em-like algorithms for nonparametric estimation in ... · multivariate non-parametric “npem”...

60
Mixture models and EM algorithms Multivariate non-parametric “npEM” algorithms Further extensions EM-like algorithms for nonparametric estimation in multivariate mixtures Didier Chauveau MAPMO - UMR 6628 - Université d’Orléans Joint work with D. Hunter & T. Benaglia (Penn State University, USA) COMPSTAT 2010 – Paris, August 24th 2010 D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures

Upload: others

Post on 17-Jan-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: EM-like algorithms for nonparametric estimation in ... · Multivariate non-parametric “npEM” algorithms Further extensions EM-like algorithms for nonparametric estimation in multivariate

Mixture models and EM algorithmsMultivariate non-parametric “npEM” algorithms

Further extensions

EM-like algorithms for nonparametricestimation in multivariate mixtures

Didier Chauveau

MAPMO - UMR 6628 - Université d’Orléans

Joint work with D. Hunter & T. Benaglia (Penn State University, USA)

COMPSTAT 2010 – Paris, August 24th 2010

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures

Page 2: EM-like algorithms for nonparametric estimation in ... · Multivariate non-parametric “npEM” algorithms Further extensions EM-like algorithms for nonparametric estimation in multivariate

Mixture models and EM algorithmsMultivariate non-parametric “npEM” algorithms

Further extensions

Outline

1 Mixture models and EM algorithmsMotivations, examples and notationReview of EM algorithm-ology

2 Multivariate non-parametric “npEM” algorithmsModel and algorithmExamplesAdaptive bandwidths in the npEM algorithm

3 Further extensions

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures

Page 3: EM-like algorithms for nonparametric estimation in ... · Multivariate non-parametric “npEM” algorithms Further extensions EM-like algorithms for nonparametric estimation in multivariate

Mixture models and EM algorithmsMultivariate non-parametric “npEM” algorithms

Further extensions

Motivations, examples and notationReview of EM algorithm-ology

Outline: Next up. . .

1 Mixture models and EM algorithmsMotivations, examples and notationReview of EM algorithm-ology

2 Multivariate non-parametric “npEM” algorithmsModel and algorithmExamplesAdaptive bandwidths in the npEM algorithm

3 Further extensions

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures

Page 4: EM-like algorithms for nonparametric estimation in ... · Multivariate non-parametric “npEM” algorithms Further extensions EM-like algorithms for nonparametric estimation in multivariate

Mixture models and EM algorithmsMultivariate non-parametric “npEM” algorithms

Further extensions

Motivations, examples and notationReview of EM algorithm-ology

Outline: Next up. . .

1 Mixture models and EM algorithmsMotivations, examples and notationReview of EM algorithm-ology

2 Multivariate non-parametric “npEM” algorithmsModel and algorithmExamplesAdaptive bandwidths in the npEM algorithm

3 Further extensions

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures

Page 5: EM-like algorithms for nonparametric estimation in ... · Multivariate non-parametric “npEM” algorithms Further extensions EM-like algorithms for nonparametric estimation in multivariate

Mixture models and EM algorithmsMultivariate non-parametric “npEM” algorithms

Further extensions

Motivations, examples and notationReview of EM algorithm-ology

Finite mixture estimation problem

Multivariate observation x = (x1, . . . , xr ) ∈ Rr from the mixture

g(x) =m∑

j=1

λj fj(x)

Assume independence of x1, . . . , xr conditional of thecomponent from which x comes (Hall and Zhou 2003,. . . ):

g(x) =m∑

j=1

λj

r∏k=1

fjk (xk )

i.e. the dependence is induced by the mixture.

Goal: Estimate θ = (λ, f) given an i.i.d. sample from g

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures

Page 6: EM-like algorithms for nonparametric estimation in ... · Multivariate non-parametric “npEM” algorithms Further extensions EM-like algorithms for nonparametric estimation in multivariate

Mixture models and EM algorithmsMultivariate non-parametric “npEM” algorithms

Further extensions

Motivations, examples and notationReview of EM algorithm-ology

Finite mixture estimation problem

Multivariate observation x = (x1, . . . , xr ) ∈ Rr from the mixture

g(x) =m∑

j=1

λj fj(x)

Assume independence of x1, . . . , xr conditional of thecomponent from which x comes (Hall and Zhou 2003,. . . ):

g(x) =m∑

j=1

λj

r∏k=1

fjk (xk )

i.e. the dependence is induced by the mixture.

Goal: Estimate θ = (λ, f) given an i.i.d. sample from g

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures

Page 7: EM-like algorithms for nonparametric estimation in ... · Multivariate non-parametric “npEM” algorithms Further extensions EM-like algorithms for nonparametric estimation in multivariate

Mixture models and EM algorithmsMultivariate non-parametric “npEM” algorithms

Further extensions

Motivations, examples and notationReview of EM algorithm-ology

Finite mixture estimation problem

Multivariate observation x = (x1, . . . , xr ) ∈ Rr from the mixture

g(x) =m∑

j=1

λj fj(x)

Assume independence of x1, . . . , xr conditional of thecomponent from which x comes (Hall and Zhou 2003,. . . ):

g(x) =m∑

j=1

λj

r∏k=1

fjk (xk )

i.e. the dependence is induced by the mixture.

Goal: Estimate θ = (λ, f) given an i.i.d. sample from g

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures

Page 8: EM-like algorithms for nonparametric estimation in ... · Multivariate non-parametric “npEM” algorithms Further extensions EM-like algorithms for nonparametric estimation in multivariate

Mixture models and EM algorithmsMultivariate non-parametric “npEM” algorithms

Further extensions

Motivations, examples and notationReview of EM algorithm-ology

Nonparametric mixture model

In parametric case fj(·) ≡ f (·; φj) ∈ F , a parametric familyindexed by a parameter φ ∈ Rd

The parameter of the mixture model is

θ = (λ,φ) = (λ1, . . . , λm,φ1, . . . ,φm)

Usual example: the univariate Gaussian mixture model,f (x ; φj) = f

(x ; (µj , σ

2j ))

= the pdf of N (µj , σ2j ).

Motivations here:Do not assume any parametric form for the fjk ’s (e.g., avoidassumptions on tails...)

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures

Page 9: EM-like algorithms for nonparametric estimation in ... · Multivariate non-parametric “npEM” algorithms Further extensions EM-like algorithms for nonparametric estimation in multivariate

Mixture models and EM algorithmsMultivariate non-parametric “npEM” algorithms

Further extensions

Motivations, examples and notationReview of EM algorithm-ology

Nonparametric mixture model

In parametric case fj(·) ≡ f (·; φj) ∈ F , a parametric familyindexed by a parameter φ ∈ Rd

The parameter of the mixture model is

θ = (λ,φ) = (λ1, . . . , λm,φ1, . . . ,φm)

Usual example: the univariate Gaussian mixture model,f (x ; φj) = f

(x ; (µj , σ

2j ))

= the pdf of N (µj , σ2j ).

Motivations here:Do not assume any parametric form for the fjk ’s (e.g., avoidassumptions on tails...)

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures

Page 10: EM-like algorithms for nonparametric estimation in ... · Multivariate non-parametric “npEM” algorithms Further extensions EM-like algorithms for nonparametric estimation in multivariate

Mixture models and EM algorithmsMultivariate non-parametric “npEM” algorithms

Further extensions

Motivations, examples and notationReview of EM algorithm-ology

Notational convention

We have:n = # of individuals in the samplem = # of Mixture componentsr = # of Repeated measurements (coordinates)Throughout, we use the subscripts:

1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ r

The log-likelihood given data x1, . . . ,xn is

L(θ) =n∑

i=1

log

m∑j=1

λj

r∏k=1

fjk (xik )

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures

Page 11: EM-like algorithms for nonparametric estimation in ... · Multivariate non-parametric “npEM” algorithms Further extensions EM-like algorithms for nonparametric estimation in multivariate

Mixture models and EM algorithmsMultivariate non-parametric “npEM” algorithms

Further extensions

Motivations, examples and notationReview of EM algorithm-ology

Notational convention

We have:n = # of individuals in the samplem = # of Mixture componentsr = # of Repeated measurements (coordinates)Throughout, we use the subscripts:

1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ r

The log-likelihood given data x1, . . . ,xn is

L(θ) =n∑

i=1

log

m∑j=1

λj

r∏k=1

fjk (xik )

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures

Page 12: EM-like algorithms for nonparametric estimation in ... · Multivariate non-parametric “npEM” algorithms Further extensions EM-like algorithms for nonparametric estimation in multivariate

Mixture models and EM algorithmsMultivariate non-parametric “npEM” algorithms

Further extensions

Motivations, examples and notationReview of EM algorithm-ology

Motivating example: Water-level data

Example from Thomas Lohaus and Brainerd (1993).

The task:n = 405 subjects areshown r = 8 vessels,pointing at 1, 2, 4, 5, 7,8, 10 and 11 o’clockThey draw the watersurface for eachMeasure: (signed) angleformed by surface withhorizontal

Vessel tilted to point at 1:00

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures

Page 13: EM-like algorithms for nonparametric estimation in ... · Multivariate non-parametric “npEM” algorithms Further extensions EM-like algorithms for nonparametric estimation in multivariate

Mixture models and EM algorithmsMultivariate non-parametric “npEM” algorithms

Further extensions

Motivations, examples and notationReview of EM algorithm-ology

Outline: Next up. . .

1 Mixture models and EM algorithmsMotivations, examples and notationReview of EM algorithm-ology

2 Multivariate non-parametric “npEM” algorithmsModel and algorithmExamplesAdaptive bandwidths in the npEM algorithm

3 Further extensions

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures

Page 14: EM-like algorithms for nonparametric estimation in ... · Multivariate non-parametric “npEM” algorithms Further extensions EM-like algorithms for nonparametric estimation in multivariate

Mixture models and EM algorithmsMultivariate non-parametric “npEM” algorithms

Further extensions

Motivations, examples and notationReview of EM algorithm-ology

Review of standard EM for mixtures

For MLE in finite mixtures, EM algorithms are standard.

A “complete” observation (X ,Z) consists of:The observed, “incomplete” data XThe “missing” vector Z, defined by

for 1 ≤ j ≤ m, Zj =

{1 if X comes from component j0 otherwise

What does this mean?In simulations: We generate Z first, then X |Zj = 1 ∼ fjIn real data, Z is a latent variable whose interpretationdepends on context.

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures

Page 15: EM-like algorithms for nonparametric estimation in ... · Multivariate non-parametric “npEM” algorithms Further extensions EM-like algorithms for nonparametric estimation in multivariate

Mixture models and EM algorithmsMultivariate non-parametric “npEM” algorithms

Further extensions

Motivations, examples and notationReview of EM algorithm-ology

Review of standard EM for mixtures

For MLE in finite mixtures, EM algorithms are standard.

A “complete” observation (X ,Z) consists of:The observed, “incomplete” data XThe “missing” vector Z, defined by

for 1 ≤ j ≤ m, Zj =

{1 if X comes from component j0 otherwise

What does this mean?In simulations: We generate Z first, then X |Zj = 1 ∼ fjIn real data, Z is a latent variable whose interpretationdepends on context.

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures

Page 16: EM-like algorithms for nonparametric estimation in ... · Multivariate non-parametric “npEM” algorithms Further extensions EM-like algorithms for nonparametric estimation in multivariate

Mixture models and EM algorithmsMultivariate non-parametric “npEM” algorithms

Further extensions

Motivations, examples and notationReview of EM algorithm-ology

Parametric (univariate) EM algorithm for mixtures

Let θt be an “arbitrary” value of θ

E-step: Amounts to find the conditional expectation of each Z

Z tij := Pθt [Zij = 1|xi ] =

λtj f (xi ; φ

tj )∑

j ′ λtj ′ f (xi ; φ

tj ′)

M-step: Maximize the “complete data” loglikelihood

θt+1 = arg maxθ

n∑i=1

m∑j=1

Z tij log

[λj f (xi ; φj)

]

Typically: λt+1j =

Pni=1 Z t

ijn , µt+1

j =Pn

i=1 Z tij xiPn

i=1 Z tij

, . . .

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures

Page 17: EM-like algorithms for nonparametric estimation in ... · Multivariate non-parametric “npEM” algorithms Further extensions EM-like algorithms for nonparametric estimation in multivariate

Mixture models and EM algorithmsMultivariate non-parametric “npEM” algorithms

Further extensions

Motivations, examples and notationReview of EM algorithm-ology

Parametric (univariate) EM algorithm for mixtures

Let θt be an “arbitrary” value of θ

E-step: Amounts to find the conditional expectation of each Z

Z tij := Pθt [Zij = 1|xi ] =

λtj f (xi ; φ

tj )∑

j ′ λtj ′ f (xi ; φ

tj ′)

M-step: Maximize the “complete data” loglikelihood

θt+1 = arg maxθ

n∑i=1

m∑j=1

Z tij log

[λj f (xi ; φj)

]

Typically: λt+1j =

Pni=1 Z t

ijn , µt+1

j =Pn

i=1 Z tij xiPn

i=1 Z tij

, . . .

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures

Page 18: EM-like algorithms for nonparametric estimation in ... · Multivariate non-parametric “npEM” algorithms Further extensions EM-like algorithms for nonparametric estimation in multivariate

Mixture models and EM algorithmsMultivariate non-parametric “npEM” algorithms

Further extensions

Motivations, examples and notationReview of EM algorithm-ology

Parametric (univariate) EM algorithm for mixtures

Let θt be an “arbitrary” value of θ

E-step: Amounts to find the conditional expectation of each Z

Z tij := Pθt [Zij = 1|xi ] =

λtj f (xi ; φ

tj )∑

j ′ λtj ′ f (xi ; φ

tj ′)

M-step: Maximize the “complete data” loglikelihood

θt+1 = arg maxθ

n∑i=1

m∑j=1

Z tij log

[λj f (xi ; φj)

]

Typically: λt+1j =

Pni=1 Z t

ijn , µt+1

j =Pn

i=1 Z tij xiPn

i=1 Z tij

, . . .

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures

Page 19: EM-like algorithms for nonparametric estimation in ... · Multivariate non-parametric “npEM” algorithms Further extensions EM-like algorithms for nonparametric estimation in multivariate

Mixture models and EM algorithmsMultivariate non-parametric “npEM” algorithms

Further extensions

Motivations, examples and notationReview of EM algorithm-ology

Parametric (univariate) EM algorithm for mixtures

Let θt be an “arbitrary” value of θ

E-step: Amounts to find the conditional expectation of each Z

Z tij := Pθt [Zij = 1|xi ] =

λtj f (xi ; φ

tj )∑

j ′ λtj ′ f (xi ; φ

tj ′)

M-step: Maximize the “complete data” loglikelihood

θt+1 = arg maxθ

n∑i=1

m∑j=1

Z tij log

[λj f (xi ; φj)

]

Typically: λt+1j =

Pni=1 Z t

ijn , µt+1

j =Pn

i=1 Z tij xiPn

i=1 Z tij

, . . .

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures

Page 20: EM-like algorithms for nonparametric estimation in ... · Multivariate non-parametric “npEM” algorithms Further extensions EM-like algorithms for nonparametric estimation in multivariate

Mixture models and EM algorithmsMultivariate non-parametric “npEM” algorithms

Further extensions

Motivations, examples and notationReview of EM algorithm-ology

Semiparametric univariate mixture & EM-like algorithm

Identifiability: g(x) uniquely determines all λj and fj ’s

Parametric case: When fj(x) = f (x ;φj), generally OKNonparametric case: Some restrictions on fj are needed

Bordes Mottelet and Vandekerkhove (2006) and Hunter Wangand Hettmansperger (2007) both showed that:for f symmetric about the origin and λ1 6= 1/2,

gθ(x) =2∑

j=1

λj f (x − µj)

is identifiable for the parameter θ = (λ,µ, f ).

Bordes Chauveau and Vandekerkhove (2007) introduced astochastic EM-like algorithm that includes a Kernel DensityEstimation (KDE) step.

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures

Page 21: EM-like algorithms for nonparametric estimation in ... · Multivariate non-parametric “npEM” algorithms Further extensions EM-like algorithms for nonparametric estimation in multivariate

Mixture models and EM algorithmsMultivariate non-parametric “npEM” algorithms

Further extensions

Motivations, examples and notationReview of EM algorithm-ology

Semiparametric univariate mixture & EM-like algorithm

Identifiability: g(x) uniquely determines all λj and fj ’s

Parametric case: When fj(x) = f (x ;φj), generally OKNonparametric case: Some restrictions on fj are needed

Bordes Mottelet and Vandekerkhove (2006) and Hunter Wangand Hettmansperger (2007) both showed that:for f symmetric about the origin and λ1 6= 1/2,

gθ(x) =2∑

j=1

λj f (x − µj)

is identifiable for the parameter θ = (λ,µ, f ).

Bordes Chauveau and Vandekerkhove (2007) introduced astochastic EM-like algorithm that includes a Kernel DensityEstimation (KDE) step.

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures

Page 22: EM-like algorithms for nonparametric estimation in ... · Multivariate non-parametric “npEM” algorithms Further extensions EM-like algorithms for nonparametric estimation in multivariate

Mixture models and EM algorithmsMultivariate non-parametric “npEM” algorithms

Further extensions

Motivations, examples and notationReview of EM algorithm-ology

Semiparametric univariate mixture & EM-like algorithm

Identifiability: g(x) uniquely determines all λj and fj ’s

Parametric case: When fj(x) = f (x ;φj), generally OKNonparametric case: Some restrictions on fj are needed

Bordes Mottelet and Vandekerkhove (2006) and Hunter Wangand Hettmansperger (2007) both showed that:for f symmetric about the origin and λ1 6= 1/2,

gθ(x) =2∑

j=1

λj f (x − µj)

is identifiable for the parameter θ = (λ,µ, f ).

Bordes Chauveau and Vandekerkhove (2007) introduced astochastic EM-like algorithm that includes a Kernel DensityEstimation (KDE) step.

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures

Page 23: EM-like algorithms for nonparametric estimation in ... · Multivariate non-parametric “npEM” algorithms Further extensions EM-like algorithms for nonparametric estimation in multivariate

Mixture models and EM algorithmsMultivariate non-parametric “npEM” algorithms

Further extensions

Model and algorithmExamplesAdaptive bandwidths in the npEM algorithm

Outline: Next up. . .

1 Mixture models and EM algorithmsMotivations, examples and notationReview of EM algorithm-ology

2 Multivariate non-parametric “npEM” algorithmsModel and algorithmExamplesAdaptive bandwidths in the npEM algorithm

3 Further extensions

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures

Page 24: EM-like algorithms for nonparametric estimation in ... · Multivariate non-parametric “npEM” algorithms Further extensions EM-like algorithms for nonparametric estimation in multivariate

Mixture models and EM algorithmsMultivariate non-parametric “npEM” algorithms

Further extensions

Model and algorithmExamplesAdaptive bandwidths in the npEM algorithm

Outline: Next up. . .

1 Mixture models and EM algorithmsMotivations, examples and notationReview of EM algorithm-ology

2 Multivariate non-parametric “npEM” algorithmsModel and algorithmExamplesAdaptive bandwidths in the npEM algorithm

3 Further extensions

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures

Page 25: EM-like algorithms for nonparametric estimation in ... · Multivariate non-parametric “npEM” algorithms Further extensions EM-like algorithms for nonparametric estimation in multivariate

Mixture models and EM algorithmsMultivariate non-parametric “npEM” algorithms

Further extensions

Model and algorithmExamplesAdaptive bandwidths in the npEM algorithm

The blessing of dimensionality (!)

Recall the model in the multivariate case, r > 1:

g(x) =m∑

j=1

λj

r∏k=1

fjk (xk )

N.B.: Assume conditional independence of x1, . . . , xr

Hall and Zhou (2003) show that when m = 2 and r ≥ 3,the model is identifiable under mild restrictions on the fjk (·)Hall et al. (2005) . . . from at least one point of view, the‘curse of dimensionality’ works in reverse.

Allman et al. (2008) give mild sufficient conditions foridentifiability whenever r ≥ 3

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures

Page 26: EM-like algorithms for nonparametric estimation in ... · Multivariate non-parametric “npEM” algorithms Further extensions EM-like algorithms for nonparametric estimation in multivariate

Mixture models and EM algorithmsMultivariate non-parametric “npEM” algorithms

Further extensions

Model and algorithmExamplesAdaptive bandwidths in the npEM algorithm

The blessing of dimensionality (!)

Recall the model in the multivariate case, r > 1:

g(x) =m∑

j=1

λj

r∏k=1

fjk (xk )

N.B.: Assume conditional independence of x1, . . . , xr

Hall and Zhou (2003) show that when m = 2 and r ≥ 3,the model is identifiable under mild restrictions on the fjk (·)Hall et al. (2005) . . . from at least one point of view, the‘curse of dimensionality’ works in reverse.Allman et al. (2008) give mild sufficient conditions foridentifiability whenever r ≥ 3

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures

Page 27: EM-like algorithms for nonparametric estimation in ... · Multivariate non-parametric “npEM” algorithms Further extensions EM-like algorithms for nonparametric estimation in multivariate

Mixture models and EM algorithmsMultivariate non-parametric “npEM” algorithms

Further extensions

Model and algorithmExamplesAdaptive bandwidths in the npEM algorithm

The notation gets even worse. . .

Suppose some of the r coordinates are identically distributed.Let the r coordinates be grouped into B blocks of iidcoordinates.Denote the block index of the k th coordinate bybk ∈ {1, . . . ,B}, k = 1, . . . , r .The model becomes

g(x) =m∑

j=1

λj

r∏k=1

fjbk (xk )

Special cases:bk = k for each k : Fully general model, seen earlier

(Hall et al. 2005; Qin and Leung 2006)bk = 1 for each k : Conditionally i.i.d. assumption

(Elmore et al. 2004)

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures

Page 28: EM-like algorithms for nonparametric estimation in ... · Multivariate non-parametric “npEM” algorithms Further extensions EM-like algorithms for nonparametric estimation in multivariate

Mixture models and EM algorithmsMultivariate non-parametric “npEM” algorithms

Further extensions

Model and algorithmExamplesAdaptive bandwidths in the npEM algorithm

The notation gets even worse. . .

Suppose some of the r coordinates are identically distributed.Let the r coordinates be grouped into B blocks of iidcoordinates.Denote the block index of the k th coordinate bybk ∈ {1, . . . ,B}, k = 1, . . . , r .The model becomes

g(x) =m∑

j=1

λj

r∏k=1

fjbk (xk )

Special cases:bk = k for each k : Fully general model, seen earlier

(Hall et al. 2005; Qin and Leung 2006)bk = 1 for each k : Conditionally i.i.d. assumption

(Elmore et al. 2004)

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures

Page 29: EM-like algorithms for nonparametric estimation in ... · Multivariate non-parametric “npEM” algorithms Further extensions EM-like algorithms for nonparametric estimation in multivariate

Mixture models and EM algorithmsMultivariate non-parametric “npEM” algorithms

Further extensions

Model and algorithmExamplesAdaptive bandwidths in the npEM algorithm

Motivation: The water-level data example again

8 vessels, presented in order 11, 4, 2, 7, 10, 5, 1, 8 o’clock

Assume that opposite clock-faceorientations lead to conditionallyiid responses (same behavior)B = 4 blocks defined byb = (4,3,2,1,3,4,1,2)

e.g., b4 = b7 = 1, i.e., block 1relates to coordinates 4 and 7,corresponding to clockorientations 1:00 and 7:00

11:00 4:00 2:00

7:00 10:00 5:00

1:00 8:00

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures

Page 30: EM-like algorithms for nonparametric estimation in ... · Multivariate non-parametric “npEM” algorithms Further extensions EM-like algorithms for nonparametric estimation in multivariate

Mixture models and EM algorithmsMultivariate non-parametric “npEM” algorithms

Further extensions

Model and algorithmExamplesAdaptive bandwidths in the npEM algorithm

Motivation: The water-level data example again

8 vessels, presented in order 11, 4, 2, 7, 10, 5, 1, 8 o’clock

Assume that opposite clock-faceorientations lead to conditionallyiid responses (same behavior)

B = 4 blocks defined byb = (4,3,2,1,3,4,1,2)

e.g., b4 = b7 = 1, i.e., block 1relates to coordinates 4 and 7,corresponding to clockorientations 1:00 and 7:00

Vessel tilted to point at 1:00 and 7:00

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures

Page 31: EM-like algorithms for nonparametric estimation in ... · Multivariate non-parametric “npEM” algorithms Further extensions EM-like algorithms for nonparametric estimation in multivariate

Mixture models and EM algorithmsMultivariate non-parametric “npEM” algorithms

Further extensions

Model and algorithmExamplesAdaptive bandwidths in the npEM algorithm

Motivation: The water-level data example again

8 vessels, presented in order 11, 4, 2, 7, 10, 5, 1, 8 o’clock

Assume that opposite clock-faceorientations lead to conditionallyiid responses (same behavior)B = 4 blocks defined byb = (4,3,2,1,3,4,1,2)

e.g., b4 = b7 = 1, i.e., block 1relates to coordinates 4 and 7,corresponding to clockorientations 1:00 and 7:00

11:00 4:00 2:00

7:00 10:00 5:00

1:00 8:00

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures

Page 32: EM-like algorithms for nonparametric estimation in ... · Multivariate non-parametric “npEM” algorithms Further extensions EM-like algorithms for nonparametric estimation in multivariate

Mixture models and EM algorithmsMultivariate non-parametric “npEM” algorithms

Further extensions

Model and algorithmExamplesAdaptive bandwidths in the npEM algorithm

The nonparametric “EM” (npEM) algorithm

E-step: Same as usual, but now fjbk is part of the parameter:

Z tij ≡ Eθt [Zij |xi ] =

λtj∏r

k=1 f tjbk

(xik )∑j ′ λ

tj ′∏r

k=1 f tj ′bk

(xik )

M-step: Maximize “complete data loglikelihood” for λ:

λt+1j =

1n

n∑i=1

Z tij

WKDE-step: Update estimate of fj` (component j , block `) by

f t+1j` (u) =

1nhC`λ

t+1j

r∑k=1

n∑i=1

Z tij I{bk=`}K

(u − xik

h

)where C` =

∑rk=1 I{bk=`} = # of coordinates in block `

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures

Page 33: EM-like algorithms for nonparametric estimation in ... · Multivariate non-parametric “npEM” algorithms Further extensions EM-like algorithms for nonparametric estimation in multivariate

Mixture models and EM algorithmsMultivariate non-parametric “npEM” algorithms

Further extensions

Model and algorithmExamplesAdaptive bandwidths in the npEM algorithm

The nonparametric “EM” (npEM) algorithm

E-step: Same as usual, but now fjbk is part of the parameter:

Z tij ≡ Eθt [Zij |xi ] =

λtj∏r

k=1 f tjbk

(xik )∑j ′ λ

tj ′∏r

k=1 f tj ′bk

(xik )

M-step: Maximize “complete data loglikelihood” for λ:

λt+1j =

1n

n∑i=1

Z tij

WKDE-step: Update estimate of fj` (component j , block `) by

f t+1j` (u) =

1nhC`λ

t+1j

r∑k=1

n∑i=1

Z tij I{bk=`}K

(u − xik

h

)where C` =

∑rk=1 I{bk=`} = # of coordinates in block `

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures

Page 34: EM-like algorithms for nonparametric estimation in ... · Multivariate non-parametric “npEM” algorithms Further extensions EM-like algorithms for nonparametric estimation in multivariate

Mixture models and EM algorithmsMultivariate non-parametric “npEM” algorithms

Further extensions

Model and algorithmExamplesAdaptive bandwidths in the npEM algorithm

The nonparametric “EM” (npEM) algorithm

E-step: Same as usual, but now fjbk is part of the parameter:

Z tij ≡ Eθt [Zij |xi ] =

λtj∏r

k=1 f tjbk

(xik )∑j ′ λ

tj ′∏r

k=1 f tj ′bk

(xik )

M-step: Maximize “complete data loglikelihood” for λ:

λt+1j =

1n

n∑i=1

Z tij

WKDE-step: Update estimate of fj` (component j , block `) by

f t+1j` (u) =

1nhC`λ

t+1j

r∑k=1

n∑i=1

Z tij I{bk=`}K

(u − xik

h

)where C` =

∑rk=1 I{bk=`} = # of coordinates in block `

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures

Page 35: EM-like algorithms for nonparametric estimation in ... · Multivariate non-parametric “npEM” algorithms Further extensions EM-like algorithms for nonparametric estimation in multivariate

Mixture models and EM algorithmsMultivariate non-parametric “npEM” algorithms

Further extensions

Model and algorithmExamplesAdaptive bandwidths in the npEM algorithm

Outline: Next up. . .

1 Mixture models and EM algorithmsMotivations, examples and notationReview of EM algorithm-ology

2 Multivariate non-parametric “npEM” algorithmsModel and algorithmExamplesAdaptive bandwidths in the npEM algorithm

3 Further extensions

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures

Page 36: EM-like algorithms for nonparametric estimation in ... · Multivariate non-parametric “npEM” algorithms Further extensions EM-like algorithms for nonparametric estimation in multivariate

Mixture models and EM algorithmsMultivariate non-parametric “npEM” algorithms

Further extensions

Model and algorithmExamplesAdaptive bandwidths in the npEM algorithm

Advertising!

All computational techniques in this talk are implemented in themixtools package for the R Statistical Software

www.r-project.org cran.cict.fr/web/packages/mixtools

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures

Page 37: EM-like algorithms for nonparametric estimation in ... · Multivariate non-parametric “npEM” algorithms Further extensions EM-like algorithms for nonparametric estimation in multivariate

Mixture models and EM algorithmsMultivariate non-parametric “npEM” algorithms

Further extensions

Model and algorithmExamplesAdaptive bandwidths in the npEM algorithm

Simulated trivariate benchmark models

Comparisons with Hall et al. (2005) inversion methodm = 2, r = 3, conditional independence (no blocks)

For j = 1,2 and k = 1,2,3, we compute as in Hall et al.

MISEjk =1S

S∑s=1

∫ (f (s)jk (u)− fjk (u)

)2du

over S replications, where Zij ’s are the final posterior, and

fjk (u) =1

nhλj

n∑i=1

ZijK(

u − xik

h

)

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures

Page 38: EM-like algorithms for nonparametric estimation in ... · Multivariate non-parametric “npEM” algorithms Further extensions EM-like algorithms for nonparametric estimation in multivariate

Mixture models and EM algorithmsMultivariate non-parametric “npEM” algorithms

Further extensions

Model and algorithmExamplesAdaptive bandwidths in the npEM algorithm

Simulated trivariate benchmark models

Comparisons with Hall et al. (2005) inversion methodm = 2, r = 3, conditional independence (no blocks)

For j = 1,2 and k = 1,2,3, we compute as in Hall et al.

MISEjk =1S

S∑s=1

∫ (f (s)jk (u)− fjk (u)

)2du

over S replications, where Zij ’s are the final posterior, and

fjk (u) =1

nhλj

n∑i=1

ZijK(

u − xik

h

)

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures

Page 39: EM-like algorithms for nonparametric estimation in ... · Multivariate non-parametric “npEM” algorithms Further extensions EM-like algorithms for nonparametric estimation in multivariate

Mixture models and EM algorithmsMultivariate non-parametric “npEM” algorithms

Further extensions

Model and algorithmExamplesAdaptive bandwidths in the npEM algorithm

MISE comparisons with Hall et al (2005) benchmarks

n = 500, S = 300 replications, 3 models, log scale

0.05

0.10

0.20

0.50

Normal

λλ1

MIS

E

0.1 0.2 0.3 0.4

● ●

●●

●●

●●

● ●

0.05

0.10

0.20

0.50

Double Exponential

λλ10.1 0.2 0.3 0.4

● ●

●● ●

●●

●●

● Component 1Component 2

Inversion ↑↑

npEM ↓↓

0.05

0.10

0.20

0.50

t(10)

λλ10.1 0.2 0.3 0.4

●●

● ●

●●

● ●

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures

Page 40: EM-like algorithms for nonparametric estimation in ... · Multivariate non-parametric “npEM” algorithms Further extensions EM-like algorithms for nonparametric estimation in multivariate

Mixture models and EM algorithmsMultivariate non-parametric “npEM” algorithms

Further extensions

Model and algorithmExamplesAdaptive bandwidths in the npEM algorithm

The Water-level data

Previously analysed using mixtures by Hettmansperger andThomas (2000), and Elmore et al. (2004), using Assumptionsand model:

r = 8 coordinates assumed conditionally i.i.d.Cutpoint approach = binning data in p-dim vectorsmixture of multinomial identifiable whenever r ≥ 2m − 1(Elmore and Wang 2003)

The non appropriate i.i.d. assumption masks interestingfeatures that our model reveals

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures

Page 41: EM-like algorithms for nonparametric estimation in ... · Multivariate non-parametric “npEM” algorithms Further extensions EM-like algorithms for nonparametric estimation in multivariate

Mixture models and EM algorithmsMultivariate non-parametric “npEM” algorithms

Further extensions

Model and algorithmExamplesAdaptive bandwidths in the npEM algorithm

The Water-level data

Previously analysed using mixtures by Hettmansperger andThomas (2000), and Elmore et al. (2004), using Assumptionsand model:

r = 8 coordinates assumed conditionally i.i.d.Cutpoint approach = binning data in p-dim vectorsmixture of multinomial identifiable whenever r ≥ 2m − 1(Elmore and Wang 2003)

The non appropriate i.i.d. assumption masks interestingfeatures that our model reveals

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures

Page 42: EM-like algorithms for nonparametric estimation in ... · Multivariate non-parametric “npEM” algorithms Further extensions EM-like algorithms for nonparametric estimation in multivariate

Mixture models and EM algorithmsMultivariate non-parametric “npEM” algorithms

Further extensions

Model and algorithmExamplesAdaptive bandwidths in the npEM algorithm

The Water-level data, m = 3 components, 4 blocks

Block 1: 1:00 and 7:00 orientations

0.00

00.

010

0.02

00.

030

Mixing Proportion (Mean, Std Dev) 0.077 (−32.1, 19.4)0.431 ( −3.9, 23.3)0.492 ( −1.4, 6.0)

Appearance of Vesselat Orientation = 1:00

−90 −60 −30 0 30 60 90

Block 2: 2:00 and 8:00 orientations

0.00

00.

010

0.02

00.

030

Mixing Proportion (Mean, Std Dev) 0.077 (−31.4, 55.4)0.431 (−11.7, 27.0)0.492 ( −2.7, 4.6)

Appearance of Vesselat Orientation = 2:00

−90 −60 −30 0 30 60 90

Block 3: 4:00 and 10:00 orientations

0.00

00.

010

0.02

00.

030

Mixing Proportion (Mean, Std Dev) 0.077 ( 43.6, 39.7)0.431 ( 11.4, 27.5)0.492 ( 1.0, 5.3)

Appearance of Vesselat Orientation = 4:00

−90 −60 −30 0 30 60 90

Block 4: 5:00 and 11:00 orientations

0.00

00.

010

0.02

00.

030

Mixing Proportion (Mean, Std Dev) 0.077 ( 27.5, 19.3)0.431 ( 2.0, 22.1)0.492 ( −0.1, 6.1)

Appearance of Vesselat Orientation = 5:00

−90 −60 −30 0 30 60 90

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures

Page 43: EM-like algorithms for nonparametric estimation in ... · Multivariate non-parametric “npEM” algorithms Further extensions EM-like algorithms for nonparametric estimation in multivariate

Mixture models and EM algorithmsMultivariate non-parametric “npEM” algorithms

Further extensions

Model and algorithmExamplesAdaptive bandwidths in the npEM algorithm

Outline: Next up. . .

1 Mixture models and EM algorithmsMotivations, examples and notationReview of EM algorithm-ology

2 Multivariate non-parametric “npEM” algorithmsModel and algorithmExamplesAdaptive bandwidths in the npEM algorithm

3 Further extensions

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures

Page 44: EM-like algorithms for nonparametric estimation in ... · Multivariate non-parametric “npEM” algorithms Further extensions EM-like algorithms for nonparametric estimation in multivariate

Mixture models and EM algorithmsMultivariate non-parametric “npEM” algorithms

Further extensions

Model and algorithmExamplesAdaptive bandwidths in the npEM algorithm

Bandwidth issues in the kernel density estimates

Crude method :

use R default (Silverman’s rule) based on sd (standarddeviation) and IQR (InterQuartileRange) computed bypooling the n × r data points,

h = 0.9 min{

sd ,IQR1.34

}(nr)−1/5

Inappropriate for mixtures, e.g. for components withsupports of different locations and/or scalesExample (see later): f11 ≡ Student and f22 ≡ Beta

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures

Page 45: EM-like algorithms for nonparametric estimation in ... · Multivariate non-parametric “npEM” algorithms Further extensions EM-like algorithms for nonparametric estimation in multivariate

Mixture models and EM algorithmsMultivariate non-parametric “npEM” algorithms

Further extensions

Model and algorithmExamplesAdaptive bandwidths in the npEM algorithm

Bandwidth issues in the kernel density estimates

Crude method :

use R default (Silverman’s rule) based on sd (standarddeviation) and IQR (InterQuartileRange) computed bypooling the n × r data points,

h = 0.9 min{

sd ,IQR1.34

}(nr)−1/5

Inappropriate for mixtures, e.g. for components withsupports of different locations and/or scalesExample (see later): f11 ≡ Student and f22 ≡ Beta

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures

Page 46: EM-like algorithms for nonparametric estimation in ... · Multivariate non-parametric “npEM” algorithms Further extensions EM-like algorithms for nonparametric estimation in multivariate

Mixture models and EM algorithmsMultivariate non-parametric “npEM” algorithms

Further extensions

Model and algorithmExamplesAdaptive bandwidths in the npEM algorithm

Iterative and per component & block bandwidths

Estimated sample size for j th component and `th block

n∑i=1

r∑k=1

I{bk=`}Z tij = nC`λ

tj

Iterative bandwidth ht+1j` applying (e.g.) Silverman’s rule

ht+1j` = 0.9 min

{σt+1

j` ,IQRt+1

j`

1.34

}(nC`λ

t+1j )−1/5

where σ’s and IQR’s have to be estimated periteration/component/block

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures

Page 47: EM-like algorithms for nonparametric estimation in ... · Multivariate non-parametric “npEM” algorithms Further extensions EM-like algorithms for nonparametric estimation in multivariate

Mixture models and EM algorithmsMultivariate non-parametric “npEM” algorithms

Further extensions

Model and algorithmExamplesAdaptive bandwidths in the npEM algorithm

Iterative and per component & block bandwidths

Estimated sample size for j th component and `th block

n∑i=1

r∑k=1

I{bk=`}Z tij = nC`λ

tj

Iterative bandwidth ht+1j` applying (e.g.) Silverman’s rule

ht+1j` = 0.9 min

{σt+1

j` ,IQRt+1

j`

1.34

}(nC`λ

t+1j )−1/5

where σ’s and IQR’s have to be estimated periteration/component/block

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures

Page 48: EM-like algorithms for nonparametric estimation in ... · Multivariate non-parametric “npEM” algorithms Further extensions EM-like algorithms for nonparametric estimation in multivariate

Mixture models and EM algorithmsMultivariate non-parametric “npEM” algorithms

Further extensions

Model and algorithmExamplesAdaptive bandwidths in the npEM algorithm

Iterative and per component/block sd’s

Augment each M-step to include

µt+1j` =

n∑i=1

r∑k=1

Z tij I{bk=`}xik

nC`λt+1j

,

σt+1j` =

n∑

i=1

r∑k=1

Z tij I{bk=`}(xik − µt+1

j` )2

nC`λt+1j

1/2

NB: these “parameters” are not in the model

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures

Page 49: EM-like algorithms for nonparametric estimation in ... · Multivariate non-parametric “npEM” algorithms Further extensions EM-like algorithms for nonparametric estimation in multivariate

Mixture models and EM algorithmsMultivariate non-parametric “npEM” algorithms

Further extensions

Model and algorithmExamplesAdaptive bandwidths in the npEM algorithm

Iterative and per component/block quantiles

Let x` denote the nC` data in block `, and τ(·) be a permutationon {1, . . . ,nC`} such that

x`τ(1) ≤ x`τ(2) ≤ · · · ≤ x`τ(nC`)

Define the weighted α-quantile estimate:

Qt+1j`,α = x`τ(iα), where iα = min

{s :

s∑u=1

Z tτ(u)j ≥ αnC`λ

t+1j

}

Set IQRt+1j` = Qt+1

j`,0.75 −Qt+1j`,0.25

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures

Page 50: EM-like algorithms for nonparametric estimation in ... · Multivariate non-parametric “npEM” algorithms Further extensions EM-like algorithms for nonparametric estimation in multivariate

Mixture models and EM algorithmsMultivariate non-parametric “npEM” algorithms

Further extensions

Model and algorithmExamplesAdaptive bandwidths in the npEM algorithm

Iterative and per component/block quantiles

Let x` denote the nC` data in block `, and τ(·) be a permutationon {1, . . . ,nC`} such that

x`τ(1) ≤ x`τ(2) ≤ · · · ≤ x`τ(nC`)

Define the weighted α-quantile estimate:

Qt+1j`,α = x`τ(iα), where iα = min

{s :

s∑u=1

Z tτ(u)j ≥ αnC`λ

t+1j

}

Set IQRt+1j` = Qt+1

j`,0.75 −Qt+1j`,0.25

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures

Page 51: EM-like algorithms for nonparametric estimation in ... · Multivariate non-parametric “npEM” algorithms Further extensions EM-like algorithms for nonparametric estimation in multivariate

Mixture models and EM algorithmsMultivariate non-parametric “npEM” algorithms

Further extensions

Model and algorithmExamplesAdaptive bandwidths in the npEM algorithm

Iterative and per component/block quantiles

Let x` denote the nC` data in block `, and τ(·) be a permutationon {1, . . . ,nC`} such that

x`τ(1) ≤ x`τ(2) ≤ · · · ≤ x`τ(nC`)

Define the weighted α-quantile estimate:

Qt+1j`,α = x`τ(iα), where iα = min

{s :

s∑u=1

Z tτ(u)j ≥ αnC`λ

t+1j

}

Set IQRt+1j` = Qt+1

j`,0.75 −Qt+1j`,0.25

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures

Page 52: EM-like algorithms for nonparametric estimation in ... · Multivariate non-parametric “npEM” algorithms Further extensions EM-like algorithms for nonparametric estimation in multivariate

Mixture models and EM algorithmsMultivariate non-parametric “npEM” algorithms

Further extensions

Model and algorithmExamplesAdaptive bandwidths in the npEM algorithm

Iterative & adaptive bandwidth illustration

Multivariate example with m = 2, r = 5, B = 2 blocksBlock 1 = (x1, x2, x3),components f11 = t(2,0), f21 = t(10,4)Block 2 = (x4, x5),components f12 = U[0,1], f22 = Beta(1,5)

−5 0 5 10 15

0.00

0.05

0.10

0.15

block 1

x

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

block 2

x

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures

Page 53: EM-like algorithms for nonparametric estimation in ... · Multivariate non-parametric “npEM” algorithms Further extensions EM-like algorithms for nonparametric estimation in multivariate

Mixture models and EM algorithmsMultivariate non-parametric “npEM” algorithms

Further extensions

Model and algorithmExamplesAdaptive bandwidths in the npEM algorithm

Simulated data, n = 300 individuals

Default bandwidth> blockid = c(1,1,1,2,2)> a = npEM(x, 2, blockid)> plot(a, breaks = 18)> a$bandwidth[1] 0.5238855

xx

Den

sity

−10 −5 0 5 10

0.00

0.05

0.10

0.15

0.4270.573

Coordinates 1,2,3

xx

Den

sity

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

2.5

0.4270.573

Coordinates 4,5

Bandwidth per block & component> b = npEM(x, 2, blockid, samebw=FALSE)> plot(b, breaks = 18)> b$bandwidth

component 1 component 2block 1 0.38573749 0.35232409block 2 0.08441747 0.04388618

xx

Den

sity

−10 −5 0 5 10

0.00

0.05

0.10

0.15

0.4310.569

Coordinates 1,2,3

xx

Den

sity

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

2.5

0.4310.569

Coordinates 4,5

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures

Page 54: EM-like algorithms for nonparametric estimation in ... · Multivariate non-parametric “npEM” algorithms Further extensions EM-like algorithms for nonparametric estimation in multivariate

Mixture models and EM algorithmsMultivariate non-parametric “npEM” algorithms

Further extensions

Model and algorithmExamplesAdaptive bandwidths in the npEM algorithm

Simulated data, n = 300 individuals

Default bandwidth> blockid = c(1,1,1,2,2)> a = npEM(x, 2, blockid)> plot(a, breaks = 18)> a$bandwidth[1] 0.5238855

xx

Den

sity

−10 −5 0 5 10

0.00

0.05

0.10

0.15

0.4270.573

Coordinates 1,2,3

xx

Den

sity

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

2.5

0.4270.573

Coordinates 4,5

Bandwidth per block & component> b = npEM(x, 2, blockid, samebw=FALSE)> plot(b, breaks = 18)> b$bandwidth

component 1 component 2block 1 0.38573749 0.35232409block 2 0.08441747 0.04388618

xx

Den

sity

−10 −5 0 5 10

0.00

0.05

0.10

0.15

0.4310.569

Coordinates 1,2,3

xx

Den

sity

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

2.5

0.4310.569

Coordinates 4,5

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures

Page 55: EM-like algorithms for nonparametric estimation in ... · Multivariate non-parametric “npEM” algorithms Further extensions EM-like algorithms for nonparametric estimation in multivariate

Mixture models and EM algorithmsMultivariate non-parametric “npEM” algorithms

Further extensions

Model and algorithmExamplesAdaptive bandwidths in the npEM algorithm

The Water-level data with adaptive bandwidth

Density

0.000

0.010

0.020

0.030 0.119

0.8340.046

Block 1: 1:00 and 7:00 orientations

-90 -60 -30 0 30 60 90

Density

0.000

0.010

0.020

0.030 0.119

0.8340.046

Block 2: 2:00 and 8:00 orientations

-90 -60 -30 0 30 60 90

Density

0.000

0.010

0.020

0.030 0.119

0.8340.046

Block 3: 4:00 and 10:00 orientations

-90 -60 -30 0 30 60 90

Density

0.000

0.010

0.020

0.030 0.119

0.8340.046

Block 4: 5:00 and 11:00 orientations

-90 -60 -30 0 30 60 90

> b$bandcomp 1 comp 2 comp 3

block 1 12.172 1.4597 0.97535block 2 13.996 2.7370 2.27581block 3 19.190 2.5545 2.27582

block 4 12.363 1.2772 1.62558

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures

Page 56: EM-like algorithms for nonparametric estimation in ... · Multivariate non-parametric “npEM” algorithms Further extensions EM-like algorithms for nonparametric estimation in multivariate

Mixture models and EM algorithmsMultivariate non-parametric “npEM” algorithms

Further extensions

Model and algorithmExamplesAdaptive bandwidths in the npEM algorithm

Pros and cons of the npEM algorithm

Pro: Easily generalizes beyond m = 2, r = 3 (not the casefor inversion methods)Pro: Much lower MISE for similar test problems.Pro: Computationally simple (in the mixtools package).Pro: No need to assume conditionally i.i.d., and no loss ofinformation from categorizing data (as for for the cutpointapproach)Con: Not a true EM algorithm (no monotonicity property)→ Nonlinear Smoothed Likelihood MM algorithms Levine,Hunter and Chauveau (2010, . . . )

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures

Page 57: EM-like algorithms for nonparametric estimation in ... · Multivariate non-parametric “npEM” algorithms Further extensions EM-like algorithms for nonparametric estimation in multivariate

Mixture models and EM algorithmsMultivariate non-parametric “npEM” algorithms

Further extensions

Outline: Next up. . .

1 Mixture models and EM algorithmsMotivations, examples and notationReview of EM algorithm-ology

2 Multivariate non-parametric “npEM” algorithmsModel and algorithmExamplesAdaptive bandwidths in the npEM algorithm

3 Further extensions

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures

Page 58: EM-like algorithms for nonparametric estimation in ... · Multivariate non-parametric “npEM” algorithms Further extensions EM-like algorithms for nonparametric estimation in multivariate

Mixture models and EM algorithmsMultivariate non-parametric “npEM” algorithms

Further extensions

Further extensions: Semiparametric models

Component or block density may differ only in location and/orscale parameters, e.g.

fj`(x) =1σj`

fj

(x − µj`

σj`

)or

fj`(x) =1σj`

f`

(x − µj`

σj`

)or

fj`(x) =1σj`

f(

x − µj`

σj`

)where fj ’s, f`’s, or the single f remain fully unspecified

For all these situations special cases of the npEM algorithmcan easily be designed (some are already in mixtools).

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures

Page 59: EM-like algorithms for nonparametric estimation in ... · Multivariate non-parametric “npEM” algorithms Further extensions EM-like algorithms for nonparametric estimation in multivariate

Mixture models and EM algorithmsMultivariate non-parametric “npEM” algorithms

Further extensions

Further extensions: Stochastic npEM versions

In some setup, it may be useful to simulate the latent data fromthe posterior probabilities:

Zti ∼ Mult

(1 ; Z t

i1, . . . ,Ztim), i = 1, . . . ,n

Then the sequence (θt)t≥1 becomes a Markov Chain

Historically, parametric Stochastic EM introduced byCeleux Diebolt (1985, 1986,. . . ), see also MCMC sampling(Diebolt Robert 1994)In non-parametric framework: Stochastic npEM forreliability mixture models, Bordes Chauveau (COMPSTAT2010. . . )

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures

Page 60: EM-like algorithms for nonparametric estimation in ... · Multivariate non-parametric “npEM” algorithms Further extensions EM-like algorithms for nonparametric estimation in multivariate

Mixture models and EM algorithmsMultivariate non-parametric “npEM” algorithms

Further extensions

Selected references

Allman, E.S., Matias, C. and Rhodes, J.A. (2008), Identifiability of latent class models with many observedvariables, Annals of Statistics, 37: 3099–3132.

Benaglia, T., Chauveau, D., and Hunter, D. R. (2009), An EM-like algorithm for semi- and non-parametricestimation in mutlivariate mixtures, J. Comput. Graph. Statist. 18, no. 2, 505Ð-526.

Benaglia T., Chauveau D., Hunter D. R., Young D. S., mixtools: An R Package for Analyzing Mixture Models,Journal of Statistical Software 32 (2009), 1–29.

Bordes, L., Mottelet, S., and Vandekerkhove, P. (2006), Semiparametric estimation of a two-componentmixture model, Annals of Statistics, 34, 1204–1232.

Bordes, L., Chauveau, D., and Vandekerkhove, P. (2007), An EM algorithm for a semiparametric mixturemodel, Computational Statistics and Data Analysis, 51: 5429–5443.

Elmore, R. T., Hettmansperger, T. P., and Thomas, H. (2004), Estimating component cumulative distributionfunctions in finite mixture models, Communications in Statistics: Theory and Methods, 33: 2075–2086.

Elmore, R. T., Hall, P. and Neeman, A. (2005), An application of classical invariant theory to identifiability innonparametric mixtures, Annales de l’Institut Fourier, 55, 1: 1–28.

Hall, P. and Zhou, X. H. (2003) Nonparametric estimation of component distributions in a multivariatemixture, Annals of Statistics, 31: 201–224.

Hall, P., Neeman, A., Pakyari, R., and Elmore, R. (2005), Nonparametric inference in multivariate mixtures,Biometrika, 92: 667–678.

Hunter, D. R., Wang, S., and Hettmansperger, T. P. (2007), Inference for mixtures of symmetric distributions,Annals of Statistics, 35: 224–251.

Thomas, H., Lohaus, A., and Brainerd, C.J. (1993). Modeling Growth and Individual Differences in SpatialTasks, Monographs of the Society for Research in Child Development, 58, 9: 1–190.

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures