electrostimulare Și câștig de forță musculaire

Upload: bianca111519

Post on 01-Mar-2016

7 views

Category:

Documents


0 download

DESCRIPTION

electro

TRANSCRIPT

  • Update article/Mise au point

    Electrical stimulation and muscle strengthening

    Electrostimulation et gain de force musculaire

    P. Dehail a,*, C. Duclos b,1, M. Barat a

    a EA 4136 handicap et systeme nerveux, service de medecine physique et readaptation, hopital Pellegrin,

    CHU de Bordeaux et universite Victor-Segalen Bordeaux-2, place Amelie-Raba-Leon, 33076 Bordeaux cedex, Franceb Centre de recherche interdisciplinaire en readaptation, institut de readaptation de Montreal et ecole de readaptation,

    universite de Montreal, Quebec, Canada

    Received 22 March 2008; accepted 20 May 2008

    Abstract

    Objectives. To identify the effects of application methods and indications of direct muscle electrostimulation on strength gain.

    Methods. Literature review and analysis of articles from Medline database with the following entries: muscular or neuromuscular, electro-

    myostimulation, electrical stimulation, strengthening, strength training, immobilization, muscle dystrophy, bed-rest, bed-bound, knee or hip

    surgery, postoperative phase, cachexia, sarcopenia, and their French equivalent.

    Results. Because of its specific muscle recruitment order, different from that of voluntary contraction, direct muscle electrostimulation is

    theoretically a complementary tool for muscle strengthening. It can be used in healthy subjects and in several affections associated with muscle

    function loss. Its interest seems well-established for post-traumatic or postsurgery lower-limb immobilizations but too few controlled studies have

    clearly shown the overall benefits of its application in other indications. Whatever the indication, superimposed or combined electrostimulation

    techniques are generally more efficient than electrostimulation alone.

    Conclusion. Even though widely used, the level of evidence for the efficiency of electromyostimulation is still low. For strength gains, it yielded

    no higher benefits than traditional strengthening methods. Its interest should be tested in medical affections leading to major muscle deconditioning

    or in sarcopenia.

    # 2008 Elsevier Masson SAS. All rights reserved.

    Resume

    Objectifs. Preciser les effets, en termes de gain de force, les methodes dapplication et les indications de lelectrostimulation musculaire directe.

    Methode. Revue de la litterature et analyse darticles selectionnes a partir de la base de donnees Medline selon les mots cles suivants : muscular

    or neuromuscular, electromyostimulation, electrical stimulation, strengthening, strength training, immobilization, muscle dystrophy, bed-rest, bed-

    bound, knee or hip surgery, postoperative phase, cachexia, sarcopenia ou leurs equivalents francais.

    Resultats. En entranant un recrutement musculaire specifique, different de celui obtenu par la contraction volontaire, lelectrostimulation

    musculaire directe represente en theorie un moyen complementaire de renforcement musculaire utilisable chez le sujet sain et lors de differentes

    affections saccompagnant dune degradation de la fonction musculaire. Si dans le cadre des immobilisations segmentaires des membres inferieurs,

    post-traumatiques ou postchirurgicales, linteret de lelectromyostimulation parat bien etabli, le nombre insuffisant detudes controlees dans les

    autres indications ne permet pas de determiner avec precision lensemble des benefices de cette technique. Quelle que soit lindication, les

    techniques delectrostimulation musculaire surimposee ou combinee aux contractions volontaires paraissent plus performantes que lutilisation

    isolee de lelectrostimulation.

    Conclusion. Bien que couramment employee, lefficacite de lelectromyostimulation reste insuffisamment demontree. En termes de gain de

    force, la superiorite de cette technique par rapport aux methodes traditionnelles de renforcement musculaire nest pas etablie. Son interet, dans le

    http://france.elsevier.com/direct/ANNRMP/

    Disponible en ligne sur www.sciencedirect.com

    Annales de readaptation et de medecine physique 51 (2008) 441451* Corresponding author.

    E-mail address: [email protected] (P. Dehail).1 Equipe multidisciplinaire en readaptation locomotrice (initiative strategique des IRSC, nanomedecine et medecine regenerative S. Rossignol).

    0168-6054/$ see front matter # 2008 Elsevier Masson SAS. All rights reserved.doi:10.1016/j.annrmp.2008.05.001

    mailto:[email protected]://dx.doi.org/10.1016/j.annrmp.2008.05.001

  • P. Dehail et al. / Annales de readaptation et de medecine physique 51 (2008) 441451442cadre daffections medicales conduisant a un deconditionnement musculaire majeur ou dans la sarcopenie, meriterait detre precise a travers des

    etudes controlees.

    # 2008 Elsevier Masson SAS. All rights reserved.

    Keywords: Electromyostimulation; Strength training; Immobilization; Sarcopenia; Muscle dystrophy

    Mots cles : Electromyostimulation ; Renforcement musculaire ; Immobilisation ; Sarcopenie ; Dystrophie musculaire1. English version

    1.1. History of direct muscle electrostimulation

    Physiological applications of motor electrostimulation

    began in the 19th century, with Duchenne de Boulogne. Using

    the technique of inductive currents developed by Faraday in

    1831 (faradic currents), Duchenne de Boulogne meticulously

    described muscle kinesiology and its limits: If it is true that

    electromuscular exploration can help to know exactly the actual

    action of a muscle, I must say that it seldom teach what are the

    other muscles involved in the physiological movement it is

    bound to yield. . . [14].The description by Remak, in 1858, of muscle motor points

    and observations of the increase in volume of denervated

    (Debedat in 1894 in ref. [43]) and healthy muscles (Bordier in

    1902 in ref. [43]) by means of direct electrostimulation led to

    the development of excitomotor treatments for muscles

    deprived of their peripheral nervous control (Jackson 1945

    in [43]), muscle force increase in athletes (Kotz in 1971 in ref.

    [43]), and overnight electrical stimulation of paraspinal

    muscles in juvenile scoliosis treatments [1].

    In parallel, histochemical alterations of muscle fibres were

    described in relation to electrostimulation [35], leading to

    muscle strengthening programs and treatments of muscle

    atrophy due to immobilization.

    1.2. Physiological effects of direct muscle

    electrostimulation on sound muscles

    Direct muscle electrostimulation produces muscle contrac-

    tion by transcutaneous peripheral nerve stimulation. The

    contraction can be produced either directly, through the

    depolarization of motoneurons, or indirectly, through the

    depolarization of sensory afferents [810]. The stimulation

    recruits motor units in a specific way, which is different from

    physiological muscle recruitment during voluntary contraction

    and furthermore could be responsible for the strength gain

    measured after electrostimulation training in healthy subjects

    (see below). Electrostimulation was often considered to recruit

    motor units in the opposite order from voluntary drive, contrary

    to Hennemanns size principle. The principle states that slow

    motor units, associated with small-diameter motoneuron axons,

    are active before fast motor units, which are associated with

    larger-diameter axons. However, the current view acknowled-

    ges that the recruitment is nonselective to the type of motor unit

    and in synchrony, contrary to voluntary contraction [20,25].

    The recruitment pattern seems to depend on the location,

    surface and type of electrodes and on the stimulated muscle,which determine the conductive volume and the current density.

    This nonphysiological pattern may partially explain the

    noticeable local fatigue associated with muscle electrostimula-

    tion and, particularly, because of the synchrony of motor unit

    recruitment [50].

    Several physiological phenomena are associated with the

    electrically-induced contraction. RMN spectroscopy and

    biopsy were used among other techniques to show the

    following. Muscle stimulation increases the metabolic demand

    compared to voluntary contraction, with higher rates of

    inorganic phosphates and higher cell oxygen level; this

    phenomenon is directly related to the intensity of the induced

    contraction [42,51]. Cardiorespiratory activity is also affected,

    with a higher oxygen consumption, ventilation and respiratory

    exchange ratio associated with concentric contraction of the

    quadriceps femoris induced electrically rather than voluntarily

    during resistance training [50]. Finally, the contraction due to

    electromyostimulation may be associated with brain activity in

    the primary sensorimotor cortex and supplementary motor area

    [21], although this activity may not be directly linked to the

    contraction because movements, and thus sensory afferences,

    accompanied the stimulation.

    In healthy subjects, adaptation of muscle physiology is

    observed when repeated electrical stimulations are used, such

    as during muscle training. An increase was observed in the

    cross-sectional area of type I muscle fibres or of the overall

    muscle group that was trained [18,22,29,42]. This was

    associated with an increase in the amount of the IIa isoform

    of heavy chains of myosin [29] and seemed to be greater when

    voluntary contraction was combined with the stimulation [42].

    These alterations depend on the type of stimulation used and

    could be paralleled with an improved maximal strength of the

    trained muscle and higher muscle electrical activity [18,29,42].

    Four weeks after the end of training with electrostimulation, the

    strength gain decreased, as well as the muscle cross-sectional

    area, but not to the pretraining values. On the other hand,

    muscle activity came back to basal level after four weeks. The

    latter results suggest that the observed gain of strength may be

    due to both local muscle and motor command adaptation [18].

    1.3. Use of electromyostimulation

    1.3.1. With athletes

    Several studies of training programs have tested the impact

    of electromyostimulation on strength gain. In rugby players, for

    example, isolated stimulation of the quadriceps femoris,

    gluteus maximus and triceps surae muscles during a 12-week

    period led to a marked increase in the strength and power of

    these muscles [2]. However, the technical skills of rugby, such

  • P. Dehail et al. / Annales de readaptation et de medecine physique 51 (2008) 441451 443as scrummaging and sprinting, did not benefit from these

    improvements. In another study, the combination of electro-

    stimulation and pliometric training improved the maximal

    strength of the quadriceps femoris, as well as vertical jump and

    sprint [22] but electrostimulation alone reduced the sprint

    velocity and its benefits did generally not exceed those

    observed when applied in combination with pliometric training.

    In a recent review, electrostimulation combined with fast

    concentric (1808/s) or eccentric training was acknowledged toincrease maximal concentric moment [42]. However, these

    examples, as in most of the published studies on the subject,

    have poor methodological qualities [4]. In this systematic

    review, Bax et al. [4] showed that electrical stimulation is more

    effective to increase the quadriceps femoris strength, only

    compared to no exercise, and even more effective when the

    stimulation was combined with simultaneous voluntary activity

    [4]. Electrical stimulation was still not more effective than

    classical training, except when associated with eccentric

    training. Thus, as summarized by Vanderthommen and

    Duchateau [51], strength gains due to electrostimulation do

    not seem to be higher than those due to training with voluntary

    contractions. Because these gains are likely due to the intensity

    of the stimulation, it is extremely important to use comfortable

    currents, even if no standardized method exists. Electro-

    stimulation in healthy subjects and athletes looks more like a

    complement to classical strengthening programs, particularly

    in combination with simultaneous voluntary contraction. Its

    main advantages are (1) to increase the muscle workload, as a

    complement to classical training, and (2) to induce a

    contraction pattern different from the pattern during voluntary

    contraction [39,51]. Finally, even if strength gain could be

    transferred to sports activities, negative outcomes [22] suggest

    that skill training is always needed to improve the muscle

    coordination necessary for the task to be trained [42].

    1.3.2. During limb immobilization periods

    Knees are usually immobilized after surgery or severe

    traumatic lesions, such as anterior cruciate ligament rupture. In

    this situation, amyotrophy and strength loss appear rapidly in

    the quadriceps femoris. Numerous clinicians use direct muscle

    stimulation to limit the appearance of these muscle changes and

    accelerate their return to normal functional level. This

    technique is believed to help fight post-traumatic or postsurgery

    muscle sideration. Electrostimulation is used during and/or

    after the immobilization period alone or associated with

    voluntary muscle contraction. Even if several open studies

    evoked benefits from electrostimulation, randomized trials led

    to nuanced results. In studies comparing patients with and

    without electrostimulation during the immobilization period

    [19,34,48,54], electrostimulation seems to offer interest, as

    shown in a recent meta-analysis [4]. The main result was less

    reduction in muscle strength in patients receiving the electro-

    stimulation treatment. Most of the studies on the post-

    immobilization period showed the positive effect of the

    stimulation quadriceps femoris [4] with a faster return to

    normal walking pattern after surgery [48]. However, Lieber

    et al. [28] did not find any significant difference in maximalknee extension force between electrostimulation and voluntary

    contraction, when the intensity of the contraction was similar.

    One year postsurgery (anterior cruciate ligamentoplasty), no

    difference appeared between the two groups of patients. The

    potential strength gain benefits are generally correlated to the

    intensity of the stimulation and the frequency of the training

    sessions [40,47]. Moreover, electrostimulation combined with

    voluntary contractions (either at different times or simulta-

    neously) seems more efficient than when used in isolation

    [12,39,48]. A hybrid model was recently developed based on

    the association of voluntary contractions of agonist muscles and

    electrostimulation of the antagonists, in order to (1) obtain a

    resistance to the voluntary contraction and (2) strengthen the

    knee flexion and extension muscles [23]. More studies are

    needed to compare this strategy to the usual techniques of

    muscle strengthening against resistance, or in combination with

    electrostimulation.

    Electrostimulation of the quadriceps femoris was also

    proposed after hip fractures [27] or hip arthroplasty due to

    arthritis [49] to fight muscle atrophy that quickly appears in

    these situations. Strength loss associated with decreased muscle

    mass was estimated at 4% a day during the first week

    postsurgery. In Suetta et al.s randomized study [49], the authors

    compared the benefits of a classical rehabilitation program

    alone or associated with either strengthening exercises against

    resistance or electrostimulation, after prosthetic hip replace-

    ment. Electrostimulation was provided from the first day

    postsurgery, for 12 weeks, one hour a day. Only the patients in

    the strengthening against resistance program had a shorter

    length of stay in hospital after surgery. On the other hand, both

    groups showed better functional results (walking velocity, time

    to climb up 10 stairs, Stand-up Test) after the 12-week program.

    Only the resistance muscle strengthening influenced the cross-

    sectional area of the quadriceps, as measured by tomodensi-

    tometry, and increased the isokinetic strength in knee extension.

    In a randomized study against placebo (sham electrostimula-

    tion) with much older women (83.4 3.7 years old) after hipfracture [27], electrostimulation of the quadriceps femoris (3 h

    a day for six weeks) brought these women back to their previous

    mobility level faster than the other group.

    Thus, for traumatic and orthopaedic affections of the lower

    limbs, electrostimulation seems to be useful in the first phase of

    treatment. This treatment helps to limit the amytrophy and

    strength loss associated with the traumatism, the surgery and

    the following transitory segment immobilization.

    1.3.3. During affections leading to cachexia and extended

    bed-rest

    Several studies showed the benefits of direct muscle

    electrostimulation during medical affections (cardiac insuffi-

    ciencies and chronic obstructive pulmonary disease (COPD)

    especially) associated with cachexia in their severe form.

    Cachexia is characterized in particular by diffuse amyotrophy

    and a major decrease in muscle force. Vivodtzev et al.

    emphasized the interest of associating muscle electrostimula-

    tion (quadriceps femoris) with usual rehabilitation (slow gait

    training on treadmill and active limb mobilization) in COPD

  • P. Dehail et al. / Annales de readaptation et de medecine physique 51 (2008) 441451444and malnourished patients [52]. In this randomized controlled

    study, patients who participated in such a program showed

    significant improvement in the strength of their quadriceps,

    their walking distance and their body mass index. Moreover, a

    significant reduction in dyspnoea was observed during their

    daily living activities. Similar effects were obtained in other

    randomized controlled trials [6,36] with different electro-

    stimulation programs of the quadriceps alone or in association

    with the knee flexors. In addition to the strength gain, these

    studies confirmed the positive effect of electrostimulation on

    dyspnoea, gait abilities and exercise tolerance. Zanotti et al.

    [56] also indicated a positive effect of muscle electro-

    stimulation associated with active exercises on the duration

    of bed-rest time in patients with chronic respiratory insuffi-

    ciency who needed mechanical ventilation.

    In the patients with chronic cardiac insufficiency, low-

    intensity electrostimulation of the lower limb muscles

    (quadriceps and/or hamstrings and/or triceps surae, depending

    on the studies) also brought similar benefits to those observed in

    patients with COPD [30,37,41]. In addition to the strength gain

    measured in the stimulated muscles, aerobic capacity was

    improved [37] as well as quality of life assessed by the SF-36,

    particularly in patients waiting for a heart transplant [41].

    Nuhr et al. [37] also observed a modification in the

    expression of myosin heavy chain in biopsy samples from the

    vastus lateralis muscle after a relatively high-intensity

    electrostimulation program (4 h a day, seven days a week for

    10 weeks, with a contraction intensity between 25 and 30% of

    the maximal voluntary contraction). The expression of MHC

    type 1 increased to the detriment of MHC II d/x.

    Apart from pathologies, electromyostimulation is also one

    of the tools commonly used by astronauts during microgravity

    flights to fight amyotrophy and loss of muscle strength [11].

    Several studies on simulated microgravity (long-duration bed

    rest in anti-orthostatic position) analyzed the benefits of

    electrostimulation in this situation [15,26]. The hybrid method

    described above could be of particular interest [31].

    1.3.4. In subjects with sarcopenia

    Muscle strengthening against resistance is currently the

    principal means to fight body mass and strength reduction

    observed with aging. In the elderly, large strength or power

    gains were measured, proportionally similar to those obtained

    in healthy subjects in the same exercise program [5,24]. Even if

    nervous adaptation factors seem more important than muscle

    adaptation factors, the increased protein synthesis associated

    with strengthening against resistance is almost comparable to

    that observed in young subjects [55].

    However, the strengthening programs used in published

    research protocols [3,46] were particularly intensive and are

    harder to apply in daily practice. Polypathology, limited

    motivation, reduced cognitive functions, often limits the

    implementation of such protocols. Direct muscle electro-

    stimulation could be a good tool to fight installation or

    worsening of the sarcopenia process, particularly in the frail

    elderly. Currently, however, there are only very few studies

    examining this idea. In their study, Caggiano et al. [7] found animprovement in the quadriceps femoris maximal isometric

    strength similar after 12 sessions of usual strengthening or

    electrostimulation in subjects 72 4 years old. Recently,Paillard et al. [38] analyzed the effects of electrostimulation

    superimposed or not by voluntary muscle contractions on

    muscle strength, body composition, different posturographic

    data and vertical jump height in women between 62 and 75

    years old. After randomization, participants received either

    electrostimulation of their quadriceps or up-and-down stair-

    climbing exercises, or the two programs associated. They

    attended four sessions a week for 6 weeks. The results showed

    that the three programs are similarly good, with an

    improvement in the isometric and isokinetic strength of the

    lower limbs and vertical jump height. No better effect of the

    superimposed electrostimulation appeared in comparison with

    the two programs alone. None of the three programs altered the

    body composition or posture of the participants. To our

    knowledge, no study to date has focused specifically on isolated

    or superimposed electrostimulation used to improve muscle

    function in persons with diagnosed sarcopenia.

    1.3.5. In muscle and neuromuscular pathologies

    Therapeutic application of electromyostimulation to muscle

    and neuromuscular pathology is still a much debated subject.

    Duchenne de Boulogne [14] already remarked its poor results

    on the degenerescence musculaire graisseuse or muscle

    dystrophy called after him.

    A few controlled studies on the muscle strength gain

    obtained by means of electromyostimulation were published in

    the 1980s and 1990s. Milner-Brown et al. [32] compared two

    types of programs in a series of 16 [33] and 10 adults [32]

    respectively with facio-scapulo-humeral, Becker, myotonic or

    girdle muscle dystrophy: training of two to three months with muscle strengtheningagainst strong resistance did not improve the deficient

    muscles (whose strength was less than 10% of the normal

    expected strength). However, the strength of less affected

    muscles (more than 15% of the normal expected strength)

    was improved, even more so when the progression of the

    illness was slow; training combining unilateral electrical stimulation of thetibialis anterior and quadriceps femoris with voluntary

    extension of the knee against low resistance, 2 h a day, five

    days a week, for two to 14 months, showed that the maximal

    extension strength of the knee increased significantly

    (108 56%). The contralateral knee extensors, not trained,showed a strength gain as well, contrary to the ankle

    dorsiflexors, whose stimulation did not produce any strength

    change. Again, the gain was largely influenced by the level of

    affection and the progression of the illness.

    In children with Duchenne or Becker muscle dystrophy,

    electrical stimulation of the affected muscles produced

    conflicting results. Low-frequency stimulation seems more

    effective but its effect on the contractile properties of muscle

    was not better than those observed after early tenotomy in the

  • P. Dehail et al. / Annales de readaptation et de medecine physique 51 (2008) 441451 445case of retraction [13]. This was experimentally verified in a

    chronic stimulation program which induced better resistance

    to fatigue in dystrophic mice [53]. Furthermore, on a group of

    16 boys with Duchenne myopathy, compared to controls,

    chronic stimulation of the tibialis anterior and rectus femoris

    at low frequency showed that (1) the contractile properties are

    characterized by a longer mean relaxation time, (2) there is no

    strength loss during a fatigue test but (3) contrary to healthy

    children, there is no potentialization at the lowest stimulation

    frequencies. Finally, continuing the low-frequency stimula-

    tion in six walking children led to a significant increase in

    maximal strength compared to the nonstimulated contralateral

    muscles [45]. These authors concluded that long-duration

    low-frequency electrostimulation training of the quadriceps

    femoris improves fatigue resistance in children with

    Duchenne myopathy who are still walking; this technique

    opens up interesting therapeutic perspectives [44]. The results

    obtained by Zupan et al. [57,58] point in the same direction.

    Twelve dystrophic children (10 Duchenne two Becker) were

    studied in a program of low-frequency electrical stimulation

    of the tibialis anterior, for three months [58]. Muscle force

    was evaluated with a short voluntary isometric contraction in

    the direction of dorsal flexion of the foot. Muscle fatigue was

    measured by the strength decrease during a maximal voluntary

    contraction held for 1 min. At the end of the training period,

    peak torque was significantly improved in 10 out of 12

    children, on the stimulated side. Fatigue resistance had not

    improved.

    In a recent work on a family with nemalin myopathy,

    whose evolution is acknowledged to be slow in adults, Gerrits

    et al. [17] compared voluntary activity in knee extension

    alone or combined with electrostimulation of the quadriceps

    femoris at different extension angles. Between 308 and 708 ofknee flexion, the ability to maintain the isometric voluntary

    contraction assisted by the electrical stimulation, was higher

    than in healthy subjects. Maximal force was obtained with low-

    frequency (10 Hz), not with high-frequency (150 Hz) stimula-

    tion. The authors concluded that there was a deficit in the

    excitation-contraction coupling for high frequencies and

    suggested a deficit in the actin-myosin interaction at a high

    activation threshold. The interest of this work was to confirm

    the use of low-frequency stimulation associated with voluntary

    work in pathological muscle strengthening.

    To our knowledge, only one controlled study has evaluated

    the therapeutic effect of electrical stimulation on progressive

    spinal atrophy type II/III [16]. This randomized study analyzed

    the effect of low-frequency and low-intensity stimulation

    applied at night on the deltoid and biceps muscles for six to

    12 months. The other arm received placebo stimulation.

    Thirteen patients from 5 to 19-years-old were followed for six

    months, and eight for one year. No difference in muscle strength

    appeared between the trained arm and the other one. Nor did

    any difference appear between electrophysiological M-waves

    or in functional abilities.

    Finally, the results of electrostimulation on muscle or

    neuromuscular affections are contrasted. Since the mid-1990s,

    no new study has allowed this technique to be added to atreatment program of muscle dystrophy in children or adults.

    Two explanations can be proposed: first, follow-ups in therapeutic trials were often short, withshort-term results only, because of the fast evolution of the

    muscle affection. Information is insufficient to compare

    homogenous groups of patients stimulated or not at different

    stages of their illness; second, treatment constraints are often high and, for short-term positive results, require long-time participation, not

    always compatible with school, family or work life.

    1.4. Conclusion

    Even if the use of direct muscle electrostimulation is fairly

    common, the evidence level of its efficiency is relatively low,

    mainly because of the lack of controlled studies. Furthermore,

    no superiority of this method over traditional muscle

    strengthening techniques has been clearly shown for strength

    gain.

    In athletic training or pathology treatments, the programs

    that associate electrostimulation with voluntary muscle

    contractions (superimposed or combined electrostimulation)

    seem to have more effect than electrostimulation alone. Apart

    from its application in exercise traumatology or orthopaedics,

    direct muscle electrostimulation could be an efficient tool to

    fight the reduction in muscle mass and function observed in

    numerous affections leading to long bed rest, including those in

    the context of intensive care. Currently, the number of studies

    on this topic is low. The efficiency of muscle electrostimulation

    in the battle against sarcopenia, a major cause of activity

    reduction in the elderly, also needs to be evaluated.

    2. Version francaise

    2.1. Historique de lelectrostimulation musculaire directe

    Les applications physiologiques de lelectrostimulation

    motrice ont debute au XIXe siecle avec Duchenne de Boulogne.

    Appliquant la technique des courants par induction mise au

    point par Faraday en 1831 (courant faradique), Duchenne de

    Boulogne sattache a une observation minutieuse de la

    cinesiologie musculaire, tout en en soulignant les limites :

    en effet, sil est vrai que lexploration electromusculaire peut

    faire connatre exactement laction propre dun muscle, je dois

    faire observer que rarement elle apprend quels sont les autres

    muscles dont le concours est necessaire a la production du

    mouvement physiologique quil est destine a executer. . . [14].La description par Remak en 1858 des points moteurs des

    muscles, les observations de gain du volume des muscles

    denerves (Debedat, en 1894 dans la ref. [43]) et des muscles

    sains (Bordier, en 1902 dans la ref. [43]), sous leffet de

    lelectrostimulation directe, ont amene au developpement du

    traitement excitomoteur des muscles lorsquils sont prives du

    controle nerveux peripherique (Jackson, en 1945 dans la ref.

    [43]), au recours a laccroissement de la force musculaire chez

  • P. Dehail et al. / Annales de readaptation et de medecine physique 51 (2008) 441451446le sportif (Kotz, en 1971 dans la ref. [43]), au traitement par

    stimulation electrique nocturne des muscles paravertebraux

    dans le traitement des scolioses juveniles [1].

    Parallelement, ont ete precisees les modifications histo-

    chimiques des fibres musculaires sous linfluence de lelectro-

    stimulation [35], ouvrant la voie aux programmes de

    renforcement musculaire et de lutte contre latrophie dimmo-

    bilisation.

    2.2. Effets physiologiques de lelectrostimultion

    musculaire directe sur muscle sain

    Lelectrostimulation musculaire directe agit en fait princi-

    palement par stimulation percutanee des axones des nerfs

    moteurs peripheriques. Le seuil dexcitabilite des axones, qui

    est nettement inferieur a celui des cellules musculaires,

    explique cette chronologie et le caractere secondaire de la

    stimulation des fibres musculaires. La contraction serait induite

    par la depolarisation des motoneurones et, indirectement, par la

    depolarisation des afferences sensorielles [810]. Elle entrane

    un recrutement musculaire specifique, dont les caracteristiques

    different du recrutement physiologique lors des contractions

    volontaires. Ce recrutement particulier serait a lorigine des

    gains de force observes lors de lutilisation de lelectro-

    stimulation chez des sujets sains (cf. infra). Il a souvent ete

    propose que la stimulation electrique recrute les unites motrices

    dans lordre inverse de la commande volontaire, a lencontre du

    principe de taille dHennemann. Ce principe stipule que les

    unites motrices lentes, associees aux fibres nerveuses de petit

    diametre, sont activees les premieres, avant que les unites

    motrices rapides, associees aux fibres de gros diametre,

    nentrent en jeu. Cependant, la vision actuelle propose plutot

    un recrutement non selectif par rapport au type dunite motrice

    et synchrone, contrairement a la contraction volontaire [20,25].

    Le patron de recrutement pourrait dependre notamment du

    placement, de la surface et du type delectrode, du muscle

    stimule, qui determinent le volume conducteur et la densite du

    courant. Ce patron non physiologique , en particulier son

    aspect synchrone, expliquerait en partie la fatigue locale

    importante induite par lelectrostimulation [50]. Differents

    phenomenes physiologiques accompagnent la contraction

    induite par stimulation electrique. La spectroscopie RMN, la

    biopsie, entre autres, ont permis de mettre en avant les elements

    suivants. Au cours de la stimulation musculaire, la demande

    metabolique serait plus elevee que lors de la contraction

    volontaire, avec des taux de phosphates inorganiques et

    doxygenation cellulaire plus eleves, et ce de facon pro-

    portionnelle a lintensite de la contraction [42,51]. De plus, la

    demande cardiorespiratoire serait egalement modifiee : la

    consommation doxygene, la frequence ventilatoire et le

    quotient respiratoire etaient superieurs pendant un entrane-

    ment en resistance lorsque la contraction concentrique du

    quadriceps etait induite par stimulation electrique plutot que

    realisee volontairement [50]. Enfin, il faut noter que la

    contraction induite par stimulation electrique saccompagne

    dune activite cerebrale du cortex sensorimoteur primaire et de

    laire motrice supplementaire [21]. Ces resultats ne permettentcependant pas daffirmer que lactivite cerebrale est directe-

    ment liee a la contraction puisque des mouvements, et donc des

    afferences sensorielles, etaient induits par la stimulation.

    Chez le sujet sain, lorsque la stimulation electrique

    musculaire est utilisee de facon repetee, au cours dun

    entranement par exemple, la physiologie musculaire montre

    differents signes dadaptation. Plusieurs etudes ont montre une

    augmentation de la surface de section des fibres musculaires du

    type I ou des groupes musculaires entranes [18,22,29,42].

    Cette augmentation de la surface de section etait associee a une

    augmentation de la presence de lisoforme IIa des chanes

    lourdes de myosine [29] et semble plus importante lorsquune

    activite volontaire est associee a la stimulation [42]. Ces

    modifications musculaires dependraient du type de stimulation

    applique et peuvent etre associees a une augmentation de la

    force maximale du muscle entrane, ainsi que de lactivite

    electromyographique associee [18,29,42]. Quatre semaines

    apres lentranement, le gain de force tend a se reduire, tout

    comme la surface de section musculaire, sans toutefois revenir

    au niveau initial et ce contrairement a lactivite electro-

    myographique. Ces derniers resultats laissent penser que le gain

    de force serait lie a la fois a des adaptations musculaires locales

    et de la commande motrice [18].

    2.3. Applications

    2.3.1. Chez le sportif

    Differents programmes dentranement ont evalue leffet de la

    stimulation electrique musculaire sur la force musculaire et ses

    eventuelles repercussions sur la masse et la fonction motrice.

    Chez des rugbymen, par exemple, la stimulation isolee des

    muscles quadriceps femoris, gluteus maximus et triceps surae a

    permis une augmentation de leur force et de leur puissance, de

    facon marquee apres 12 semaines [2]. En revanche, les

    mouvements specifiques au rugby, comme la melee ou le sprint,

    ne beneficiaient pas de ces ameliorations. En combinant

    lelectrostimulation et un entranement plyometrique, une

    augmentation des performances en saut vertical et de la vitesse

    de sprint peut accompagner laugmentation de force maximale

    du quadriceps femoris [22]. Cependant, lelectrostimulation

    seule a reduit la vitesse de sprint et ses benefices sont en general

    inferieurs a ceux observes en combinaison avec lentranement

    plyometrique. Dans une revue recente, Requena Sanchez et al.

    [42] indiquent que le moment maximal isocinetique peut etre

    augmente si lentranement par electrostimulation est combine a

    un entranement en mode concentrique rapide (1808/s) ouexcentrique. Cependant, ces exemples, comme la plupart des

    etudes publiees, ont des qualites methodologiques faibles [4].

    Dans cette revue de Bax et al. [4], les auteurs montrent que la

    stimulation electrique est plus efficace pour augmenter la force

    musculaire du quadriceps femoris, seulement lorsquelle est

    comparee a labsence dexercice, et ce dautant plus que la

    stimulation est combinee avec une activite volontaire simultanee.

    Neanmoins, la stimulation electrique nest pas plus efficace

    quun entranement classique, hormis, peut-etre, lorsquelle est

    combinee a un entranement excentrique. Ainsi, comme lont

    resume Vanderthommen et Duchateau [51], les gains de force lies

  • P. Dehail et al. / Annales de readaptation et de medecine physique 51 (2008) 441451 447a lelectrostimulation sont, au mieux, aussi eleves que ceux

    obtenus lors dun entranement utilisant des contractions

    volontaires. Comme les gains semblent lies a lintensite de

    stimulation, le confort des courants utilises est primordial, meme

    si aucun protocole standardise nexiste actuellement. Lelectro-

    stimulation chez les sujets sains ou sportifs represente donc un

    outil complementaire a lentranement de force classique,

    dautant plus lorsquil est combine a une contraction volontaire

    simultanee, grace a laugmentation possible de la charge de

    travail en dehors des entranements classiques et de par son

    patron de stimulation different du patron volontaire [39,51].

    Enfin, bien que le gain de force semble pouvoir etre transfere

    dans les activites sportives, des resultats negatifs [22] laissent

    penser quun entranement technique est toujours obligatoire

    pour ameliorer la coordination musculaire necessaire a la tache a

    ameliorer [42].

    2.3.2. Lors de situations dimmobilisation segmentaire

    Les genoux operes ou presentant des lesions traumatiques

    severes, telle quune rupture des ligaments croises anterieurs,

    conduisent habituellement a une immobilisation segmentaire

    plus ou moins complete et prolongee. Dans cette situation, la

    rapidite dinstallation de lamyotrophie et de la perte de force du

    quadriceps femoris a conduit de nombreux therapeutes a utiliser

    lelectrostimulation musculaire directe dans le but de limiter

    cette atteinte musculaire et permettre aux patients de retrouver

    plus rapidement leur niveau fonctionnel habituel. Cette

    technique est en outre reputee permettre la levee de la sideration

    musculaire post-traumatique ou postoperatoire. Lelectrostimu-

    lation peut etre appliquee au cours et/ou au decours de la periode

    dimmobilisation de maniere isolee ou associee aux exercices

    musculaires volontaires. Meme si lelectrostimulation semble

    particulierement interessante dans les situations dimmobilisa-

    tion segmentaire, les essais randomises realises dans cette

    indication apportent des resultats nuances. Dans les etudes qui

    ont compare, au cours de la periode dimmobilisation, des

    patients beneficiant ou non de seances delectrostimulation

    [19,34,48,54], les resultats sont globalement en faveur de la

    pratique de lelectrostimulation, comme cela est mis en evidence

    dans la meta-analyse realisee par Bax et al. [4]. Le principal

    resultat etant une moindre degradation de la force musculaire

    chez les patients electrostimules. La majorite des etudes realisees

    au decours de la periode dimmobilisation souligne egalement

    leffet favorable de lelectrostimualtion quadricipitale [4] avec

    meme, pour certains, [48] une normalisation plus rapide du

    pattern de marche en postoperatoire. Neanmoins, Lieber et al.

    [28] nont pas retrouve de difference significative, en termes de

    force maximale dextension du genou, entre des patients ayant

    beneficie de seances delectrostimulation et ceux ayant realise

    des contractions musculaires volontaires, avec une intensite

    dexercice comparable. A un an postoperatoire (ligamentoplastie

    des croises anterieurs), aucune difference netait retrouvee entre

    les deux groupes de patients.

    Lorsquils sont observes, les benefices en termes de gain de

    force paraissent correles a lintensite [47] de lelectrostimula-

    tion et a la frequence des seances [40]. Par ailleurs,

    lassociation des seances delectrostimulation aux exercicesde contractions volontaires, selon differentes modalites

    (surimposition ou combinaison), semble etre plus efficace

    que chacune de ces deux techniques employees de maniere

    isolee [12,39,48]. Recemment, une methode hybride associant

    des exercices de contractions volontaires de muscles agonistes

    a une electrostimualtion des antagonistes, avec comme objectif

    de creer une resistance au mouvement volontaire, a ete

    proposee pour renforcer les flechisseurs et extenseurs du genou

    [23]. Des etudes complementaires visant a comparer ce procede

    aux techniques habituelles de renforcement musculaire contre

    resistance ou aux techniques de surimposition (electrostimu-

    lation + contractions volontaires) paraissent necessaires.

    Lelectrostimulation du quadriceps femoris a egalement ete

    proposee au decours de fractures de hanche [27] ou de la pose

    de protheses de hanche sur coxarthrose [48] afin de lutter contre

    lamyotrophie qui se developpe rapidement dans ces situations.

    La perte de force qui accompagne la diminution de la masse

    musculaire est estimee a 4 % par jour au cours de la premiere

    semaine suivant une chirurgie de hanche. Dans letude

    randomisee de Suetta et al. [49], les auteurs ont compare,

    apres un remplacement prothetique de hanche, les benefices

    dun programme de reeducation classique seul ou associe, soit a

    des exercices de renforcement musculaire du quadriceps contre

    resistance soit a des seances delectrostimulation. Dans ce

    dernier cas, les seances etaient debutees des le premier jour

    postoperatoire et poursuivies a raison dune heure par jour

    pendant 12 semaines. Seuls les patients ayant beneficie de

    seances de renforcement musculaire contre resistance avaient

    une duree de sejour significativement plus courte que les autres.

    En revanche, les patients des deux groupes (electrostimulation

    et renforcement contre resistance) amelioraient significative-

    ment leurs resultats fonctionnels (vitesse de marche, temps de

    montee de dix marches descalier, cinq levers successifs de

    chaise) apres 12 semaines de programme. Seul le renforcement

    musculaire contre resistance avait une influence favorable sur la

    surface de section du quadriceps femoris, mesuree par

    tomodensitometrie, et sur la force isocinetique dextension

    du genou. Dans letude randomisee contre placebo (electro-

    stimulation simulee) realisee par Lamb et al. [27], chez des

    femmes tres agees (83,4 3,7 ans) victimes dune fracture dehanche, le programme delectrostimulation du quadriceps

    (trois heures par jour pendant six semaines) permettait aux

    femmes qui en beneficiaient de retrouver leur niveau de

    mobilite habituel plus rapidement que les autres.

    Ainsi, dans le cadre daffections traumatiques ou orthope-

    diques des membres inferieurs, lelectromyostimulation parat

    avoir toute sa place dans la prise en charge initiale des patients.

    Lobjectif de ce traitement est daider a limiter lamyotrophie et

    la perte de force induites par le traumatisme, lacte chirurgical

    lui-meme et aggravees par une eventuelle immobilisation

    segmentaire transitoire.

    2.3.3. Lors daffections cachectisantes et de situations

    dalitement prolonge

    Plusieurs etudes ont demontre linteret de lelectrostimula-

    tion musculaire directe au cours daffections medicales

    (bronchopneumopathie chronique obstructive [BPCO] et

  • P. Dehail et al. / Annales de readaptation et de medecine physique 51 (2008) 441451448insuffisance cardiaque [IC] en particulier) qui dans leur forme

    severe saccompagnent dun etat cachectique. Cet etat se

    caracterise notamment par une amyotrophie diffuse et par une

    degradation severe de la force musculaire. Ainsi, Vivodtzev

    et al. [52] soulignent linteret dassocier des seances delectro-

    stimulation musculaire (quadriceps femoris) a un programme

    de reeducation traditionnelle, associant marche lente sur tapis

    roulant et exercices de mobilisation active des membres, chez

    des sujets BPCO et denutris. Dans cette etude controlee et

    randomisee, les patients beneficiant dune telle association

    amelioraient significativement la force de leurs quadriceps, leur

    perimetre de marche et leur indice de masse corporelle. Par

    ailleurs, une diminution significative de la dyspnee au cours

    dactivites de la vie quotidienne etait notee. Des effets

    comparables ont ete rapportes dans dautres essais randomises

    [6,36] avec des protocoles delectrostimulation variables, qui

    interessaient les quadriceps seuls ou associes aux flechisseurs

    du genou. Outre lamelioration de force musculaire, ces etudes

    ont confirme un effet benefique de lelectromyostimulation sur

    la dyspnee, les capacites de marche ainsi que la tolerance aux

    exercices. Zanotti et al. [56] ont par ailleurs rapporte un effet

    benefique de lelectrostimulation musculaire, associee a des

    exercices de mobilisation active, sur la duree dalitement

    dinsuffisants respiratoires chroniques qui necessitaient une

    assistance ventilatoire mecanique.

    Chez les patients presentant une IC chronique, lelectro-

    stimulation a basse frequence des muscles des membres

    inferieurs (quadriceps femoris ischiojambiers tricepssurae suivant les etudes) ont apporte egalement des benefices

    comparables a ceux observes chez les sujets BPCO [30,37,41].

    En dehors du gain de force retrouve au niveau des muscles

    stimules, une amelioration des capacites aerobies a ete

    rapportee [37] de meme quune amelioration de la qualite de

    vie (evaluee par la SF-36), en particulier chez des patients en

    attente de transplantation cardiaque [41].

    Nuhr et al. [37] ont rapporte egalement, apres lapplication

    dun protocole delectrostimulation relativement intense (4 h/j,

    sept jours par semaine pendant dix semaines, avec une intensite

    de contraction comprise entre 25 et 30 % de la contraction

    volontaire maximale) une modification de lexpression des

    chanes lourdes de myosine au niveau de prelevements

    biopsiques du muscle vastus lateralis. En effet, les auteurs

    observaient une augmentation de lexpression des MHC de type

    I au detriment des MHC II d/x.

    En dehors des situations pathologiques, rappelons que

    lelectromyostimulation est un des moyens habituellement

    utilises par les astronautes lors des vols en microgravite pour

    lutter contre lamyotrophie et la perte de force musculaire [11].

    Differents travaux realises en microgravite simulee (alitement

    prolonge en position anti-orthostatique) ont permis danalyser

    les benefices de lelectrostimulation dans cette situation

    [15,26]. La methode hybride, precedemment decrite (cf supra),

    pourrait saverer particulierement interessante [31].

    2.3.4. Chez le sujet age sarcopenique

    Le renforcement musculaire contre resistance represente a

    lheure actuelle le principal moyen de lutte contre ladegradation de la masse et de la force musculaires observee

    au cours du vieillissement. Chez la personne agee, des gains de

    force ou de puissance importants, proportionnellement equi-

    valents a ceux obtenus chez des sujets jeunes soumis a des

    exercices comparables, ont ete observes [5,24]. Meme si les

    facteurs nerveux dadaptation paraissent plus importants

    que les facteurs dadaptation musculaire, laugmentation de

    la synthese proteique sous leffet du renforcement contre

    resistance est, dans une certaine mesure, comparable a celle

    observee chez des sujets jeunes [55].

    Neanmoins, meme si dans le cadre des protocoles de

    recherche clinique publies, des programmes particulierement

    intenses de renforcement ont pu etre effectues [3,46], cela

    savere beaucoup plus complique en pratique quotidienne. La

    polypathologie, le manque de motivation, les troubles des

    fonctions superieures rendent souvent difficile la realisation

    de tels protocoles. Lelectrostimulation musculaire directe

    pourrait representer un bon moyen de lutte contre linstalla-

    tion ou laggravation du processus sarcopenique, en particu-

    lier chez les sujets ages fragiles. Cependant, pour lheure, tres

    peu detudes se sont interessees a ce sujet. Dans leur travail,

    Caggiano et al. [7] ont retrouve, chez des sujets dage

    moyen 72 4 ans, une amelioration equivalente de la forceisometrique maximale du quadriceps apres 12 sessions de

    renforcement conventionnel ou delectrostimulation quadri-

    cipitale. Plus recemment, Paillard et al. [38] ont analyse les

    effets de lelectrostimulation surimposee ou non aux

    contractions musculaires volontaires. Les parametres analyses

    etaient la force musculaire, la composition corporelle,

    certaines donnees de posturographie et la detente verticale

    de femmes agees de 62 a 75 ans. Apres randomisation, les

    participantes ont beneficie soit de seances delectrostimula-

    tion des quadriceps, soit dexercices de montee et de descente

    de marche descalier, soit des deux precedents programmes

    associes. Le rythme de prise en charge, quel que soit le

    programme realise, etait de quatre seances par semaine

    pendant six semaines. Les resultats montrent que les trois

    programmes etaient efficaces, de maniere comparable, sur la

    force isometrique et isocinetique des membres inferieurs et

    sur la detente verticale. La superiorite du programme

    delectrostimulation surimposee par rapport aux deux autres

    napparaissait pas clairement. Aucun des trois programmes ne

    modifiait la composition corporelle des personnes ni les

    parametres de posturographie. A notre connaissance et jusqua

    present, aucune etude ne sest interessee specifiquement aux

    effets de lelectromyostimulation isolee ou surimposee afin

    dameliorer la fonction musculaire de sujets presentant une

    sarcopenie averee.

    2.3.5. Dans les pathologies musculaires et

    neuromusculaires

    Lapplication therapeutique de lelectromyostimulation a la

    pathologie musculaire ou neuromusculaire reste un sujet

    controverse. Duchenne de Boulogne [14] avait exprime son

    depit des pietres resultats quil avait observes dans la

    degenerescence musculaire graisseuse ou dystrophie

    musculaire qui porte son patronyme.

  • P. Dehail et al. / Annales de readaptation et de medecine physique 51 (2008) 441451 449Quelques etudes controlees du gain de force musculaire

    obtenu par electromyostimulation ont ete publiees dans les

    annees 19801990. Milner-Brown et al. ont compare deux

    types de programmes dans une serie de respectivement 16 [33]

    et dix patients [32] adultes atteints de dystrophie musculaire

    de type facio-scapulo-humerale, Becker, myotonique ou de

    ceinture : un entranement de deux a trois mois par renforcementmusculaire contre forte resistance nameliorait pas les

    muscles deficitaires (ceux dont la force est inferieure a

    10 % de la force normale attendue) ; en revanche, la force des

    muscles plus moderement deficitaires (plus de 15 % de la

    force normale) etait amelioree, ce dautant plus que la

    progression de la maladie etait lente ; un entranement, combinant une stimulation electriqueunilaterale du muscle tibialis anterior et du quadriceps

    femoris a une extension volontaire du genou contre faible

    resistance, a raison de deux heures par jour, cinq jours par

    semaine pendant deux a 14 mois, montrait que la force

    dextension maximale du genou augmentait de facon

    significative (108 56 %) ; les extenseurs du genoucontrolateral, non stimules, presentaient egalement un gain

    de force ; cependant, la stimulation des muscles de la flexion

    dorsale de la cheville etait inefficace. La encore, il etait note

    une nette difference de gain selon la severite de latteinte et la

    progression de la maladie.

    La stimulation electrique des muscles atteints a donne des

    resultats discordants chez lenfant atteint de dystrophie

    musculaire de type Duchenne ou Becker. La stimulation de

    basse frequence semblait la plus benefique, mais ses resultats,

    sur les proprietes contractiles des muscles, netaient pas

    superieurs a ceux observes apres tenotomie precoce, en cas de

    retractions [13]. Ces faits ont pu etre verifies experimentale-

    ment chez la souris dystrophique au cours dun programme de

    stimulation chronique soulignant lamelioration de la resistance

    a la fatigue [53]. Sur un groupe de 16 garcons atteints de

    maladie de Duchenne compare a un groupe temoin, la

    stimulation chronique de basse frequence des muscles tibialis

    anterior et rectus femoris a montre que les proprietes

    contractiles etaient caracterisees par un temps de relaxation

    moyen tres allonge, quil ny avait pas par ailleurs de perte de la

    force lors dun test de fatigabilite mais, au contraire de lenfant

    normal, quil ny avait pas de potentialisation aux frequences

    les plus basses de stimulation. Enfin, la poursuite de la

    stimulation de basse frequence chez six enfants marchant

    montrait une amelioration significative de la force maximum,

    par comparaison aux muscles non stimules du membre inferieur

    controlateral [45]. Ces memes auteurs ont conclu que

    lentranement myoelectrique de basse frequence prolonge

    au niveau du quadriceps femoris permettait une amelioration de

    la resistance a la fatigue chez lenfant atteint de Duchenne qui

    marche encore et que cette technique ouvrait des perspectives

    therapeutiques seduisantes [44]. Les resultats obtenus par

    Zupan et al. [57,58] vont globalement dans le meme sens.

    Douze enfants atteints de dystrophie musculaire (dixDuchenne, deux Becker) ont ete inclus dans un programme

    de stimulation electrique de basse frequence du muscle tibialis

    anterior pendant trois mois [58]. La force musculaire etait

    evaluee par une contraction isometrique breve des flechisseurs

    dorsaux de la cheville. La fatigue musculaire etait mesuree par

    la baisse de la force au cours dune contraction maximale

    soutenue pendant une minute. A la fin de la periode de

    stimulation, le moment de force maximal etait ameliore

    significativement chez dix enfants sur 12 du cote du membre

    inferieur stimule. En revanche, la resistance a la fatigue netait

    pas modifiee.

    Dans un travail recent portant sur une famille atteinte de

    myopathie a batonnets (nemaline myopathy) dont on admet

    levolutivite moderee chez ladulte, Gerrits et al. [17] ont

    compare lactivation volontaire de lextension du genou seule et

    couplee a lelectrostimulation du quadriceps femoris a

    differents degres dextension. Entre 30 et 708 de flexion degenou, la capacite a maintenir la contraction volontaire

    isometrique, renforcee par la stimulation electrique, etait

    superieure a celle des sujets sains. La force maximale etait

    obtenue avec une stimulation electrique de basse frequence

    (10 Hz) et non pour des frequences elevees (150 Hz). Les

    auteurs en concluaient a un deficit du couplage excitation-

    contraction pour les hautes frequences et suggeraient un deficit

    dinteraction actine-myosine au seuil eleve dactivation.

    Linteret de ce travail est de confirmer lutilisation des

    stimulations de basse frequence associee au travail volontaire

    dans le renforcement du muscle pathologique.

    A notre connaissance, une seule etude controlee a evalue

    leffet therapeutique de la stimulation electrique dans lamyo-

    trophie spinale progressive de type II/III [16]. Cette etude

    randomisee a evalue leffet dune stimulation de basse

    frequence et basse intensite appliquee la nuit sur le deltode

    et le biceps brachii pendant six a 12 mois ; lautre membre

    superieur recevait une stimulation placebo. Treize patients de

    cinq a 19 ans ont ete suivis pendant six mois et huit pendant un

    an. Aucune difference netait constatee sur le bras traite, par

    rapport au bras oppose, sur la force de flexion du coude ou de

    labduction de lepaule. Il ny avait pas non plus de difference

    des ondes M en electrophysiologie ni damelioration fonc-

    tionnelle.

    Finalement, les resultats de lelectromyostimulation dans les

    affections musculaires ou neuromusculaires sont contrastes.

    Depuis le milieu des annees 1990, il ny a pas eu a notre

    connaissance de nouvelles etudes permettant dintegrer

    clairement lelectrotherapie musculaire dans un programme

    consensuel de traitement des dystrophies musculaires de

    lenfant ou de ladulte. Peut-etre y a-t-il a cela deux types

    dexplications : dune part, les essais therapeutiques ont ete effectues sur uneperiode relativement courte et les resultats analyses a court

    terme, au regard dune evolutivite parfois rapide de

    laffection musculaire. Nous ne disposons pas dinformation

    suffisante permettant de comparer des groupes homogenes de

    patients stimules et non stimules aux differents stades

    evolutifs de leur affection ;

  • P. Dehail et al. / Annales de readaptation et de medecine physique 51 (2008) 441451450 dautre part, les contraintes du traitement sont importantes et,pour les resultats positifs rapportes a court terme, elles

    imposent une forte disponibilite des patients qui semble peu

    compatible avec la poursuite de la vie familiale, scolaire et,

    pour certains, socioprofessionnelle.

    2.4. Conclusion

    Meme si son utilisation est de pratique courante, le niveau de

    preuve defficacite de lelectrostimulation musculaire directe

    reste, selon les indications, relativement modeste du fait

    notamment du faible nombre detudes controlees. En outre, la

    superiorite de cette technique par rapport aux methodes

    traditionnelles de renforcement musculaire, sur le gain de force

    obtenu, nest pas clairement demontree.

    Que ce soit dans le cadre de lentranement du sportif ou a

    visee therapeutique, les effets des programmes associant

    lelectrostimulation aux contractions musculaires volontaires

    (electrostimulation surimposee ou combinee) paraissent supe-

    rieurs a ceux obtenus par lelectrostimulation seule. En dehors

    de ses applications en traumatologie sportive ou en orthopedie,

    lelectrostimulation musculaire directe pourrait representer un

    moyen de lutte efficace contre la degradation de la masse et de

    la fonction musculaire observee dans bon nombre daffections

    conduisant a un alitement prolonge, y compris dans un contexte

    de reanimation. Pour lheure, le nombre detudes consacrees a

    ces applications reste faible. De la meme maniere, lefficacite

    des programmes delectrostimulation musculaire dans la lutte

    contre la sarcopenie, qui represente une source majeure de

    limitation dactivite chez les personnes agees, meriterait detre

    analysee.

    References

    [1] Axelgaard J, Brown JC. Lateral electrical surface stimulation for the

    treatment of progressive idiopathic scoliosis. Spine 1983;8:24260.

    [2] Babault N, Cometti G, Bernardin M, Pousson M, Chatard JC. Effects of

    electromyostimulation training on muscle strength and power of elite

    rugby players. J Strength Cond Res 2007;21:4317.

    [3] Bautmans I, Njemini R, Vasseur S, Chabert H, Moens L, Demanet C, et al.

    Biochemical changes in response to intensive resistance exercise training

    in the elderly. Gerontology 2005;51:25365.

    [4] Bax L, Staes F, Verhagen A. Does neuromuscular electrical stimulation

    strengthen the quadriceps femoris? A systematic review of randomised

    controlled trials. Sports Med 2005;35:191212.

    [5] Borst SE. Interventions for sarcopenia and muscle weakness in older

    people. Age Ageing 2004;33:54855.

    [6] Bourjeily-Habr G, Rochester CL, Palermo F, Snyder P, Mohsenin V.

    Randomised controlled trial of transcutaneous electrical muscle stimula-

    tion of the lower extremities in patients with chronic obstructive pulmon-

    ary disease. Thorax 2002;57:10459.

    [7] Caggiano E, Emrey T, Shirley S, Craik RL. Effects of electrical stimula-

    tion or voluntary contraction for strengthening the quadriceps femoris

    muscles in an aged male population. J Orthop Sports Phys Ther 1994;20:

    228.

    [8] Collins DF. Central contributions to contractions evoked by tetanic

    neuromuscular electrical stimulation. Exerc Sport Sci Rev 2007;35:

    1029.

    [9] Collins DF, Burke D, Gandevia SC. Large involuntary forces consistent

    with plateau-like behavior of human motoneurons. J Neurosci 2001;21:

    405965.[10] Collins DF, Burke D, Gandevia SC. Sustained contractions produced by

    plateau-like behaviour in human motoneurones. J Physiol 2002;538:

    289301.

    [11] Convertino VA, Sandler H. Exercise countermeasures for spaceflight.

    Acta Astronaut 1995;35:25370.

    [12] Draper V, Ballard L. Electrical stimulation versus electromyographic

    biofeedback in the recovery of quadriceps femoris muscle function

    following anterior cruciate ligament surgery. Phys Ther 1991;71:455

    61. discussion 4614.

    [13] Dubowitz V. Responses of diseased muscle to electrical and mechanical

    intervention. Ciba Found Symp 1988;138:24055.

    [14] Duchenne de Boulogne JB. Physiologie des mouvements demontres a

    laide de lexperimentation electrique et de lobservation clinique. Paris:

    Bailliere J.B., 1861.

    [15] Duvoisin MR, Convertino VA, Buchanan P, Gollnick PD, Dudley GA.

    Characteristics and preliminary observations of the influence of electro-

    myostimulation on the size and function of human skeletal muscle during

    30 days of simulated microgravity. Aviat Space Environ Med 1989;60:

    6718.

    [16] Fehlings DL, Kirsch S, McComas A, Chipman M, Campbell K. Evalua-

    tion of therapeutic electrical stimulation to improve muscle strength and

    function in children with type II/III spinal muscular atrophy. Dev Med

    Child Neurol 2002;44:7414.

    [17] Gerrits K, Pauw-Gommans I, van Engelen B, de Haan A. Contractile

    properties of knee-extensors in one single family with nemaline myo-

    pathy: central and peripheral aspects of muscle activation. Clin Physiol

    Funct Imaging 2007;27:21724.

    [18] Gondin J, Guette M, Ballay Y, Martin A. Neural and muscular changes to

    detraining after electrostimulation training. Eur J Appl Physiol 2006;97:

    16573.

    [19] Gould N, Donnermeyer D, Pope M, Ashikaga T. Transcutaneous muscle

    stimulation as a method to retard disuse atrophy. Clin Orthop Relat Res

    1982;21520.

    [20] Gregory CM, Bickel CS. Recruitment patterns in human skeletal muscle

    during electrical stimulation. Phys Ther 2005;85:35864.

    [21] Han BS, Jang SH, Chang Y, Byun WM, Lim SK, Kang DS. Functional

    magnetic resonance image finding of cortical activation by neuromuscular

    electrical stimulation on wrist extensor muscles. Am J Phys Med Rehabil

    2003;82:1720.

    [22] Herrero JA, Izquierdo M, Maffiuletti NA, Garcia-Lopez J. Electromyos-

    timulation and plyometric training effects on jumping and sprint time. Int J

    Sports Med 2006;27:5339.

    [23] Iwasaki T, Shiba N, Matsuse H, Nago T, Umezu Y, Tagawa Y, et al.

    Improvement in knee extension strength through training by means of

    combined electrical stimulation and voluntary muscle contraction. Tohoku

    J Exp Med 2006;209:3340.

    [24] Jozsi AC, Campbell WW, Joseph L, Davey SL, Evans WJ. Changes in

    power with resistance training in older and younger men and women.

    J Gerontol A Biol Sci Med Sci 1999;54:M5916.

    [25] Jubeau M, Gondin J, Martin A, Sartorio A, Maffiuletti NA. Random

    motor unit activation by electrostimulation. Int J Sports Med 2007;28:

    9014.

    [26] Koryac Y. The effects of long-term simulated microgravity on neuromus-

    cular performance in men and women. Eur J Appl Physiol Occup Physiol

    1999;79:16875.

    [27] Lamb SE, Oldham JA, Morse RE, Evans JG. Neuromuscular stimulation

    of the quadriceps muscle after hip fracture: a randomized controlled trial.

    Arch Phys Med Rehabil 2002;83:108792.

    [28] Lieber RL, Silva PD, Daniel DM. Equal effectiveness of electrical and

    volitional strength training for quadriceps femoris muscles after anterior

    cruciate ligament surgery. J Orthop Res 1996;14:1318.

    [29] Maffiuletti NA, Zory R, Miotti D, Pellegrino MA, Jubeau M, Bottinelli R.

    Neuromuscular adaptations to electrostimulation resistance training. Am J

    Phys Med Rehabil 2006;85:16775.

    [30] Maillefert JF, Eicher JC, Walker P, Dulieu V, Rouhier-Marcer I, Branly F,

    et al. Effects of low-frequency electrical stimulation of quadriceps and calf

    muscles in patients with chronic heart failure. J Cardiopulm Rehabil

    1998;18:27782.

  • P. Dehail et al. / Annales de readaptation et de medecine physique 51 (2008) 441451 451[31] Matsuse H, Shiba N, Umezu Y, Nago T, Tagawa Y, Kakuma T, et al.

    Muscle training by means of combined electrical stimulation and voli-

    tional contraction. Aviat Space Environ Med 2006;77:5815.

    [32] Milner-Brown HS, Miller RG. Muscle strengthening through electric

    stimulation combined with low-resistance weights in patients with neu-

    romuscular disorders. Arch Phys Med Rehabil 1988;69:204.

    [33] Milner-Brown HS, Miller RG. Muscle strengthening through high-resis-

    tance weight training in patients with neuromuscular disorders. Arch Phys

    Med Rehabil 1988;69:149.

    [34] Morrissey MC, Brewster CE, Shields Jr CL, Brown M. The effects of

    electrical stimulation on the quadriceps during postoperative knee immo-

    bilization. Am J Sports Med 1985;13:405.

    [35] Munsat TL, McNeal D, Waters R. Effects of nerve stimulation on human

    muscle. Arch Neurol 1976;33:60817.

    [36] Neder JA, Sword D, Ward SA, Mackay E, Cochrane LM, Clark CJ. Home

    based neuromuscular electrical stimulation as a new rehabilitative strategy

    for severely disabled patients with chronic obstructive pulmonary disease

    (COPD). Thorax 2002;57:3337.

    [37] Nuhr MJ, Pette D, Berger R, Quittan M, Crevenna R, Huelsman M, et al.

    Beneficial effects of chronic low-frequency stimulation of thigh muscles in

    patients with advanced chronic heart failure. Eur Heart J 2004;25:13643.

    [38] Paillard T, Lafont C, Peres C, Costes-Salon MC, Soulat JM, Montoya R,

    et al. Is electrical stimulation with voluntary muscle contraction of

    physiologic interest in aging women? Ann Readapt Med Phys 2005;48:

    208.

    [39] Paillard T, Noe F, Edeline O. Neuromuscular effects of superimposed and

    combined transcutaneous electrical stimulation with voluntary activity: a

    review. Ann Readapt Med Phys 2005;48:12637.

    [40] Parker MG, Bennett MJ, Hieb MA, Hollar AC, Roe AA. Strength response

    in human femoris muscle during 2 neuromuscular electrical stimulation

    programs. J Orthop Sports Phys Ther 2003;33:71926.

    [41] Quittan M, Wiesinger GF, Sturm B, Puig S, Mayr W, Sochor A, et al.

    Improvement of thigh muscles by neuromuscular electrical stimulation in

    patients with refractory heart failure: a single-blind, randomized, con-

    trolled trial. Am J Phys Med Rehabil 2001;80:20614. quiz 215-6, 224.

    [42] Requena Sanchez B, Padial Puche P, Gonzalez-Badillo JJ. Percutaneous

    electrical stimulation in strength training: an update. J Strength Cond Res

    2005;19:43848.

    [43] Roques CF. Pratique de lelectrotherapie, 1. Paris: Springer; 1997. p. 278.

    [44] Scott OM, Hyde SA, Vrbova G, Dubowitz V. Therapeutic possibilities of

    chronic low frequency electrical stimulation in children with Duchenne

    muscular dystrophy. J Neurol Sci 1990;95:17182.

    [45] Scott OM, Vrbova G, Hyde SA, Dubowitz V. Responses of muscles of

    patients with Duchenne muscular dystrophy to chronic electrical stimula-

    tion. J Neurol Neurosurg Psychiatry 1986;49:142734.[46] Seynnes O, Fiatarone Singh MA, Hue O, Pras P, Legros P, Bernard PL.

    Physiological and functional responses to low-moderate versus high-

    intensity progressive resistance training in frail elders. J Gerontol A Biol

    Sci Med Sci 2004;59:5039.

    [47] Snyder-Mackler L, Delitto A, Stralka SW, Bailey SL. Use of electrical

    stimulation to enhance recovery of quadriceps femoris muscle force

    production in patients following anterior cruciate ligament reconstruction.

    Phys Ther 1994;74:9017.

    [48] Snyder-Mackler L, Ladin Z, Schepsis AA, Young JC. Electrical stimula-

    tion of the thigh muscles after reconstruction of the anterior cruciate

    ligament. Effects of electrically elicited contraction of the quadriceps

    femoris and hamstring muscles on gait and on strength of the thigh

    muscles. J Bone Joint Surg Am 1991;73:102536.

    [49] Suetta C, Magnusson SP, Rosted A, Aagaard P, Jakobsen AK, Larsen LH,

    et al. Resistance training in the early postoperative phase reduces hospi-

    talization and leads to muscle hypertrophy in elderly hip surgery patients

    a controlled, randomized study. J Am Geriatr Soc 2004;52:201622.

    [50] Theurel J, Lepers R, Pardon L, Maffiuletti NA. Differences in cardior-

    espiratory and neuromuscular responses between voluntary and stimulated

    contractions of the quadriceps femoris muscle. Respir Physiol Neurobiol

    2007;157:3417.

    [51] Vanderthommen M, Duchateau J. Electrical stimulation as a modality to

    improve performance of the neuromuscular system. Exerc Sport Sci Rev

    2007;35:1805.

    [52] Vivodtzev I, Pepin JL, Vottero G, Mayer V, Porsin B, Levy P, et al.

    Improvement in quadriceps strength and dyspnea in daily tasks after 1

    month of electrical stimulation in severely deconditioned and malnour-

    ished COPD. Chest 2006;129:15408.

    [53] Vrbova G, Ward K. Observations on the effects of low frequency electrical

    stimulation on fast muscles of dystrophic mice. J Neurol Neurosurg

    Psychiatry 1981;44:10026.

    [54] Wigerstad-Lossing I, Grimby G, Jonsson T, Morelli B, Peterson L,

    Renstrom P. Effects of electrical muscle stimulation combined with

    voluntary contractions after knee ligament surgery. Med Sci Sports Exerc

    1988;20:938.

    [55] Yarasheski KE, Exercise. aging, and muscle protein metabolism. J Ger-

    ontol A Biol Sci Med Sci 2003;58:M91822.

    [56] Zanotti E, Felicetti G, Maini M, Fracchia C. Peripheral muscle strength

    training in bed-bound patients with COPD receiving mechanical ventila-

    tion: effect of electrical stimulation. Chest 2003;124:2926.

    [57] Zupan A. Long-term electrical stimulation of muscles in children with

    Duchenne and Becker muscular dystrophy. Muscle Nerve 1992;15:3627.

    [58] Zupan A, Gregoric M, Valencic V, Vandot S. Effects of electrical

    stimulation on muscles of children with Duchenne and Becker muscular

    dystrophy. Neuropediatrics 1993;24:18992.

    Electrical stimulation and muscle strengtheningEnglish versionHistory of direct muscle electrostimulationPhysiological effects of direct muscle electrostimulation on sound musclesUse of electromyostimulationWith athletesDuring limb immobilization periodsDuring affections leading to cachexia and extended bed-restIn subjects with sarcopeniaIn muscle and neuromuscular pathologies

    Conclusion

    Version franaiseHistorique de lelectrostimulation musculaire directeEffets physiologiques de lelectrostimultion musculaire directe sur muscle sainApplicationsChez le sportifLors de situations dimmobilisation segmentaireLors daffections cachectisantes et de situations dalitement prolongeChez le sujet ge sarcopeniqueDans les pathologies musculaires et neuromusculaires

    Conclusion

    References