman series

E (eV)

E (0 eV)E5 (-0.54 eV)E4 (-0.85 eV)E3 (-1.51 eV)

E2 (-3.40 eV)

E1 (-13.6 eV)

(n = 2)8 electrons

(n = 1)2 electrons

(n = 3, 1 = 0)s orbital 2 allowed levels

(n = 3, 1 = 1)p orbital 6 allowed levels

Silicon

Hydrogen

Adapted from Figureof Solid State Engineering. 2nd ed. New York, NY: Springer,2006, pp. 48 and 59. ISBN: 9780387281520.

Image by MIT OpenCourseWare.s 2.1 and 2.6 in Razeghi, M. Fundamentals

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT penCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 2.372J/6.777J Spring 2007, Lecture 7E - 4O

Elements of semiconductor physics> Atoms packed into a lattice behave differently than discrete atoms> Their discrete energy levels coalesce into “continuous” energy bands> There may be many energy bands for the molecule> We don’t care about the ones that are filled and inaccessible> We care about the highest one with electrons

Razeghi, Fundamentals of Solid State Engineering

Figure 1 on p. 559 in: Chelikowsky, J. R., and M. L. Cohen. "NonlocalPseudopotential Calculations for the Electronic Structure of Eleven Diamond and Zinc-blende Semiconductors." Physical Review B 14, no. 2 (July 1976): 556-582.

Isolated Si atoms

atom spacingDecreasing

Si lattice spacing

p

s

Elec

tron

ener

gy 4N empty states

2N+2N filled states

Adapted from Figure 2.5 in: Pierret, Robert F. Semiconductor DeviceFundamentals.Reading, MA: Addison-Wesley, 1996, p. 28. ISBN: 9780131784598.

EnergyGap

Γ1Γ1

Γ25' Γ25'

Γ15Γ15

Γ2'Γ2'

ΓΓ ∆ΛL X U,K Σ

-12

-10

-8

-6

-4

-2

0

2

4

6L3

L1

L3,

L1X1

Wave Vector k

X1

X4

L2'

Si

Image by MIT OpenCourseWare.

Image by MIT OpenCourseWare.

Cit s, Spring 2007. MIT Op

JV: 2.372J/6.777J Spring 2007, Lecture 7E - 5

Razeghi, Fundamentals of Solid State Engineering

> The highest normally filled set of electronic states is the valence band> The lowest normally empty set of electronic states is the conduction band> An energy gap separates these states> At T=0 K, all the valence band states are filled> A filled band cannot conduct electricity This is an insulator

Elements of semiconductor physics

T=0 K

valence band

energy gap

conduction band

e as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical DeviceenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Figure by MIT OpenCourseWare.Figure 1 on p. 559 in: Chelikowsky, J. R., and M. L. Cohen. "NonlocalPseudopotential Calculations for the Electronic Structure of Eleven Diamond and Zinc-blende Semiconductors." Physical Review B 14, no. 2 (July 1976): 556-582.

EnergyGap

Γ1Γ1

Γ25' Γ25'

Γ15Γ15

Γ2'Γ2'

ΓΓ ∆ΛL X U,K Σ

-12

-10

-8

-6

-4

-2

0

2

4

6L3

L1

L3,

L1X1

Wave Vector k

X1

X4

L2'

Si

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 2.372J/6.777J Spring 2007, Lecture 7E - 6

Elements of semiconductor physics> T>0 K, electrons have thermal energy (~kT)

> At equilibrium, the only way for an electron to cross the energy barrier is to be thermally excited

> The number of electrons that can do this is• increases with thermal energy (and thus T)• decreases with larger bandgap

> The thermally excited electrons give rise to “electrons”

> The resulting empty states in the valence band give rise to “holes”• Behave similar to “electrons” but with opposite charge and different mass

“electrons”

“holes”

T=0 K T=300 K

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 2.372J/6.777J Spring 2007, Lecture 7E - 7

Key terminology> Energy gap EG (1.1 eV in silicon at RT)

> Si atom concentration = 5x1022 /cm3

> The number of carriers in intrinsic Si is related to

• Probability distribution function of energies» This obeys Fermi-Dirac statistics

• Allowable states

> ~10-9 (prob of being filled) x ~1019 (density of states) = ~1010 (carriers)

> ni is the intrinsic carrier concentration• the equilibrium concentration of holes and

electrons in the absence of dopants• ~1.5x1010 cm-3 at RT• This is a material property

> n is the concentration [#/cm3] of electrons

> p is the concentration [#/cm3] of holes

ii

TkE

i

pnen B

G

=∝

−2

Every thermally generated electron

leaves behind a hole

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 2.372J/6.777J Spring 2007, Lecture 7E - 8

Key terminology> Intrinsic carrier concentration of

Si, Ge, and GaAs1014

1013

1012

1011

1010

109

108

107

106

105200 300 400 500 600 700

T (K)In

trins

ic c

arrie

r con

cent

ratio

n (c

m-3

)

GaAs

Si

Ge

Adapted from Figure 2.20 in: Pierret, Robert F. Semiconductor Device Fundamentals.Reading, MA: Addison-Wesley, 1996, p. 54. ISBN: 9780131784598.

Image by MIT OpenCourseWare.

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 2.372J/6.777J Spring 2007, Lecture 7E - 9

Doped semiconductors> Dopants: substitutional impurity

atoms introduced having one different valence than the semiconductor

> Acceptor dopant concentrations arNA [#/cm3] p-type material

• Boron (3 valence electrons)

> Donor dopant concentrations are N[#/cm3] n-type material

• Phosphorous (5 valence electrons)

> These introduce new energy levels close to valence or conduction bands (~0.05 eV)

> Dopant concentrations >> ni

e

D

T=0 K

Image by MIT OpenCourseWare.7.5 in: Razeghi, M. Fundamentals of Solid

Si

Si

Si Si Si

Si

Si

Si

P

Adapted from Figure State Engineering. 2nd ed. New York, NY: Springer, 2006, p. 238.ISBN: 9780387281520.

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 2.372J/6.777J Spring 2007, Lecture 7E - 10

Doped semiconductors> Energy to ionize << kT (at RT)

> We assume all dopants are ionized at RT

n-type dopant

p-type dopant

Ec

Ec

EAEv

ED

Ev

T = 0 T > 0 K T = 300 K

Image by MIT OpenCourseWare.

Adapted from Figure 2.13 in: Pierret, Robert F. Semiconductor Device Fundamentals. Reading,MA: Addison-Wesley, 1996, p. 38. ISBN: 9780131784598.

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 2.372J/6.777J Spring 2007, Lecture 7E - 11

Main results> Donors or acceptors are fully ionized

> Define n0 and p0 as the electron and hole concentrations at equilibrium

> n0 and p0 follow a mass-action law

D D

A A

D D

A A

N N e

N N h

N N

N N

+ −

− +

+

→ +

→ +

20 0 in p n=

AN p− = DN n+ = n p=

+

-

+

-

+

-

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 2.372J/6.777J Spring 2007, Lecture 7E - 12

Main results> Overall, silicon is neutral

• Can use to determine n0 and p0

> Carrier concentrations typically vary over many orders of magnitude

• Can use this to simplify

> Ex:• ni ~ 1010 cm-3

• NA, ND ~ 1016-1019 cm-3

> In a given material at equilibrium• NA > 100ND (p-type)• ND > 100NA (n-type)

02 2

00

A

i i

A

p N

n nnp N

= =

For p-type material:

0 0

0 0

Charge neutrality requires:

A D

A D

N n N p

N n N p

− ++ = +

+ ≈ +

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 2.372J/6.777J Spring 2007, Lecture 7E - 13

Main results> Therefore, the equilibrium

majority carrier concentration is determined by the net doping and the minority carrier concentration is determined by the n0p0 product.

> For typical numbers, minority carrier concentration is much less majority carrier concentration

n-type

02

0

A

i

A

p N

nnN

=

=

02

0

D

i

D

n N

npN

=

=

p-type

( )

17 3

17 30

210 323 3

0 17 3

~ 10

10

1010

10

A

A

i

A

N cm

p N cm

cmnn cmN cm

−−

= =

= = =

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 2.372J/6.777J Spring 2007, Lecture 7E - 14

Excess carriers> We can do various things to

create excess carriers• Shine light• Apply electric fields

> Excess carriers (n’, p’) represent a departure from equilibrium

> Excess holes and electrons are created in pairs

> Excess carriers recombine exponentially in pairs, governed by lifetime

• The minority carrier lifetime

0 0 Generally,

( ) ~ (0) m

mt

n n n p p pn p

dn ndt

n t n e τ

τ−

′ ′= − = −′ ′=

′ ′∝ −

′ ′

Recombination rate

Electron-hole pair (EHP)

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical DOpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 2.372J/6.777J Spring 2007, Lecture 7E - 15

Excess carriers> GaAs w/ NA=p0=1015 cm-3

> GaAs ni = 106 cm-3

> Therefore, n0= 10-3 cm-3

> Create 1014 EHP/cm3 and calculate carrier concentrations over time

0 101012

1013

1014

1015

20 30 40 50time (ns)

Car

rier c

once

ntra

tions

(cm

-3)

n(t)

p(t)

p0

Adapted from Figure 4.7 in: Streetman, Ben G., and Sanjay Kumar Banerjee.Solid State Electronic Devices. 6th ed. Upper Saddle River, NJ: PearsonPrentice Hall, 2006, p. 127. ISBN: 9780131497269.

Image by MIT OpenCourseWare.

evices, Spring 2007. MIT

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 2.372J/6.777J Spring 2007, Lecture 7E - 16

Drift and diffusion of carriers> Carriers in semiconductors

obey a drift/diffusion flux relation

> Drift: carriers move in an electric field

> Diffusion: carriers move in a concentration gradient

> For p-type material• n is small drift current is

small• ∇n can be big diffusion

current dominates

diffusiondrift( )n e n nq n D nμ= + ∇J E

Mobility [cm2/V-s]

Electric field [V/cm]

Carrier concentration [cm-3]

Diffusivity [cm2/s]

+ +

Drift

Figure 3.1b) in: Pierret, Robert F.Reading, MA: Addison-Wesley, 1996, p. 76. ISBN: 9780131784598.

Image by MIT OpenCourseWare. Semiconductor Device Fundamentals.

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 2.372J/6.777J Spring 2007, Lecture 7E - 17

Outline> Elements of circuit analysis

> Elements of semiconductor physics

> Semiconductor diodes and resistors

> The MOSFET and the MOSFET inverter/amplifier

> Op-amps

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 2.372J/6.777J Spring 2007, Lecture 7E - 18

The semiconductor diode> A p-n junction has very different

concentrations of carriers in the two regions, creating a diffusive driving force

> At equilibrium diffusive driving force = electric field in the vicinity of the junction

> In order to set up this electric field, the ionized donors and acceptors are relatively depleted of mobile carriers near the junction – the space-charge layer (SCL) or depletion region

xn0

XJ0

φxp0

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

E

p-type n-type

n-type substrate

p-type region

Oxide

Adapted from Figure 14.1 in: SenturiaBoston, MA: Kluwer Academic Publishers, 2001, p. 357. ISBN: 9780792372462.

Image by MIT OpenCourseWare., Stephen D. Microsystem Design.

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 2.372J/6.777J Spring 2007, Lecture 7E - 19

The exponential diode> An external voltage modifies the net

potential drop across the space charge layer

> Forward bias reduces the barrier to diffusion, leading to an increase in current

> Reverse bias increases the barrier, so only current is due to minority carriers generated in or near the space-charge layer

n-type substrate

Metalp-type region

Oxide+

_

VD

ID

Adapted from Figure 14.2 in: Senturia, Stephen D. MBoston, MA: Kluwer Academic Publishers, 2001, p. 359. ISBN: 9780792372462.

Ec

Ev

Ec

IN

IP

Ev

p

n

Equilibrium

Forward bias

Adapted from FiguDevice Fundamentals. Reading, MA: Addison-Wesley, 1996,p. 236. ISBN: 9780131784598.icrosystem Design.

Image by MIT OpenCourseWare.re 6.1 in: Pierret, Robert F. Semiconductor

Image by MIT OpenCourseWare.

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 2.372J/6.777J Spring 2007, Lecture 7E - 20

Ideal Exponential Diode Analysis> Linear changes in

voltage lead to exponential changes in carrier concentrations

0

The total current is

1q Ve Dk TB

DI I e⎛ ⎞

= −⎜ ⎟⎜ ⎟⎝ ⎠

Forward bias

Reverse blocking

Reverse breakdown

0.010

0.005

0.000

-0.005

-0.010-6 -5 -4 -3 -2 -1 0 1

-VB

Voltage (V)C

urre

nt (A

)

Adapted from Figure 14.3 in: Senturia, Stephen D. Microsystem Design. Boston,MA: Kluwer Academic Publishers, 2001, p. 360. ISBN: 9780792372462.

Image by MIT OpenCourseWare.

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 2.372J/6.777J Spring 2007, Lecture 7E - 21

The Junction-Isolated Diffused Resistor> The structure is a diode, but with two

contacts

> The diode action prevents currents into the substrate provided the diode is always reverse biased

> The conductivity is controlled by doping

> The resistor value is determined by geometry

v+-v

+-

desired undesired

n-type substrate

p-type region

Oxide Metal

distributed diode

resistor

Adapted from FigureDesign. Boston, MA: Kluwer Academic Publishers, 2001, p.363. ISBN: 9780792372462.

Image by MIT OpenCourseWare. 14.7 in: Senturia, Stephen D. Microsystem

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 2.372J/6.777J Spring 2007, Lecture 7E - 22

Outline> Elements of circuit analysis

> Elements of semiconductor physics

> Semiconductor diodes and resistors

> The MOSFET and the MOSFET inverter/amplifier

> Op-amps

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 2.372J/6.777J Spring 2007, Lecture 7E - 23

MOSFET Structure

> The MOSFET exploits the concept of a field-induced junction

> The electric field between the gate and the channel region of the substrate can either increase the surface concentration (accumulation) or deplete the surface and eventually invert the surface

p-type substrate

Oxide

Source Gate Drain

G

S

B

D

Body

n+ regionsChannels

Adapted from Figure 14.10 in: Senturia, Stephen D. Microsystem Design.Boston, MA: Kluwer Academic Publishers, 2001, p. 366. ISBN: 9780792372462.

Image by MIT OpenCourseWare.

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 2.372J/6.777J Spring 2007, Lecture 7E - 24

MOSFET qualitative operation

> With D & S grounded, back-to-back diodes prevent current flow between D & S

> To reduce barrier, apply positive voltage to G (w.r.t. D & S)

> At some threshold voltage, this will form an n-channel inversion layer that will connect D & S

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 2.372J/6.777J Spring 2007, Lecture 7E - 25

MOSFET Characteristics> Need VGS>VT for device to turn on

> As VDS increases, current will flow between D & S

> As VDS increases, voltage between G and D decreases

> When VDS gets too big, one side of channel pinches off, preventing further increases in current

S G GSD

e-e-

SD

e-e-

V VDS GS T> -VVDS>0

GD

e-e-

n-channel

VDS=0

1000

800

600

400

200

00 1 2 3 4 5

VGS = 3 V

VDS

ID,sat

VGS = 2 V

triode

saturation

I D (µ

A)

VGS = 4 V

Adapted from Figure 14.13 in: Senturia, Stephen D. Microsystem Design.Boston, MA: Kluwer Academic Publishers, 2001, p. 369. ISBN: 9780792372462.

Image by MIT OpenCourseWare.

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 2.372J/6.777J Spring 2007, Lecture 7E - 26

Different kinds of MOSFETs

G

D

B

S

G

D

B

S

G

S

B

D

G

S

B

D

p-channel

n-channel

Enhancement Depletion

Adapted from Figure 14.11 in: Senturia, SMA: Kluwer Academic Publishers, 2001, p. 367. ISBN: 9780792372462.

Image by MIT OpenCourseWare.tephen D. Microsystem Design. Boston,

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 2.372J/6.777J Spring 2007, Lecture 7E - 27

Large-signal and small-signal MOSFET models> Electrical engineers use

circuit models to analyze circuits involving MOSFETS

> Can use either full nonlinear characteristics

> Or linearized small-signal model

• Different models include different components

Simple large-signal model, in saturation

Simple small-signal model, in saturation

G

D

S

K/2(V -V )GS Tn2

G

D

S

+-

g vm gsCGSr0

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 2.372J/6.777J Spring 2007, Lecture 7E - 28

Outline> Elements of circuit analysis

> Elements of semiconductor physics• Semiconductor diodes and resistors• The MOSFET and the MOSFET inverter/amplifier

> Op-amps

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 2.372J/6.777J Spring 2007, Lecture 7E - 29

Operational Amplifiers – op-amps> Let someone else design a high-performance amplifier> Basic structure and transfer characteristic

LM158

_

+

v-

VS+

VS-

v+

v+v-

v0

v0

v0

v+ - v-

Vsat-

Vsat+

v+

Differentialamplifier

High-gainamplifier

Output amplifier

Signal path

Output A

Inverting input A

Non-inverting input A

Non-inverting Input B

Output B

Inverting input B

1

2

3

4 5

6

7

8

GND

DIP/SO Package

Slope A0

A B_ _+ +

Top view

_

+

Adapted from Figures 14.23 and 14.24 in Senturia, Stephen D. Microsystem Design. Boston, MA: Kluwer Academic Publishers,2001, p. 382. ISBN: 9780792372462.

Image by MIT OpenCourseWare.

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 2.372J/6.777J Spring 2007, Lecture 7E - 30

Ideal and non-ideal behavior> We do first analysis using ideal

linear model

> Op-amp data sheets have pages and pages of limitations

> A sampling• Input offset voltage voff: zero

volts at input gives non-zero output

• Frequency limitations: op-amps can only amplify up to a maximum frequency

( )0

0 0

0

( ) ( ) ( ) ( )where

( )

v s A s v s v s

A sA ss s

+ −= −

=+

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 2.372J/6.777J Spring 2007, Lecture 7E - 31

The Inverting Amplifier

0

1 2

0

2

1 2

1

2

1

KCL:

(0 )

111 1

s

o

s

o

s

V v v VR R

V A v

V RV R R

A R

AV RV R

− −

− −=

⇓ = −

⎡ ⎤⎢ ⎥⎢ ⎥= −⎢ ⎥⎛ ⎞+ +⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦⇓ →∞

= −

Assume op-amp draws no current

Use Nodal analysis:

Vs Vo+-

+-

A(v -v )+ -

v-

v+

R1

R2

Vs Vo+-

v-

v+

R1

R2

+

-

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 2.372J/6.777J Spring 2007, Lecture 7E - 32

Short method for analyzing op-amps> Assume linear region operation

• This implies that the two inputs are essentially at the same voltage (but never exactly equal)

> Assume zero currents at both inputs

> Analyze the external circuit with these constraints

> Check to verify that the output is not at either saturation limit (±VS)

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 2.372J/6.777J Spring 2007, Lecture 7E - 33

More op-amp configurations

20

2 1

0 1

2

1

S

s

S

v v VRV V

R RV RV R

− += =

=+

= +

V0

Vs

R1

R2

Non-inverting

+

_

Adapted from Figure 14.28 in Senturia, Stephen D. Microsystem Design.Boston, MA: Kluwer Academic Publishers, 2001, p. 388. ISBN: 9780792372462.

Image by MIT OpenCourseWare.

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 2.372J/6.777J Spring 2007, Lecture 7E - 34

More op-amp configurations

Transimpedance amplifier

SIRV 10 −=

+

_

Is

R1

V0

Adapted from Figure 14.29 in Senturia, Stephen D. Microsystem Design. Boston, MA: Kluwer Academic Publishers, 2001, p. 389. ISBN: 9780792372462.

Image by MIT OpenCourseWare.

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 2.372J/6.777J Spring 2007, Lecture 7E - 35

Integrator

dttVCR

V s )(1

10 ∫−=

Vs V0

C

R1 +

+

+

_

_

_vC

Adapted from Figure 14.30 in Senturia, Stephen D. Microsystem Design. Boston,MA: Kluwer Academic Publishers, 2001, p. 389. ISBN: 9780792372462.

Image by MIT OpenCourseWare.

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

JV: 2.372J/6.777J Spring 2007, Lecture 7E - 36

Differentiator

0

1

01

The differentiator is less "ideal"

01

s

s

V VRsC

V sR CV

−=

= −

Vs V0

C

R1

+

+

_

_

Adapted from Figure 14.31 in Senturia, Stephen D. Microsystem Design. Boston,MA: Kluwer Academic Publishers, 2001, p. 390. ISBN: 9780792372462.

Image by MIT OpenCourseWare.