em perpan 01

Upload: a

Post on 08-Jan-2016

35 views

Category:

Documents


0 download

DESCRIPTION

jbjghj

TRANSCRIPT

  • OKKY PP

    Heat Transfer

    UISI For internal use only

    1

    EM52013 Heat Transfer

    Department of Engineering Management

    UNIVERSITAS INTERNASIONAL SEMEN INDONESIA

    OKKY PUTRI PRASTUTI, S.T, M.T

  • Course Details

    (HEAT TRANSFER) 2

    Course title : Heat Transfer Time slot : Monday, 12.35-15.20 Credit : 3 sks Instructor : Okky Putri Prastuti, S.T, M.T Telephone : +6281332546469 E-mail : [email protected] Course books : 1. Incropera, Frank P. Dewitt, David P, 1996. Intorduction to Heat Transfer. 3rd Edition,

    John Willey & Sons. 2. Geankoplis,C.J., Transport Processes and Separation Process Principles, Prentice Hall

    International Inc., 4th Ed, 2003

  • TOPICS

    3

    1. The concept of heat transfer (conduction, convection, radiation) 2. Analysis conduction 3. Forced Convection and Natural Convection 4. Heat exchangers 5. The concept of radiation and mass transfer

    (HEAT TRANSFER)

  • Outline of Learning

    4 (HEAT TRANSFER)

    Week Subjects

    1 Thermodynamic and Heat Transfer

    2-3 Conduction Heat Transfer

    4-5 Conduction and convection system

    6 Steady state conduction for multi dimensional

    7 Convenction Heat Transfer

    8 UTS

    9 External forced convection

    10 Internal forced convection

    11 Natural convection heat tansfer

    12 Boiling and condensation

    13-14 Heat exchanger

    15 Radiation Heat Transfer

    16 UAS

  • Assessment

    5 (HEAT TRANSFER)

    Tugas : 15 % Kuis 1 : 15 % UTS : 20 % Kuis 2 : 15 % UAS : 30 % Keaktifan : 5 %

  • Introduction of Thermodynamics

    Heat Transfer t

    6 (HEAT TRANSFER)

  • Definition

    7 (HEAT TRANSFER)

    Thermodynamics : The science of energy

    The name thermodynamics stems from the Greek words therme

    (heat) and dynamics (motion)

    Thermodynamics is the study of energy conversion between heat and mechanical work, and subsequently the macroscopic variables such as temperature, volume, and pressure.

    THERMO : HEAT and TEMPERATURE DYNAMICS : MOTION

  • Example

    8 (HEAT TRANSFER)

    The production of chemicals, polymers, pharmaceuticals and other biological materials, and oil and gas processing, all involve chemical or biochemical reaction that produce a mixture of reaction product. (e.g : production of tert-butanol) 1. These must be separated from the mixture and purified to result in product of

    societal, commercial, or medicinal value. 2. These is the area where thermodynamics plays a central role in process eng. 3. Separation processes, e.g. distillation are designed based on information from

    thermodynamics such as vapor-liquid equilibrium data.

  • Example (cont.)

    9 (HEAT TRANSFER)

    Vapor-Liquid

    Equilibrium

    (VLE) data

  • Dimensions and Units

    10 (HEAT TRANSFER)

    - Dimension is recognize through our sensory perceptions and not

    definable without the definition of arbitrary scales of measure,

    divided into specific units of size.

    The units have been set by international

    agreement, and are

    codified as the International System of Units (SI).

  • Dimensions and Units (cont) t

    11 (HEAT TRANSFER)

    Dimensions and Units in HYSYS v3.2

    American Engineering Units (Field)

    SI units

  • Measurements of Amount and Size

    12 (HEAT TRANSFER)

    Three measures of amount or size are in common use: Mass, m ; Number of moles, n ; Total volume, Vt

    Mass, m divided by the molar mass M (molecular weight) to yield number of moles;

    ,M

    mn Mnm

    Total volume, divided by the mass or number of moles of the system to yield specific or molar volume.

    Specific volume:

    Molar Volume:

    mVV t m

    VV

    t

    or

    nVV t n

    VV

    t

    or

  • Measurements of Amount and Size (cont)

    13 (HEAT TRANSFER)

    Properties in HYSYS

  • Force

    14 (HEAT TRANSFER)

    21

    c

    2

    c

    s f kg m kg .80665 9 g

    ms 9.80665 x kg 1 x g

    1 kgf 1

    * Note : The kilogram force is equivalent to 9.80665 N

  • Temperature

    15 (HEAT TRANSFER)

    All temperature scales are based on some easily reproducible states such as the freezing and boiling points of water: the ice point and the steam point.

    Ice point: A mixture of ice and water that is in equilibrium with air saturated with vapor at 1 atm pressure (0C or 32F).

    Steam point: A mixture of liquid water and water vapor (with no air) in equilibrium at 1 atm pressure (100C or 212F).

    Celsius scale: in SI unit system Fahrenheit scale: in English unit system Thermodynamic temperature scale: A temperature scale that is independent of the properties of any substance. Kelvin scale (SI) Rankine scale (E) A temperature scale nearly identical to the Kelvin scale is the ideal-gas temperature scale. The temperatures on

    this scale are measured using a constant-volume gas thermometer.

  • Temperature (cont.)

    16 (HEAT TRANSFER)

  • Pressure

    17 (HEAT TRANSFER)

    Pressure: A normal force exerted by a fluid per unit area

    ghA

    gAh

    A

    mg

    A

    FP

    A

    mg

    A

    FP

  • Pressure (cont.)

    18 (HEAT TRANSFER)

    Absolute pressure: The actual pressure at a given position. It is measured relative to absolute vacuum (i.e., absolute zero pressure).

    Gage pressure: The difference between the absolute pressure and the local atmospheric pressure. Most pressure-measuring devices are calibrated to read zero in the atmosphere, and so they indicate gage pressure.

    Vacuum pressures: Pressures below atmospheric pressure

  • Energy

    19 (HEAT TRANSFER)

    Work (W)

    Heat (Q)

    Kinetic Energy (Ek)

    Potential Energy (Ep)

    Internal Energy (U)

  • 20 (HEAT TRANSFER)

    Work (W)

    FdldW

    Kerja diikuti oleh perubahan volume dari fluida (ex. Compression of a gas

    by a piston)

    2

    1

    2

    1

    V

    V

    V

    V

    t

    t

    PdVW

    PdVW

    A

    VPAddW

    t

    t Total volume gives total work

    Work per unit mass or mole

    W+ Tanda negatif menunjukkan bahwa kompresi fluida

    didifinisikan sebagai kerja positif

  • 21 (HEAT TRANSFER)

    Heat (Q)

    heatQ

    -Heat moves from object with higher T to object with lower T

    -Temperature difference is driving force of heat flow

    W & Q are path variables

    Path variables only have meaning when exchange between a

    system/substance and surroundings

    A substance does not contain a certain amount of work or heat

  • 22 (HEAT TRANSFER)

    2

    2

    1muEK

    We will focus on 5 forms of energy

    Potential Energy(Ep)

    mgzEp

    Internal Energy(U)

    forcesular intermolec karenaenergy internal U

    Question:

    what is the relationship between the various forms of energy?

    Kinetic Energy(Ek)

  • Hukum Pertama Termodinamika

    23 (HEAT TRANSFER)

    Panas yang diberikan pada suatu sistem (Q) sama dengan perubahan energi dalam (U) dan kerja yang dilakukan (W).

    Hukum termodinamika I secara matematis dirumuskan:

    di mana: Q = + panas masuk ke sistem

    - panas keluar dari sistem

    U = energi internal sistem

    W = + usaha dilakukan oleh sistem

    - usaha dilakukan pada sistem

    WQU

  • Hukum I

    24 (HEAT TRANSFER)

    Jumlah energi total konstan

    Ek, Ep,

    U

    Q W

    -E(lingkungan)

    E(sistem)

    E(sistem) + E(lingkungan) = 0

    0 WQEpEkUsistem

    WQEEkU P

    +

    Formulasi matematis HK I

  • 25 (HEAT TRANSFER)

    Eksoterm Proses pelepasan energi atau transfer kalor dari sistem ke lingkungan.

    Endoterm Proses penyerapan

    energi atau transfer kalor dari lingkungan ke

    sistem.

    Ditandai dengan kenaikan temperatur sistem saat

    reaksi berlangsung. Contoh: reaksi pembakaran

    Ditandai dengan penurunan temperatur sistem.

    Contoh: proses fotosintesis

  • 26 (HEAT TRANSFER)

    proses-proses termodinamika

    Proses Isobarik (1)

    o Tekanan konstan

    Proses Isotermis (2)

    o Temperatur kontan

    Proses Adiabatik (3)

    o Tidak ada kalor yang hilang

    Proses Isokorik (4)

    o Volume konstan

  • 27 (HEAT TRANSFER)

    proses adiabatik Tidak terjadi transfer panas selama proses, sehingga Q = 0 Proses adiabatik dapat terjadi pada sistem yang terisolasi atau

    sistem yang mempunyai proses sangat cepat.

    U = Q W = 0

    o Untuk sistem yang mengalami kompresi secara adiabatik, maka W negatif (kerja dilakukan pada sistem) sehingga U positif.

    o Untuk sistem yang mengalami ekspansi secara adiabatik, maka

    W positif (kerja dilakukan oleh sistem) sehingga U negatif.

    U = - W

  • 28 (HEAT TRANSFER)

    proses isotermal Temperatur sistem konstan selama proses berlangsung.

    Untuk gas ideal, jika T = 0 (temperatur gas konstan), maka U = 0.

    Sehingga:

    A

    B

    0TRnU2

    3 WQ

  • 29 (HEAT TRANSFER)

    proses isobarik

    Tidak terjadi perubahan tekanan pada sistem selama proses.

    Umumnya terjadi pada sistem yang mempunyai kontak langsung dengan tekanan atmosfer bumi.

  • 30 (HEAT TRANSFER)

    proses isokhorik Tidak terjadi perubahan volume selama proses.

    Proses ini juga disebut volume konstan, isometrik, isovolumik.

    Proses ini terjadi pada sistem yang tertutup rapat dan kuat.

    Ketika volume sistem tidak berubah, maka tidak ada kerja yang dilakukan, sehingga: W = 0 U = Q

  • 31 (HEAT TRANSFER)

    kapasitas kalor (heat capacity)

    Kapasitas kalor (Q) adalah jumlah kalor yang diperlukan untuk menaikkan temperatur suatu zat 1oC.

    Q = mcT di mana c adalah kalor spesifik (J/kg.K).

    Untuk gas ideal:

    Kapasitas kalor pada volume konstan

    CV = 3/2 R

    Kapasitas kalor pada tekanan konstan

    CP = 5/2 R

  • 32 (HEAT TRANSFER)

    soal

    Sebuah pemanas air menggunakan listrik sebagai sumbernya digunakan untuk memanaskan 3 kg air pada 80oC. Usaha yang diberikan filamen pemanas 25 kJ sementara panas yang terbuang karena konduksi sebesar 15 kkal. Berapa perubahan energi internal sistem dan temperatur akhir ?

  • 33 (HEAT TRANSFER)

    jawaban

    Panas terbuang 15 kkal = 62,7 kJ

    Q = U + W

    -62,7 kJ = U -25 kJ U = -37,7 kJ

    T = 76,9oC

    CkgCxkgkJ

    kJT o

    o01,3

    3/18,4

    7,37

  • 34 (HEAT TRANSFER)

    MESIN KALOR

    H

    C

    H

    CH

    H

    CHQ

    Q1

    Q

    QQ

    Q

    WQQW

    di mana = efisiensi mesin kalor

  • 35 (HEAT TRANSFER)

    MESIN PENDINGIN

    1W

    Q

    W

    WQ

    W

    QCOPQQW CCCCH

    di mana COP = Coefficient of Performance mesin pendingin

  • 36 (HEAT TRANSFER)

    SIKLUS KARNOT

    Kurva A (12): ekspansi isotermal pada TH (kerja dilakukan oleh gas)

    Kurva B (23): ekspansi adiabatik (kerja dilakukan oleh gas)

    Kurva C (34): kompresi isotermal pada TC (kerja dilakukan pada gas)

    Kurva D (41): kompresi adiabatik (kerja dilakukan pada gas)

  • Heat Transfer

    Heat Transfer t

    37 (HEAT TRANSFER)

  • Proses Perpindahan

    38 (HEAT TRANSFER)

    Membahas dasar-dasar proses perpindahan momentum, panas dan massa yang terdapat dalam industri dan kehidupan sehari-hari. Konsep-konsep dasar akan dijelaskan melalui aplikasinya dalam penyelesaian soal-soal.

  • MEKANISME PROSES PERPINDAHAN

    39 (HEAT TRANSFER)

    RESISTANCE

    FORCEDRIVINGRATE

    kA

    dxRESISTANCE

    TdFORCEDRIVING

    )/( ADdx

    dCJ

    A

    AA

    dx

    dCD

    A

    J AA

    x

    A

    )/(kAdx

    dTq

    dx

    dV

    A

    F yxy

    dx

    dTk

    A

    q

    x

    RATE LAW GENERAL RATE LAW

    HEAT TRANSFER :

    MASS TRANSFER

    MOMENTUM TRANSFER

    V

    Diam

    FOURIER LAW

    FICKS LAW

    NEWTON

    LAW OF

    VISCOSITY

  • MEKANISME PROSES PERPINDAHAN (cont)

    40 (HEAT TRANSFER)

    BENTUK ANALOG PERSAMAAN FLUKS SATU DIMENSI

    xx

    x

    xA

    q

    x

    A

    A

    J

    xy

    Cp

    k

    x

    x

    CpT

    x

    CA

    x

    Vy

    DA

    Fluks Diffusivity Gradien konsentrasi

    Properti

    Umum

    Panas

    Massa

    Momentum

  • Heat Transport

    41 (HEAT TRANSFER)

    Perpindahan panas terjadi di berbagai proses (Operasi) misalnya :

    Distilasi

    Pembakaran bahan bakar

    Penguapan & Pengeringan

    Pemanasan & Pendinginan

    Perpindahan panas terjadi karena adanya beda suhu (dari suhu tinggi ke suhu rendah)

    Mekanisme Perpindahan Panas

    Panas bisa berpindah dengan mekanisme : Konduksi

    Konveksi dan Turbulensi

    Radiasi

  • Heat Transport (cont)

    42 (HEAT TRANSFER)

    Konduksi

    Panas berpindah dengan transfer energy gerak molekul-molekul yang berdekatan.

    Perpindahan panas secara konduksi bisa terjadi dalam solid, liquid, gas.

    Dalam gas, molekul-molekul yang panas yang mempunyai energy gerak, menularkan energynya ke molekul-molekul yang

    berdampingan.

    Konduksi panas dapat juga ditransfer oleh elektron bebas (misalnya dalam logam).

  • Heat Transport (cont)

    43 (HEAT TRANSFER)

    Konveksi

    Perpindahan panas oleh bulk transport dan percampuran elemen-elemen makroskopis bagian-bagian yang lebih panas dengan bagian yang lebih dingin,

    atau bisa juga pertukaran panas antara permukaan solid dan fluida.

    Perlu dibedakan : Konveksi paksa Konveksi natural

    Contoh : Kehilangan panas dari radiator mobil dimana udara disirkulasikan dengan

    kipas.

    Mendinginkan kopi dengan meniup.

  • Heat Transport (cont)

    44 (HEAT TRANSFER)

    Radiasi

    Perpindahan panas oleh gelombang elektron maknit. Radiasi tak perlu

    medium.

    Contoh: -Transfer Panas dari matahari ke bumi.

    -Memanaskan (memasak) makanan di dalam oven.

  • HUKUM KEKEKALAN

    45 (HEAT TRANSFER)

    Laju panas masuk + Laju generasi panas = Laju panas keluar + Laju akumulasi panas

    dx

    dTk

    A

    q

    x

    FOURIER LAW

    In = qx|x Out = qx|x + x

    x X + x x

    | + . = |+ +

    (.

  • FOURIER LAW

    46 (HEAT TRANSFER)

    dx

    dTk

    A

    q

    x

    Dimana : qx : laju transfer panas pada arah x (W)/(Btu/h)

    A : luas penampang (m2)/(ft2)

    T : suhu (K)/(0F)

    x : jarak (m)/(ft)

    k : konduktifitas panas (W/m.K)/(Btu/h)

    1 btu/h.ft.0F = 4.1365 x 10-3 cal/s.cm.0C 1 btu/h.ft.0F = 1.73073 W/m.K 1 btu/h.ft2 = 3.1546 W/m2

    1 btu/h = 0.29307 W

    =

    2

    1

    2

    1

    =

    2 1 (1 2)

  • PROBLEMS

    47 (HEAT TRANSFER)

    1. Calculate the heat loss per m2 of surface area for an insulating wall composed of 25.4 mm thick fiber insulating board, where the inside temperature is 352.7 K and the outside temperature is 297.1 K.

    2. Calculate the heat loss per m2 of surface area for a temporary insulating wall of a food cold storage room where the outside temperature is 299 K and the inside temperature is 276.5 K. The wall composed of 25.4 mm of corkboard having a k of 0.0433 W/m.k

    3. In determining thermal conductivity of insulating material, the temperatures were measured on both sides of a flat slab of 25 mm of the material and were 318.4 and 303.2 K. The heat flux was measured as 35.1 W/m2. Calculate the thermal conductivity in btu/h.ft.F and W/m.K.

  • THANK YOU

    48 (HEAT TRANSFER)