energy paper iit bombay

Upload: mayuresh-kulkarni

Post on 07-Apr-2018

246 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/6/2019 Energy Paper IIT Bombay

    1/75

    Renewable Energy in India:Status and future Potential

    Rangan Banerjee

    Energy Systems Engineering

    IIT Bombay, India

  • 8/6/2019 Energy Paper IIT Bombay

    2/75

    Primary Energy Production inIndia (2003-2004)

    Wind

    0.2%

    Oil

    20.7%

    Biomass32.9%

    Coal

    36.8%

    Nat Gas6.5%

    Nuclear

    1.3%

    Hydro

    1.7%

    Total 19800 PJ

  • 8/6/2019 Energy Paper IIT Bombay

    3/75

    Issues

    #1 Sustainability Demand- Supply

    Fossil fuel ReservesEmissions

    #2 Access to Rural Poor

    Equity/Affordability#3 Attractive for Investors ?

    #4 Mainstreaming of renewables andefficiency

    #5 Technology Development / CostReduction

  • 8/6/2019 Energy Paper IIT Bombay

    4/75

    India - Fossil Fuel reserves

    Fuel Reserves Prodn2003-4 R/Pratio

    Coal +Lignite(Million Tonnes)

    34000 414 ~83 (P)

    140 P+IOil(Million Tonnes)

    760 33

    (117)

    23 (7)

    N.GasBillion m3

    920 32 29

    UraniumTonnes

    61000 PHWR ~50

    10GWData Source Plg Comm IEPC, 2006

    #1 Sustainability

  • 8/6/2019 Energy Paper IIT Bombay

    5/75

    #1 Sustainability

    Present consumption pattern

    predominantly -fossil fuel

    Supply unable to meet demand

    Limited fossil reservesAdverse environmental impacts

    UnsustainableNeed for transition to renewable

    energy systems, nuclear, efficiency

  • 8/6/2019 Energy Paper IIT Bombay

    6/75

  • 8/6/2019 Energy Paper IIT Bombay

    7/75

    Renewable Energy Options

    Renewable Energy

    Solar Wind Biomass GeothermalSmallHydro

    Solar

    Thermal

    Solar

    Photovoltaic

    Tidal Wave Ocean

    Thermal

  • 8/6/2019 Energy Paper IIT Bombay

    8/75

    Power Generation Options

    Pow er Generation

    CentralisedGrid Connected

    Cogeneration/Trigeneration

    DecentralisedDistributed Generation

    Isolated

    Demand Side Management(Solar Water Heater,

    Passive Solar)

  • 8/6/2019 Energy Paper IIT Bombay

    9/75

    Renewables in Power

    Power generation 6500 PJ -46% of CommEnergy, 33% of total

    Installed Capacity 130,000 MW (2004),Nuclear 2720 MW(2004)

    Renewables 7855(2006)

    Gross Generation 633000GWh (2003-4)

    Nuclear 17780 GWh(2003-4), ~19000GWh

    Renewables 19950 GWh (2006)

    Renewables ~ 6% of Capacity and 2-3% ofgeneration

    Geothermal

  • 8/6/2019 Energy Paper IIT Bombay

    10/75

    Geothermal/Wind

    Geothermal

    Wind (wind speed > 5.6 m/s

    Solar(Annual global radiation > 2100kWh/m2/year)Geothermal + WInd

    Geothermal + Solar

    Wind + Solar

    Geothermal + Wind +Solar

  • 8/6/2019 Energy Paper IIT Bombay

    11/75

    Wind Power

    5000 MW installed

    Single machine upto 2.1MW

    Average capacity factor14%

    Capital cost Rs 4-5crores/MW, Rs 2-3/kWh (cost effective if

    site CF >20%) India 45000 /13000 MW

    potential estimated

    32% / year (5 year

    growth rate) 05

    10

    15

    20

    25

    30

    35

    40

    1991 1993 1995 1997 1999 2001 2003

    A

    nnualLoadFac

    tor(%

    Satara, Maharashtra

    T d f i d d l t

  • 8/6/2019 Energy Paper IIT Bombay

    12/75

    Trend of w ind energy development

    in India

    0

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    Till

    03/92

    1992

    -93

    1993

    -94

    1994

    -95

    1995

    -96

    1996

    -97

    1997

    -98

    1998

    -99

    1999

    -200

    0

    2000

    -01

    2001

    -02

    2002

    -03

    2003

    -04

    2004

    -05

    2005

    -06

    Till

    09/

    06

    Year

    Installed

    Capacity(M

  • 8/6/2019 Energy Paper IIT Bombay

    13/75

    Generation from w ind

    0

    500

    1000

    1500

    2000

    2500

    3000

    3500

    Till

    03/92

    1992

    -93

    1993

    -94

    1994

    -95

    1995

    -96

    1996

    -97

    1997

    -98

    1998

    -99

    1999

    -200

    0

    2000

    -01

    2001

    -02

    2002

    -03

    2003

    -04

    Year

    PowerGenerate

    dAnnualy(GWh)..

  • 8/6/2019 Energy Paper IIT Bombay

    14/75

    Variation in Capacity Factor

    0%

    2%

    4%

    6%

    8%

    10%

    12%

    14%

    16%

    18%

    20%

    Till

    03/92

    1992

    -93

    1993

    -94

    1994

    -95

    1995

    -96

    1996

    -97

    1997

    -98

    1998

    -99

    1999

    -200

    0

    2000

    -01

    2001

    -02

    2002

    -03

    Year

    Capacityfactorforwin

    Cost of Generation of Electricity

  • 8/6/2019 Energy Paper IIT Bombay

    15/75

    Cost of Generation of Electricityfrom Wind

    Cost of GenerationCapitalcost/MW

    (Million INR)

    Annualisedcapital cost

    (Million INR)

    Annual O&M

    (Million INR)

    ALCC

    (Million INR) CUF=14% CUF=30%

    40 4.70 0.80 5.50 4.48 2.09

    50 5.87 1.00 6.87 5.60 2.62

    With incentive of 80% accelerated depreciation in the first year

    40 3.57 0.80 4.37 3.56 1.66

    50 4.46 1.00 5.46 4.45 2.08

    Values assumed for calculation of cost of generationLife of system = 20 years

    Discount Rate = 10%Income tax = 33%Maintenance = 2% of capital cost

  • 8/6/2019 Energy Paper IIT Bombay

    16/75

    Macro Level Diffusion Models

    Logistic

    or S curve

    Exponential

    growth

    Limit LVariableBeing

    Forecast

    Time t

    Growth curves (Linstone and Sahal, 1976)

    Diffusion Curves for w ind

  • 8/6/2019 Energy Paper IIT Bombay

    17/75

    Diffusion Curves for w indenergy

    0

    10000

    20000

    30000

    40000

    50000

    1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040

    Year

    InstalledCapacity(M

    W

    Actual InstallationDiffusion curveUpper limit of uncertainityLow er limit of uncertainityForecast Values by MNRE

    Potential = 45000MW

    a1

    a2

    a

    am

    Values in the uncertainty limit of 5%Year Projection byMNRE

    Projection bydiffusion curve

    Lower limit Higher limit

    2007 7000 8700 2000 24800

    2012 17500 23000 5800 39600

    2022 40000 42900 27400 44800

  • 8/6/2019 Energy Paper IIT Bombay

    18/75

    Small Hydro Power

    Classification - Capacity

    -Micro less than 100 kWMini 100 kW - 3 MWSmall 3 MW - 15 MW

    Micro and Mini - usually

    isolated,Small grid connected

    Heads as low as 3 m viable

    Capital Cost Rs 5-6crores/MW,

    Rs 1.50-2.50/kWh

    1846 MW (7%/year)

    200 kW Chizami vi llage,Nagaland

    Aleo (3MW ) Himachal Pradesh

    #4 Mainstreaming of renewables and efficiency

    T d f I t ll d C it S ll

  • 8/6/2019 Energy Paper IIT Bombay

    19/75

    Trend of Installed Capacity SmallHydro Power Projects in India

    0

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    1800

    2000

    1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

    Year

    InstalledCapacity(MW

    Installed Capacity

    Capacity Addition

    Diffusion Curves for Small

  • 8/6/2019 Energy Paper IIT Bombay

    20/75

    Diffusion Curves for SmallHydro Power Projects

    0

    2000

    4000

    6000

    8000

    10000

    12000

    14000

    16000

    1990 2010 2030 2050 2070 2090 2110 2130Year

    In

    stalledCapacity(M

    Actual Installation

    Diffusion curveUpper limit of uncertainity

    Lower limit of uncertainity

    Forecast Values by MNRE

    Diffusion curve (accelerated growth rate =9%)

    Potential =15000MW

    Values in the uncertainty limit of 5%Year Projection by MNRE

    Projection by diffusioncurve Lower limit Higher limit

    2007 1960 1970 1860 2080

    2012 3360 2550 2370 2740

    2022 6500 4100 3710 4520

    Cost of Generation for Small

  • 8/6/2019 Energy Paper IIT Bombay

    21/75

    Cost of Generation for SmallHydro Power P lants

    Run of River Dam Canal

    Life 40 years 40 years 40 years

    Capacity of plant considered (kW) 3000 2000 1000

    Capital Cost (lakhs) 1429.38 740.87 593.65

    Average Capital cost (lakhs/kW) 0.60 0.15 0.74

    Annual O&M in lakhs 42.88 22.23 17.81

    Generation cost(Rs./kWh)Load factor = 40 % 1.80 1.40 2.24

    Values assumed for calculation of cost of generationLife of system = 40 yearsDiscount Rate = 10%

    Maintenance = 3% of capital cost

    Cost of Electricity

  • 8/6/2019 Energy Paper IIT Bombay

    22/75

    Cost of ElectricityGeneration(Small Hydro)

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    4.5

    5

    0% 20% 40% 60% 80%

    Capacity Utilisation Factor

    UnitCostofElectricityGeneration(Rs./kWh Run of River

    Run of River (with capital subsidy)

    Dam

    Dam (with capital subsidy)

    Canal

    Canal (with capital subsidy)

  • 8/6/2019 Energy Paper IIT Bombay

    23/75

    Biomass Power

    Higher Capacity factors

    than other renewablesFuelwood, agricultural

    residues, animal waste

    Atmospheric gasificationwith dual fuel engine -

    500 kW gasifier - largest

    installationCombustion 5-7.5 MW

    Rs 2.50-4/kWh

    Kaganti Power Ltd. Raichur Distt. A.P. 7.5 MW

    100 kWe Pfutseromi village, Nagaland

  • 8/6/2019 Energy Paper IIT Bombay

    24/75

    Biogas

    45-70% CH4 rest CO2

    Calorific value 16-25MJ/m

    3

    Digestor- well containing animal wasteslurry

    Dome - floats on slurry- acts as gas

    holder

    Spent Slurry -sludge- fertiliser

    Anaerobic Digestion- bacterial action

    Family size plants 2m3/day

    Community Size plants 12- 150 m3/day

    Rs 12-14000 for a 2m3 unit

    Cooking, Electricity, running engine

    Pura, Karnataka

  • 8/6/2019 Energy Paper IIT Bombay

    25/75

    Bagasse Cogeneration

    Incremental Capital Cost

    (Rs/kW)

    30000

    Life 20 years

    Boiler Efficiency 70%Bagasse NCV = 3400 kcal/kg (dry basis), Price Rs 1.50/kg

    Discount rate = 10%, O&M cost = Rs 0.5/kWh

    2500 tcd plant 9.5 MW export, 0.93 kg extra/ kWh

    Load factor 0.4 0.5 0.6

    Rs/kWh 2.60 2.40 2.27

    5 8 T / h2 2 t

  • 8/6/2019 Energy Paper IIT Bombay

    26/75

    0 . 5 T / h r

    F e e d w a t e r

    P r o c e s s

    P r o c e s s

    2 a t a

    ~

    S T E A M

    T U R B I N E

    2 .5 M W

    6 a t a

    B A G A S S E

    5 8 T / h r2 2 a t a

    3 3 0o

    C

    4 . 5 T / h r2 7 T / h r

    2 6 T / h r

    S c h e m a t i c o f t y p i c a l 2 5 0 0 t c d S u g a r f a c to r y

    F l a s h e d

    C o n d e n s a t e

    P R D S

    P R D S

    M I L L I N G

    0 . 5 T / h r

    F E E D

    W A T E R

    B O I L E R

  • 8/6/2019 Energy Paper IIT Bombay

    27/75

    F e e d w a te r

    C

    ondenser

    2 a ta

    P R O C E S S

    7 5 T P H , 6 5

    a t a , 4 8 0O

    C

    4 .5 T P H

    ~

    6 a ta

    B A G A S S E( A lt e r n a t e f u e l )

    2 a ta

    B F P

    1 3 M W

    B O I L E R

    1 .0 M W

    M ill

    d r i v e s

    9 .5 M W

    P o w e r e x p o r t

    2 .5 M W

    C a p t i v e

    l o a d

    P R O C E S S

    P R O P O S E D P L A N T C O N F I G U R A T I O N : O P T I O N 2

    S T E A M

    T U R B I N E

    C O N D E N S E R

  • 8/6/2019 Energy Paper IIT Bombay

    28/75

    Solar PV

    India -2740 kW

    Grid connectedsystems

    (25-239 kW) Array efficiency in

    field 12-15%

    Cost Rs 26cr/MW

    Rs 15-20 /kWh

    Vidyut Saudha Building, 100 kWp , APTRANSCO(2001) BHEL

    Mousuni Island , 105 kWp, West BengalRenewable Energy Agency (2003 )

    Technology Options for Solar

  • 8/6/2019 Energy Paper IIT Bombay

    29/75

    Solar Flat PlateCollectors

    Technology Options for Solarpower

    PVThermal

    Low Temp.

    400C

    Medium Temp. Up to

    400 C Line FocusingParabolic Collectors

    Solar

    Pond

    Solar

    Chimney

    Parabolic Dish

    Material

    Single Crystal Sil icon

    Production Process

    Central Tower

    Amorphous Sil icon

    Wafer

    CdTe/ GAAs

    Polycrystall ine Sil icon

    Thin Film

    Solar Power

    Growth in Production of

  • 8/6/2019 Energy Paper IIT Bombay

    30/75

    Photovoltaic Modules in India

    Solar PV Modules Production

    0

    10

    20

    30

    40

    50

    60

    70

    1980 1985 1990 1995 2000 2005 2010Year

    AnnualP

    VModuleProduciton(MW)

    Cost of Generation (Rs./kWh)Capitalcost/MW

    (Million INR)

    Annualisedcapital cost

    (Million INR)

    Annual O&M

    (Million INR)

    ALCC(Million

    INR) CUF=10% CUF=20% CUF=25%

    300.60 35.30 6.00 41.30 47.17 23.58 18.87

    Cost of power generation using solar PV

  • 8/6/2019 Energy Paper IIT Bombay

    31/75

    Solar PV-Breakup of Module

    Export

    45%

    Telecom

    14%

    Home light

    8%

    Pump

    6%

    Lantern

    4%Others

    15%

    Electrification

    2%

    Street Light

    3% Power Plant

    3%

  • 8/6/2019 Energy Paper IIT Bombay

    32/75

    Household Cooking fuels

    Kerosene2.7%

    Others

    2.8%

    Dung

    10.7%LPG

    5.0%

    Fuelwood76.1%

    No cooking

    0.7%

    Biogas

    0.3%Coal

    1.6%

    Data Source:NSSO,2002

    1999-2000

    Rural

    Household

  • 8/6/2019 Energy Paper IIT Bombay

    33/75

  • 8/6/2019 Energy Paper IIT Bombay

    34/75

    Technology options

    Improved Chulha

    Solar Cooker flatplate box type

    Scheffler cookerBiogas Cooking

    Biomass Gasifier

    SchefflerCooker

    Kitchen

    End Uses and Technologies for

  • 8/6/2019 Energy Paper IIT Bombay

    35/75

    Use of Solar Thermal Energy

    SolarThermal

    Low Temperature

    (

  • 8/6/2019 Energy Paper IIT Bombay

    36/75

    Power Generation Technologies

    Technology Efficiency Indian Experience Status

    Solar Flat Plate Collectors 2% 10 kW exptl unit at IITM D

    Solar Chimney 1% No experience

    50 kW Spain

    D

    Solar Pond 1-2% Experience for hot waterBhuj (Israel 5 MW power)

    D

    Line focussing Parabolic Peak 20%

    Average 11-14%

    50 kW system in SEC installed

    Planned 35MW solar in 140 MWISCC at Mathania

    C

    Paraboloid Dish 29% peak12-18%

    Demo unit 20 kW near Hyderabad10 kW Vellore

    D

    Central Tower 23% peak7-14%

    No experience D

    D- DemonstrationC- Commercially available technology

    Details of worlds largest solarki

  • 8/6/2019 Energy Paper IIT Bombay

    37/75

    steam cooking system

    1. Location of worlds largest solarsteam cooking system

    Tirupati in Andhra Pradesh (2002)

    2. Capacity 15,000 people (two meals/day)

    3. Cost of system including back upboiler, utensils and AMC for 5 years

    Rs. 10.9 million

    4. Generation 4000 kg. of steam/day at 180C and 10 kg.cm2

    5. No. of concentrators 106 automatic tracked parabolic concentratorsof 9.2 m2 reflector area

    6. Savings around 1,18,000 diesel per year

    S l C ki

  • 8/6/2019 Energy Paper IIT Bombay

    38/75

    Solar Cooking

    Tirumala(Tirupati) 4 T/day of

    steam food for 15000 people

    Solar parabolic Concentrators

    Solar cooking Suitable forInstitutions/ Community kitche

    Armymess,Ladakh

    Households-difficult changein cooking habits

    Fuel

  • 8/6/2019 Energy Paper IIT Bombay

    39/75

    b- bar

    75.5 MW103 b,371

    oC

    Steam

    turbine

    ~

    WHRB

    Heat exchanger

    Solar Heat

    Exchanger

    Solar Radiation

    Condenser

    ~

    Air

    GTG-2 sets of35.2

    Aux. Firing

    Feed water

    Steam, 103 b,500oC

    Steam, 103 b,500 oC

    Flue gas from G T

    BFP

    To WHRB

    Heat Transfer

    oil, 291

    o

    C

    391

    o

    C

    Gas Turbine sets

    Heat exchanger

    GTG 2sets of 35 MW each

    Proposed

    ISCC

    Bi C i R t

  • 8/6/2019 Energy Paper IIT Bombay

    40/75

    BIOMASS

    THERMOCHEMICAL BIOCHEMICAL

    COMBUSTION GASIFICATION PYROLYSIS

    RANKINECYCLE

    PRODUCER GAS

    ATMOSPHERIC PRESSURISED

    FERMENTATIONDIGESTION

    BIOGAS ETHANOL

    Duel FuelSIPGE

    Gas Turbines

    Biomass Conversion Routes

  • 8/6/2019 Energy Paper IIT Bombay

    41/75

    Solar Water Heating System

    COLLECTOR

    STORAGE

    TANK

    FROM

    OVERHEAD

    TANK

    TO USAGE

    POINT

    AUXILIARYHEATER

    STORAGE

    TANK

    COLLECTOR

    PUMP

    FROM

    OVERHEAD

    TANK

    TO USAGE

    POINT

    Schematic of solar water heating system

    AUXILIARY

    HEATER

    Solar Water Heating Systems in India

    Installed Capacity = 1.5 million sq. m. (0.8% of estimated potential)

    Factors Affecting Diffusion Of

  • 8/6/2019 Energy Paper IIT Bombay

    42/75

    Factors Affecting Diffusion OfSWHS

    Location- Insolation

    Water Usage Pattern Cost of electricity

    Capital Cost Reliability

    Potential savings

    Subsidies/ Financial Incentives

    Micro Level Decision Model

  • 8/6/2019 Energy Paper IIT Bombay

    43/75

    (Parametric Analysis)

    TRNSYS

    INPUT DATA

    Water usage pattern

    Location(Monthly average hourly

    temperature and radiation data)

    Characteristics of SWHS Auxiliary heating requirement

    (Monthly average hourly data)

    Economic Analysis

    MS EXCEL

    Savings in Electricity Cost

    Payback Period Analysis

    Cost of electricity saved

    Selection and sizing

    of SWHS

    TRNSYS (Transient System Simulation Program developed at SEL, University of Wisconsin)

  • 8/6/2019 Energy Paper IIT Bombay

    44/75

    Potential Of SWHS

  • 8/6/2019 Energy Paper IIT Bombay

    45/75

    Potential Of SWHS

    Technical potential Pi j for sub-class j in sector i is

    where j denotes sub-class of end use points in sector i.

    Psj is the simulation output for a single end use point

    fj denotes fraction of the end uses

    m is the total number of sub-classes.

    fa jis fraction of roof area availability

    Ni is the number of end uses points in sector i

    Technical Potential for sector i is

    where idenotes sector

    Technical Potential of SWHS P(T) in the target area is

    sjPiNajfjfijP =

    =

    =

    m

    1j

    ijPiP

    = iP)T(P

  • 8/6/2019 Energy Paper IIT Bombay

    46/75

    Payback Acceptance Schedule

  • 8/6/2019 Energy Paper IIT Bombay

    47/75

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 2 4 6 8 10 12

    Payback period (years)

    FractionMeeting

    Economic

    Criteria

    MARKET POTENTIAL

    fp,j

    is fraction of potential adopters meeting economic criteria.

    ( ) ijPpjfijMP =

    Input Data For Potential Estimation Of

  • 8/6/2019 Energy Paper IIT Bombay

    48/75

    SWHS in Pune

    Target Area Pune

    Area 138 sq.km

    Total Number of households 5.17 lakhs

    Number of households with more than three rooms 1.41 lakhs

    Average number of persons in each household 5

    Number of hospitals 394

    Capacity range of hospitals 1-570 beds

    Number of nursing homes 118Capacity range of nursing homes 1-50 beds

    Number of hotels 298

    Capacity range of hotels 10-414 inmates

    Number of households residing in single ownership houses 352506 floors 1400

    10 floors 880Number of buildings (4 flats in each floor)

    11 floors 840

    Residential 2.80Cost of electricity(Rs./kWh) Commercial 4.00

    Hot Water Usage Patterns (Pune)

  • 8/6/2019 Energy Paper IIT Bombay

    49/75

    (a) Residential (1) [Gadgil , 1987]

    0

    10

    2 0

    3 0

    4 0

    5 0

    6 0

    7 0

    0 2 4 6 8 10 12 14 16 18 20 22 24Hour of day

    litres/h

    Te mpe r a t ure = 4 0o

    C

    (b) Residential (2) [Narkhe de, 2001]

    0

    20

    40

    60

    80

    100

    120

    140

    160180

    200

    0 2 4 6 8 10 12 14 16 18 20 22 24Hour of day

    litres/h

    Te mpe r at ure = 4 0o

    C

    (c) Hospital (1 bed)

    0

    5

    10

    15

    20

    25

    0 2 4 6 8 10 12 14 16 18 20 22 24Hour of day

    litr

    es/h

    Temperature = 50o

    C

    (d) Nursing Home (1 bed)

    0

    2

    4

    6

    8

    10

    12

    0 2 4 6 8 10 12 14 16 18 20 22 24Hour of day

    litres/h

    Temperature = 50 o C

    (e) Hotel - 1 guest

    0

    5

    10

    15

    20

    25

    30

    0 2 4 6 8 10 12 14 16 18 20 22 24

    Time of day (Hour)

    itres/h

    Te mpe r a t ur e = 6 0 o C

    Model for Potential Estimation of Target Area

    T t

  • 8/6/2019 Energy Paper IIT Bombay

    50/75

    Target areaWeather data, area details

    Identification and Classification of different end uses by sector (i)

    Residential (1) Hospital

    (2)

    Nursing

    Homes (3)

    Hotels

    (4)

    Others

    (5)

    POTENTIAL OF SWHS IN TARGET AREA

    Technical Potential (m2of collector area)

    Economic Potential (m2of collector area)

    Market Potential (m2of collector area)

    Energy Savings Potential (kWh/year)Load Shaving Potential (kWh/ hour for a monthly average day)

    Sub-class (i, j)

    Classification based on factors* (j)

    Technical Potential

    Economic Potential Market Potential

    Potential for end use

    sector (i = 1)

    Potential

    for i = 2

    Potential

    for i = 5

    Potential

    for i = 4

    Potential

    for i = 3

    Single end use point

    Micro simulation using TRNSYS

  • 8/6/2019 Energy Paper IIT Bombay

    51/75

    Base load

    for heating

    Electricity/ fuel savings

    Economicviability

    Price of electricity

    Investment forSWHS

    TechnicalPotential

    SWHS

    capacity

    Constraint: roof

    area availability

    Capacity ofSWHS

    (Collector area)

    TargetAuxiliaryheating

    Micro simulation using TRNSYS

    Hot water

    usage pattern

    Weather

    data

    SIMULATION

    Auxiliary heating requirement

    No. of end

    use points

    Technical

    Potential

    Economic

    Potential

    Economic

    Constraint

    Market

    Potential

    Constraint:

    market

    acceptance

    Potential for end use sector (i = 1)

    * Factors affecting the adoption/sizing of

    solar water heating systems

    Sub-class (i, j)

    Classification based on factors* (j)

    Single end use point

    POTENTIAL

    SECTOR (i)

    Potential of Solar WaterHeating Systems for Pune

  • 8/6/2019 Energy Paper IIT Bombay

    52/75

    Heating Systems for Pune

    Technical Potential=0.35 million m2 of

    collector area

    Electricity Savings = 225 GWh

    Market Potential = 0.05 million m

    2

    ofcollector area

    Electricity Savings = 43 GWh

    Hot Water Usage Patterns (Pune)7 0

    T e m p e r a t u re 4 0 o C200

    T e m p e r a t u re 4 0o

    C

  • 8/6/2019 Energy Paper IIT Bombay

    53/75

    (a) Res idential (1) [Gadgil , 1987]

    0

    10

    2 0

    3 0

    4 0

    5 0

    6 0

    0 2 4 6 8 10 12 14 16 18 20 22 24

    Hour of day

    litres/h

    T e m p e r a t u re = 4 0 o C

    (b) Resi den tial (2) [Narkhede, 2001]

    0

    20

    40

    60

    80

    100120

    140

    160

    180

    0 2 4 6 8 10 12 14 16 18 20 22 24Hour of day

    litres/h

    T e m p e r a t u re = 4 0 C

    (c) Hospital (1 bed)

    0

    5

    10

    15

    20

    25

    0 2 4 6 8 10 12 14 16 18 20 22 24Hour of day

    litres/h

    Temperature = 50 o C

    (d) Nursing Hom e (1 bed)

    0

    2

    4

    6

    8

    10

    12

    0 2 4 6 8 10 12 14 16 18 20 22 24Hour of day

    litres/h

    Temperature = 50 o C

    (e) Hotel - 1 guest

    0

    5

    10

    15

    20

    25

    30

    0 2 4 6 8 10 12 14 16 18 20 22 24

    Tim e of day (Hour)

    itres/h

    T e m p e r a t u re = 6 0o

    C

    Achievable Potential of SWHS for DifferentPayback Periods

  • 8/6/2019 Energy Paper IIT Bombay

    54/75

    0%

    10%

    20%

    30%

    40%

    50%

    60%

    70%

    80%

    90%

    100%

    0 1 2 3 4 5 6 7 8 9 10 11 12

    Payback period (years)

    Potentialasperc

    entageoftechn

    ical

    potentialfor1

    00%

    replacement

    100% replacement

    85% replacement

    50% replacement

    Technical Potential = 1700 m2

    Technical Potential = 1200 m2

    Technical Potential = 460 m2

  • 8/6/2019 Energy Paper IIT Bombay

    55/75

    Potential of SWHS for a state: Maharashtra

  • 8/6/2019 Energy Paper IIT Bombay

    56/75

    Estimated potentialSelecteddistrict/ State

    Population

    (million)% urbanpopulation

    Electricitysavings

    (GWh)

    Collector Area(million sq.

    m.)

    1 Maharashtra 96.9 42.4 1620 7.6

    2 Mumbai 1.20 100 477 2.5

    3 Pune 7.22 58.07 242 1.0

    4.

    Nagpur 4.05 64.36 129 0.6

    Potential for Sample States

  • 8/6/2019 Energy Paper IIT Bombay

    57/75

    Potential for Sample StatesPotential of SWHS

    Electricity savings Collectorarea

    (GWh) (million m2)

    6 Maharashtra 1620 7.6

    State

    1 Tamil Nadu 920 4.7

    2 Karnataka 780 3.63 Rajasthan 450 2.1

    4 Haryana 300 1.3

    5 Assam 30 0.1

    India 12200 57.0

    Growth of solar water heatingsystems in India

  • 8/6/2019 Energy Paper IIT Bombay

    58/75

    systems in India

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    1989-90 1991-92 1993-94 1995-96 1997-98 1999-00 2001-02 2003-04 2005-06

    Year

    InstalledCapacityofSolarWaterHeating

    Systems(millionsq.m.)

    Diffusion Curves for SolarWater Heating Systems

  • 8/6/2019 Energy Paper IIT Bombay

    59/75

    Water Heating Systems

    0

    10

    20

    30

    40

    50

    60

    70

    80

    1988 1998 2008 2018 2028 2038 2048 2058 2068 2078

    Year

    InstalledCapacityofSoalrWaterHea

    ting

    Systems(millionsq.m.)

    Actual installed (million sq. m.)Diffusion curveUpper limit of uncertainityLower limit of uncertainity Potential =60 mil lion s .m.

    Solar Water Heater Potential

  • 8/6/2019 Energy Paper IIT Bombay

    60/75

    0

    50

    100

    150

    200

    250

    300

    1990 2010 2030 2050 2070 2090

    Year

    SolarWa

    terHeatingCap

    acity(collectorareainmilli

    m

    2)..

    Actual installed (million sq. m.)Potential 140 million sq. m.Potential 60 million sq. m.Potential 200 million sq. m.Extrapolated Potential (million sq.m.)

    Potential = 60 million m2

    Potential = 140 million m2

    Potential = 200 million m2

    Estimated Potential in

    2092 = 199 million m2

    Sustainability indicators

  • 8/6/2019 Energy Paper IIT Bombay

    61/75

    Indicator Parameter

    Economic indicator (EcI) Life cycle cost

    Environment indicator (EnvI) Life cycle greenhouse gas

    (GHG) emissions

    Renewability indicator (RI) Net energy ratio (NER)*

    Resource indicator (RsI) Resource constraint (Area,

    material, land etc.)

    Indicators used in the current analysis

    *Net energy ratio = Energy Output/Fossil energy input

    Net energy analysis

  • 8/6/2019 Energy Paper IIT Bombay

    62/75

    All material and energy inputs to the process

    are identified

    Total energy required to extract, produce, anddeliver a given energy output or end use

    Energy output delivered is compared with thetotal energy required

    Functional unit 1 kWh electricity

    generation.

    Methodology to compute indicators

  • 8/6/2019 Energy Paper IIT Bombay

    63/75

    Inventory (process energy and material) to produce 1 oneunit of output

    Classification of totalprimary energy intorenewable and non-renewable energy

    RIEnvI

    Total primary energy required to producerequired process energy and materials

    Cost of equipmentsand materialrequired, discountrate, life of theequipments

    EcI

    Materials and other resources suchas water, land etc required to

    produce 1 unit of output

    RsIAmount of material andother resources required to

    meet the current demand

    Process flowcharts

    Sizing of differentequipment required

    Total GHG emissions inproducing processenergy and materials(using emission factors)

  • 8/6/2019 Energy Paper IIT Bombay

    64/75

    RsI

    Material supply constraint

    Area

    Material constraint

    Other constraint

    Annual requirement/Reserve

    Area required/Available land area

    Annual requirement/Reserve

    No constraint

    Technical constraint, water for

    biomass based systems etc.

  • 8/6/2019 Energy Paper IIT Bombay

    65/75

  • 8/6/2019 Energy Paper IIT Bombay

    66/75

    Approx presentprice of GHGreduction

  • 8/6/2019 Energy Paper IIT Bombay

    67/75

    Renewable CDM Projects

  • 8/6/2019 Energy Paper IIT Bombay

    68/75

    ( b) GH G S a v in g s E s t im a t e s o f C D M p ro je c t s

    0

    2

    4

    6

    8

    10

    12

    < 5 5-10 10-20 20 -

    30

    30 -

    50

    50 -

    100

    100 -

    500Capacity (MW)

    GHGSavingsEstimates

    (milliontCO2).

    Wind

    SHP

    (a) No. of CDM projects

    0

    2

    4

    6

    8

    10

    12

    1416

    18

    < 5 5 - 10 10 -

    20

    20 -

    30

    30 -

    50

    50 -

    100

    100 -

    500

    Capacity (MW)

    No.ofprojects

    Wind

    SHP

    Status of Renewable EnergyTechnologies

  • 8/6/2019 Energy Paper IIT Bombay

    69/75

    Technology

    Estimated

    Potential

    Installed Capacity as

    on December, 2006

    {Estimated Annual

    Generation (GWh)}

    Annual

    Growth

    Rate

    (2001-5)

    Capacity

    Installed in

    2005-06

    Growth

    Rate in

    2005-06

    Power Generation

    Wind 45000 MW 6270 MW {7690} 40% 1452 MW 49%

    Small Hydro Projects 15000 MW 1861 MW{6521} 6% 53 MW 3%

    Solar Photovoltaic (Gridconnected)

    5000 MW 2.74 MW {3} 10% 0a 0%

    Bio Power (Woody

    Biomass)

    52000 MW 500 MW 36% 87 MW 30%

    Bagasse Cogeneration 5000 MW 708 MW 22% 54 MW 12%

    Energy Recovery from

    Waste

    5000 MW 46 MW 28% 0b 0%

    Status of Renewable EnergyTechnologies

  • 8/6/2019 Energy Paper IIT Bombay

    70/75

    TechnologyInstalled

    Capacity as on

    December, 2006

    AnnualGrowth Rate

    (2001-5)

    CapacityInstalled in

    2005-06

    GrowthRate in

    2005-06

    Decentralized Energy Systems

    Biogas Plants 3.9 million 4% 0.02 million 1%

    Improved Chulhas 35.2 million 1% 0 0%

    Solar Photovoltaics

    i.Solar Street Lighting System (March 31, 2006) 54795 nos. 4% 1023 nos. 2%

    i.Solar Home Lighting Systems (March 31,

    2006)

    342607 nos. 11% 16530 nos.

    5%

    i.Solar Power Plants (Isolated) 1.86 MWp 3% 0.59 MWp 3%

    Solar Thermal

    i.Solar Water Heating Systems 1.65 million m2 26% 0.2 million m2 25%

    i.Box solar cookers 0.6 million 4% 0.25 5%

    i.Concentrating dish cookers 2000 nos. 98% 0 nos. 0%

    i.Community cookers 12 nos. - 1 nos. 10%

    Wind Pumps 1137 nos. 8% 62 nos. 7%

    Aero-generator /Hybrid Systems 0.5 MW 38% 11 kW 3%

    Solar Photovoltaic Pumps 7015 nos. 14% 366 nos. 6%

    Summary of Power GenerationTechnologies Using Renewable Energy

  • 8/6/2019 Energy Paper IIT Bombay

    71/75

    CDM Projects ApplicationsTechnology

    Status ofTechnology

    LargestInstallation

    CapacityFactor

    Cost ofGeneration(Rs./kWh)

    No. ofprojects

    MW Estimate ofGHGabatement

    in milliontCO2 eq.

    Geothermal D 50 25%

    OTEC D 1 MWa -

    Wave P 150 kW -Tide P 3.6 MWb 17%

    Wind C 400 MW 14% 2.0-4.4 42 1186 20.5

    Small Hydro C 25 MW 40% 1.0-4.5 37 317 8.4

    Solar PV C 239 kW 15% 18.0-50.0 - - -

    D - DemonstrationP - PrototypeC Commercial

    a- Not operational till dateb being planned

    Present Status, Targets and Projectionsof Renewable Energy Technologies

  • 8/6/2019 Energy Paper IIT Bombay

    72/75

    Grid PowerWind Small Hydro SWHS

    AnnualGeneration

    (MU)

    InstalledCapacity

    (MW)

    Installed Capacity

    (MW)

    Installed Capacity

    (MW)

    Installed Capacity

    (million m2

    )

    as onDec,2006

    659 [77] 132329 6290 1861 1.65

    TARGETS AND PROJECTIONS

    Targets (IEPC) Targets ProjectedTargets(MNRE )

    Projected

    (9%)aTargets(MNRE)

    Projected

    2012 1097 22000017500

    (MNRE)23000 3360 3533 10 4

    2022 2118 42500040000

    (MNRE)42900 6500 6466 30 15

    2032 3880 77900033341(IEPC)

    44900 9462 50 35

    aHigher growth rate expected than the past trends due to potential and cost effectiveness

    Policy Interventions

  • 8/6/2019 Energy Paper IIT Bombay

    73/75

    Independent Tracking of performance/ costs.

    Renewable energy targets based on generation

    Assess impacts of policies

    Preferential Feed-in tariffs

    Innovative cost recovery/ policy experiments for

    Isolated Systems

    Changes in Building Bye Laws SWH, Passive

    Institutional Building e.g National Bio Power

    Corporation Centres of Excellence

    India as a global renewable energy hub

    References

  • 8/6/2019 Energy Paper IIT Bombay

    74/75

    Manish, Pillai, Banerjee, Sustainability analysis of renewables,

    Energy for Sustainable Development , December 2006 World Energy Assessment Energy & the Challenge ofSustainability,UNDP, 2000,

    IIASA- WEC Study //www.iiasa.ac.at AKNReddy,R H Williams, T. Johannson,Energy After Rio-

    Prospects and Challenges-,UNDP, 1997, New York. MNES Annual Report, 2005-2006, March 2006 Integrated Energy Policy Report, Planning Commission, 2006 S.P.Sukhatme, Solar Energy, Tata McGraw Hill, Delhi,1997 Banerjee, Comparison of DG options, Energy Policy, 2006

    End-Note

  • 8/6/2019 Energy Paper IIT Bombay

    75/75

    The use of solar energy has not been

    opened up because the oil industrydoes not own the sun

    Ralph Nader US Consumer activist

    Thank you