engineering properties of en coatings

Upload: charlie-bond

Post on 02-Jun-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/11/2019 Engineering Properties of en Coatings

    1/24

    THE

    NGIN RING

    PROP RTI S

    OF

    ELE TRO

    L SS NI K L

    O TINGS

    E l e c t r o l e s s n i c k e l i s a

    term

    used t o d e s c r i b e p l a t i n g o f a

    nickel phosphorus c o a t i n g onto

    a

    s u i t a b l e

    s u b s t r a t e

    by

    chemical

    r e d u c t i o n . Unlike e l e c t r o p l a t e d c o a t i n g s

    e l e c t r o l e s s

    n i c k e l

    i s a p p l i e d without an e x t e r n a l l y a p p l i e d e l e c t r i c c u r r e n t .

    I n s t e a d

    t h e

    c o a t i n g i s d e p o s i t e d onto a p a r t s

    s u r f a c e by

    reducing n i c k e l i o n s t o m e ta ll i c n i c k e l with sodium

    hypophos-

    p h i t e . This chemical p ro ce ss a vo id s many o f

    t h e

    problems

    a s s o c i a t e d

    with

    most

    m e t a l l i c

    c o a t i n g s

    and

    provides

    d e p o s i t s

    w i t h many

    unique

    c h a r a c t e r i s t i c s .

    As a p p l i e d

    e l e c t r o l e s s

    n i c k e l

    c o a t i n g s

    a r e

    uniform hard

    r e l a t i v e l y

    b r i t t l e

    l u b r i o u s

    e a s i l y

    s o l d e r a b l e and h i g h l y

    c o r r o s i o n r e s i s t a n t . They can

    be p r e c i p i t a t i o n hardened

    t o

    very

    high l e v e l s through t h e use o f lo w tempera ture

    t r e a t

    ments producing wear

    r e s i s t a n c e equal t o t h a t

    o f commercial

    hard chrome c o a t i n g s . T h is c om b in at io n makes

    t h e

    c o a t i n g

    wel l

    s u i t e d f o r many

    severe

    a p p l i c a t i o n s and o f t e n al lows

    t o

    be

    used

    i n

    p l a c e of more expens ive o r l e s s

    r e a d i l y

    a v a i l

    a b l e a l l o y s .

    The engineering

    p r o p e r t i e s

    o f e l e c t r o l e s s

    n i c k e l

    d e p o s i t s

    and

    how

    they r e l a t e t o t h e use o f t h e

    c o a t

    i n g a r e d i s c u s s e d i n t h e fol lowing s e c t i o n s .

    STRU TUR

    Hypophosphite

    reduced

    e l e c t r o l e s s n i c k e l i s one of t h e

    very

    few m e t a l l i c g l a s s e s

    used

    as an

    engineering

    m a t e r i a l .

    Depend-

    ing onthe formula t ion o f t h e p la ti n g s ol u ti o n commercial

    c o a t i n g s may

    c o n t a i n

    5 to

    12 p e r c e n t

    phosphorus

    d i s s o l v e d

    i n

    n i c k e l and as much as 0.25 p e r c e n t o t h e r e lements . The

    s t r u c

    t u r e o f t h e s e

    c o a t i n g s depends

    upon t h e i r co mp ositio n. C oating s

    c o n t a i n i n g up t o 5 p e r c e n t phosphorus c o n s i s t of c r y s t a l l i n e S

    n i c k e l with

    phosphorus

    i n

    s o l i d

    s o l u t i o n .

    Those

    with

    phosphorus

    c o n t e n t s between

    5 and

    p e r c e n t c o n t a i n

    a

    mixture o f

    and S

    phases

    and

    a r e

    p a r t l y c r y s t a l l i n e . Coat ings c o n t a i n i n g

    more

    than p e r c e n t phosphorus c o n s i s t only o f

    phase

    n i c k e l

    phosphorus and a r e normally amorphous to x - r a y s . These high

    phosphorus d e p o s i t s

    have no c r y s t a l

    s t r u c t u r e o r s e p ar a t e

    phases

    2 3

    E l e c t r o n d i f f r a c t i o n s t u d i e s

    o f

    d e p o s i t s

    have

    confirmed t h e i r l a c k o f c r y s t a l s t r u c t u r e a t magnif ica-

    t i o n s up

    t o

    150 000

    4

  • 8/11/2019 Engineering Properties of en Coatings

    2/24

    The c o n t i n u i t y

    o f e l e c t r o l e s s

    n i c k e l

    c o a t i n g s

    a l s o

    depends upon

    ~ t : h e i r

    c o mp ositio n. C oa tin gs c o n t a i n i n g more t h a n

    10

    p e r c e n t phosphorus and

    l e s s

    t h a n

    0.05

    p e r c e n t o f

    i m p u r i t i e s

    a r e

    t y p i c a l l y c o n t i n u o u s .

    A

    c r o s s

    s e c t i o n a l

    view o f one o f t h e s e

    ~ o t i n s i s shown i n F i g u r e

    S te el s ub st ra te

    C o p p e r o v e r p l a t e

    75

    llm

    t h i c k

    coat i ng

    p h o s p h o ru s

    c o a t i n g s and e s p e c i a l l y t h o s e a p p l i e d

    from

    b a t h s s t a b i l i z e d o r b ri gh te n ed w i th heavy m e t a l s

    o r

    s u l f u r

    compounds

    a r e o f t e n

    p o r o u s .

    These d e p o s i t s c o n s i s t

    o f

    columns

    s e p a r a t e d b y

    c r a c k s and

    h o l e s . The p r e s e n c e o f such

    d i s c o n t i n u i t i e s

    h as

    a

    s e v e r e e f f e c t on t h e

    d e p o s i t s

    p r o p e r -

    t:i;ces:YLespecia lly on i t s

    d u c t i l i t y and c o r r o s i o n

    r e s i s t a n c e .

    Q ~ e X a m p l e

    o ~

    t h i s

    t y p e

    o f d e p o s i t

    i s

    shown

    i n

    F i g u r e

    2

    1 2 5 6

    F I G U R E I

    Cross s e c t i o n a l

    view o f a 75

    llm

    t h i c k

    E l e c t r o l e s s Nickel

    ; d ~ p o s i

    t.

    ',,400X m agni fi cat i on.

    E t ched in

    n i t a l .

    ~ C r e s s e c t i o n a l

    viE; w o f

    a 25

    llm

    thick e l e c t r o l e s s

    n i c k e l cont ai ni ng

    approximately 8

    p e r c e n t phosphorus

    an d

    0.15

    p e r c e n t

    cadmium

    and

    l e a d .

    400X

    m agni fi cat i on.

    Etched

    in 2

    n i t a l .

    FIGURE

    2

  • 8/11/2019 Engineering Properties of en Coatings

    3/24

    Lower phosphorus

    and

    heavy

    meta l

    s t ab i l i z ed depos i t s

    a l so

    f requent ly

    appear to have a l aminar

    s t ruc tu r e pa r a l l e l

    to

    t h e i r

    subs t r a t e One

    of t h i s

    type

    o f coa t ing i s shown in

    Figure

    3. These l amina t ions

    r e su l t

    from

    v ar ia tio ns in

    th e phosphorus con ten t

    o f the d i f f e r e n t

    l ayer s o f th e c oa tin g which in tu rn a re due

    to

    changes

    in

    th e

    pH

    or

    s t ab i l i z e r

    con ten t

    o f

    th e ba th

    dur ing

    p l a t i ng The more soph i s -

    t i c a t ed

    complexing and

    s t ab i l i z i ng system s u sed to

    app ly h igh phos-

    phorus

    depos i t s

    e l imina te these

    va r i a t i on s

    and

    produce

    th e

    more

    homogeneous s t ruc tu r e shown in Figure

    2

    4 5 7

    FIGURE 3

    Cross

    sect ional

    view of

    a laminar

    15 thick electro

    less

    nickel

    containing 7 to 9 percent phosphorus

    and small amounts of

    sulfur .

    The

    tu l ip shaped area is the

    resul t of

    a par t ic le of sand or

    blast ing

    media

    embedded

    in

    the

    deposit

    during

    plat ing.

    The coating was

    subse-

    quently l apped, which removed the

    protrusion produced

    by the

    par t ic le

    1000X magnification.

    Etched

    in

    1

    oxa li c a cid a t 6 volts .

    As e l e c t r o l e s s n i cke l depos i t s

    a re

    hea ted to

    t empera tu res abov

    220

    to

    260C

    420

    to

    500F)

    s t r uc t u r a l

    changes begin

    to

    occur

    ;

    F i r s t cohe ren t and then

    d i s t i n c t

    pa r t i c l e s o f nicke l phosphi te

    Ni

    3P)

    form

    within th e

    a l l oy Then

    a t t empera tu res

    above 320C

    600

    oF)

    th e d ep os it

    begins

    to

    c ry s t a l l i z e

    and to

    l ose

    i t s amor-

    phous cha rac t e r With con t inued hea t ing th e nicke l phosph i te

    pa r t i c l e s

    conglomerate

    and

    a two phase a l loy forms. With coa t -

    ings con ta in ing more

    than

    8

    pe rcen t phosphorus

    a matr ix o f Ni3P

    forms, while

    alm ost pure

    n icke l i s th e p re dom inat e phas e in

    lower

    phosphorus

    depos i t s

    These changes

    cause

    a rap id inc rease

    in

    th e

    hardness

    and

    wear r e s i s t ance

    o f

    th e co atin g

    bu t

    cause ts co r -

    ros ion

    r e s i s t ance

    and

    duc t i l i t y to

    be

    reduced .

    A c ross

    s ec t i ona l

    view o f a fu l l y

    hardened,

    coa t ing i s shown in Figure 4

    1

    2 5

    7,8.

    Heat ing

    a l so

    causes

    th e

    depos it to shr ink

    and

    can

    r e su l t

    in

    crack ing

    through

    th e co atin g

    to

    th e

    subs t r a t e

    9

  • 8/11/2019 Engineering Properties of en Coatings

    4/24

    FIGURE 4

    ross se t ion l

    vi w

    o f a 5

    t h i c k ,

    c o a t i n g a f t e r h e a t

    t r e a t

    ment

    a t

    400C f o r 4 hours .

    lOOOX

    m a g n i f i c a t i o n .

    Etched

    i n Cr03 a t

    6

    v o l t s .

    w i t h

    prolonged

    h e a t t r e at m e nt

    a t h igh t empe ra tu re s

    phosphorus

    from

    t h e r e g i o n n e a r t h e

    i n t e r f a c e

    w i l l

    d i f f u s e

    i n t o t h e sub

    s t r a t e .

    This can be h e l p f u l i n

    o b t a i n i n g

    adhesion on

    p a s s i v e

    m e t a l s l i k e t i t a n iu m o r s t a i n l e s s s t e e l . On

    mild

    s t e e l , a

    n i c k e l - i r o n i n t e r m e t a l l i c l a y e r between t h e

    c o a t i n g

    and t h e

    s u b s t r a t e can

    be produced

    by

    4 hour h ea t t r ea tm e nt s

    a t

    temp

    e r a t u r e s above 650C 1200

    o F .

    This

    l a y e r

    provides

    a

    very

    wear r e s i s t a n t

    s u r f a c e , and i n

    some

    environments

    w i l l i n c r e a s e

    t h e

    c o r r o s i o n r e s i s t a n c e o f t h e

    c o a t i n g

    2 5 7 8.

    INTERNAL STRESS

    The

    i n t e r n a l

    s t r e s s

    i n

    e l e c t r o l e s s

    n i c k e l c o a t i n g s

    c o n s i s t s

    o f two components--a thermal s t r e s s

    due t o

    t h e

    d if f e re nc e i n

    thermal

    expansion

    between t h e c o at i n g and t h e s u b s t r a t e and

    a s t r u c t u r e s t r e s s

    due t o

    s t r u c t u r a l mismatch w i t h i n

    t h e

    d e p o s i t

    caused by

    non-homogeneity.

    Both a r e

    p r i m a r i l y a

    f u n c t i o n

    o f

    t h e

    c o a t i n g s composi t ion. As i l l u s t r a t e d by

    Figure SID on

    s t e e l t h e s t r e s s

    i n

    c oa ti ng s c on ta in in g

    more

    t h a n 10 p e r c e n t phosphorus i s n e u t r a l o r

    compress ive.

    with

    lower

    phosphorus

    d e p o s i t s , however t e n s i l e s t r e s s e s o f 15

    t o

    MPa

    t o

    6 k s i

    o c c u r .

    The

    high

    l e v e l

    o f

    s t r e s s

    i n

    t h e s e c o a t i n g s promotes t h e i r c r a c k i n g

    and

    p r s t y ~

  • 8/11/2019 Engineering Properties of en Coatings

    5/24

    FIGURE 5

    Effect

    of

    phosphorus

    content on the i n t e r n a l

    s t r e s s of

    e l e c t r o l e s s

    n icke l d epos it s on

    s t e e l .

    15

    C

    o

    1

    0

    l

    5

    w

    Tensile

    a:

    0

    Compressive

    5

    z

    a:

    w

    1

    z

    15

    5

    6

    7

    8

    9 1

    11 12

    13

    PHOSPHORUS CONTENT

    PERCENT

    The

    s t r u c t u r a l changes during h e a t t r e a t m e n t a t temperatures

    above 220C

    420F , cause

    a vo lume tr ic s hr in kage o f

    up

    t o

    4 t o 6 p er ce nt w ith in e l e c t r o l e s s n i c k e l d e p o s i t s . This

    i n c r e a s e s

    t e n s i l e

    s t r e s s

    o r

    reduces

    compressive

    s t r e s s i n

    t h e

    c o a t i n g s 2 , 8 , 9 .

    Deposi t

    s t r e s s

    i s a l s o i n c r e a s e d by t h e

    c o - d e p o s i t i o n

    o f

    o r t h o p h o s p h i t e s

    o r

    contaminants , o r by

    t h e ~ r s n o f

    excess

    complexing a g e n t s i n

    t h e

    p l a t i n g

    s o l u t i o n 9 1 . Even smal l

    q u a n t i t i e s

    o f

    some meta l s can produce a severe i n c r e a s e i n

    s t r e s s .

    For

    i n st a n ce , t h e a d di ti o n

    o f

    only 5

    mg/l

    o f bismuth

    and

    antimony

    t o

    most

    b a t h s

    w i l l

    cause

    t h e d e p o s i t

    s t r e s s

    t o

    i n c r e a s e t o as much as 350 MPa

    50

    k s i t e n s i l e . High l v l s ~

    o f i n t e r a l s t r e s s a l s o reduce

    t h e

    c o a t i n g s d u c t i l i t y and

    i n c r e a s e i t s

    p o r o s i t y

    2 ,9

    .

    UNIFORMITY

    One e s p ec ia ll y b e n ef ic ia l p r o p e r t y o f e l e c t r o l e s s n i c k e l i s

    i t s

    uniform

    c o a t i n g

    t h i c k n e s s . With e l e c t r o p l a t e d c o a t i n g s ,

    t h i c k n e s s can

    vary s i g n i f i c a n t l y

    depending

    upon

    th e

    p a r t s

    c o n f i g u r a t i o n

    and

    i t s

    proximity

    t o t h e anodes. Not

    only

    can

    t h e s e

    v a r i a t i o n s e f f e c t

    t h e

    u l t i m a t e

    performance o f t h e c o a t in g ,

    but they

    can a l s o cause a dd it i o na l f i n is h in g t o

    be

    r e q u i r e d

    a f t e r p l a t i n g .

  • 8/11/2019 Engineering Properties of en Coatings

    6/24

    With

    e l ec t ro l e s s

    n icke l

    the pla t ing

    r a t e and coa t ing t h i ck -

    ness

    a re

    th e

    same

    on any sec t ion o f

    the

    pa r t exposed to f resh

    pla t ing

    so lu t ion Grooves s lo t s b lin d h ole s and even th e

    i n s ide of tubing wi l l have th e

    same

    amount o f coa t ing

    as

    the

    ou t s ide o f a

    par t

    This

    i s

    i l l u s t r a t ed by Figure 6 which shows

    th e uniform t h i ckness on th e i n t e rna l threads

    of

    a

    smal l

    spray

    nozz le

    FIGURE 6

    example

    of

    the uniformity

    of

    e lec t ro less nickel coatings

    Unlike the copper overplate

    the 25 vm thick e lec t ro less

    nickel

    coating

    reproduces

    the

    prof i le of

    the

    in te rna l threads

    of

    the

    par t

    The

    substrate

    i s

    leaded

    s tee l

    lOOX magnificat ion

    Etched in

    picra l

    Because

    o f

    i t s uni fo rmi ty

    of ten

    th e ove ra l l

    f in i sh ing

    cos t of

    a pa r t w il l be l e s s

    with

    e l ec t ro l e s s n icke l than

    wi th

    e l ec t ro -

    p la ted

    coa t ings even though th e ma te ria l c os t of

    th e

    process

    i s h igher For example th e subs t i t u t i on o f e l ec t ro l e s s

    n icke l

    fo r hard chromium

    on

    many

    o f the cy lin de rs and

    ro l l s used in

    th e

    pr in t ing

    and t e x t i l e

    i ndus t r i e s

    has

    not

    only

    reduced

    th e

    cos t o f p la t ing by 4 percen t

    but

    also has allow ed 55 percen t

    o f

    th e g rin din g t ime to be saved

    1 2

  • 8/11/2019 Engineering Properties of en Coatings

    7/24

    ~ ~ ~ ~ ~

    With

    e l e c t ro l e s s n icke l c oa ti ng th ic kn es s

    can be con t ro l l ed

    to

    s u i t

    the app l i ca t ion .

    Coat ings

    as th in as ~ ~ m

    0 .1

    mil

    a re commonly

    app lied fo r

    e lec t ron ic components , while

    those

    as t h i ck as 75 to

    125

    ~ m

    3

    to

    5

    mils a re t yp i ca l fo r corros ive

    environments .

    Coat ings

    t h i cker than 250 10

    mils

    are used

    fo r sa lvage o r

    r epa i r

    of

    worn or

    mismachined pa r t s

    5.

    ADHESION

    The adhesion of e l e c t ro l e s s n icke l coa t ings to

    most meta ls

    i s exce l l en t . The i n i t i a l replacement r e ac t i on which

    occurs with ca t a ly t i c meta l s toge ther with th e assoc ia ted

    ab i l i t y

    o f the

    ba ths to

    remove submicroscopic

    so i l s

    al lows

    the

    depos i t

    to

    e s t ab l i sh meta l l i c as

    wel l

    as mechanical

    bonds with th e

    subs t ra te . The

    bond

    s t reng th

    of

    coa t ings to proper ly

    cleaned s t e e l

    has been

    found

    to be 400

    MPa 60 ks i

    o r morel

    3 The

    adhesion

    to

    aluminum

    and

    a lumi

    num a l loys

    i s

    l e s s bu t

    usual ly exceeds 300

    MPa

    40 ksi 2 ,5 ,7 :

    With non-ca ta ly t i c or passiv e m eta ls

    such

    as

    s t a i n l e s s

    s t e e l an

    i n i t i a l replacement reac t ion does not

    occur

    and

    adhesion i s

    reduced.

    w ith proper pre t rea tment and ac t iva

    t i on however , th e

    bond s t r eng th

    of the coa ting

    normal ly i s

    a t le a s t 140

    MPa

    20 ksi 2,5 ,7 .

    The adhesion to

    copper

    a loys

    i s

    usua l ly

    between 300 and

    350

    MPa 40 and 50 ks i 2 .

    With meta l s such as

    aluminum

    i s common p ra ct ic e to bake

    pa r t s

    a f t e r p la t ing

    fo r 1 to 4

    hours a t 130+ 200C

    270

    to 400F to increase th e adhesion o f the coa ting . These

    t rea tments

    r e l i eve

    hydrogen

    from

    th e

    pa r t and

    the

    depos i t and

    provide

    a very minor

    amount

    of codif fus ion between the coa t

    ing

    and

    subs t ra te .

    They

    a re

    most

    usefu l

    where

    pre t rea tment

    has been

    l e s s

    than adequate and adhesion i s

    marginal .

    With

    p ro p er ly a pp li ed coa t ings

    baking

    wi l l have only a minimal

    e f f e c t

    upon bond s t r eng th 2,5,8

    MELTING POINT

    Elec t ro less n icke l

    i s

    an eu tec t i c a l loy with a

    wide

    mel t ing

    range.

    Unlike a pure compound,

    does not

    have a t rue

    melt ing po in t .

    This

    i s

    i l l u s t r a t ed

    by th e pha se d ia gram fo r

    nickel-phosphorus a l loys shown

    in Figure

    ~

  • 8/11/2019 Engineering Properties of en Coatings

    8/24

    Jlom t:P

    If J }

    I

    I I

    11/SZ

    0\

    \

    S a l m ~ k ~

    ~

    0

    ~ ~

    :;;;

    ;;;:

    tl

    +

    fl15

    ~ .

    ffltJ

    0

    I

    i fill

    \

    SC JI ;elre \

    I

    ~ \ i _

    O f ~

    j

    \

    l 1IJ

    18

    /

    6

    88tJ

    I

    00

    110

  • 8/11/2019 Engineering Properties of en Coatings

    9/24

    ~

    .0

    .6

    .4

    ~

    2

    .0

    a

    ~

    6

    ,

    7

    FIGURE 8

    Effect o f d ep os it

    phosphorus

    content

    on

    the densi ty

    of

    e lec t ro less nickel .

    2

    hosphorus content

    {

    The the rmal and e l e c t r i c a l proper t i e s of

    these

    coa t ings

    a l so

    vary

    with

    composi t ion .

    For

    high

    phosphorus coa t ings

    e l e c t r i c a l r e s i s t i v i t y and thermal

    conduc t l

    v i ty a re genera l ly about 9 0 ~ ~ c m and 0.08

    Wjcm OK

    4 .6

    Btuj

    f t -hr -oF

    respec t ive ly lB 19 .

    Accordingly

    th e se coa t ings a re

    s i gn i f i can t l y

    l e s s conductive than conven ti ona l conductor s

    such as

    copper .

    Because of

    the

    r e l a t i ve ly

    th in l ayer s

    used

    however fo r most

    app l i ca t ions rho r09is tance

    of

    e l e c t ro l e s s

    n icke l i s

    not

    s i gn i f i can t .

    coa t ings

    are

    being success fu l ly

    used

    fo r

    such

    app l i c a t i on s

    as exchanger

    tubing

    and

    e l e c t r i c a l

    swi tches

    and

    con tac t s .

    Heat t r e a tment s

    prec ip i t a t e

    phosphorus

    from th e a l loy and

    can

    increase the c ondu ct iv it y o f

    e l ec t ro l e s s

    n icke l by 3 to

    4

    t imes 2 7. The

    formula t ion of

    th e p la t i ng

    so lu t ion

    can

    a l so

    a f f e c t

    conduc t iv i ty .

    Tests

    with

    ba ths

    complexed with

    sodium ace ta t e and with succin ic ac id showed

    e l e c t r i c a l

    r e s i s t i v i t i e s o f 61

    and 804

    ~ ~ m

    r espec t ive ly2 .

    Phosphorus

    con ten t also

    has

    a

    s t rong

    e f f e c t on

    th e

    thermal

    expansion

    of

    e l e c t ro l e s s n icke l . This i s shown in Figure 9

    which i s based on depos i t

    s t r e s s measurements

    on

    d i f fe ren t

    subs t ra t es 10.

    The

    coe f f i c i en t

    of

    t he rma l e xp an sio n o f

    coa t ings

    i s approximately

    equal to

    t h a t of s t e e l .

  • 8/11/2019 Engineering Properties of en Coatings

    10/24

    _ _ ~

    FIGURE 9

    D

    osp orus content

    5

    8

    j

    E ffec t o f

    heat t reatment

    a t

    di f feren t

    temperatures

    on the hardness of

    Electroless

    Nickel.

    Temperature OC

    For

    some

    app l i ca t ions

    high

    temperature t rea tments cannot

    be

    to lora ted

    because

    o f

    pa r t warpage o r because o f t h e i r

    e f f e c t

    on the subs t r a t e For

    t hese

    i s

    sometimes p oss ib le to use

    longer t imes and

    lower t empera tures to ob ta in th e des i red

    hardness This i s

    i l l u s t r a t ed by Figure 13, which shows the

    e f f ec t

    of d i f f e r en t

    tr ea tment p er io ds on th e hardness o f

    coat ings

    s.

    Treatments

    a t

    340C 650F fo r

    4

    to

    6

    hours and

    a t 290C

    550F fo r 10 to

    12

    hours a re

    commonly

    used

    fo r e l ec t ro l e s s

    n icke l

    depos i t s

    These

    can pro duce h ard ne ss v alu es of

    950

    to 1000 VHNIOO Treatments a t 260C

    500F

    are also

    occasional ly

    used , al though the r e su l t i ng

    hardness i s

    lower.

    At t empera tures of 230C 450F and

    below, only a minimal

    increase

    in

    hardness i s

    obta ined Accordingly such

    t r e a t -

    ments

    a re

    only

    r a r e l r used,

    except

    fo r

    hydrogen r e l i e f

    o r

    adhesion improvement

  • 8/11/2019 Engineering Properties of en Coatings

    14/24

    FIGURE

    13

    0

    :--

  • 8/11/2019 Engineering Properties of en Coatings

    15/24

    Because

    o f t h e i r

    high hardness

    e l ec t ro l e s s

    n icke l

    coat ings

    have e x c el le n t r e si st an c e to wear and abras ion

    both

    in th e

    as depos i ted and

    hardened cond i t ions . Laboratory

    t e s t s have

    shown fu l ly

    hardened

    coa t ings to have w ear re s i s tance

    equa l

    to hard

    chromium

    under

    both dry

    and l ub r i ca ted

    cond i t ions .

    This

    i s i l l u s t r a t e d

    by Table 1

    which shows th e r e s u l t s

    o f

    t y p i c a l Taber Abraser Wear

    t e s t s o f

    e l ec t ro l e s s

    n icke l

    coa t ings

    an d com pares

    them

    t o e le ct ro p la te d

    n icke l

    and

    chromium 26 ,27

    28.

    The e x c e l l e n t

    re s i s tance of e l ec t ro l e s s

    n ick e l

    of ten

    al lows

    to

    r ep lace high a l loy

    mate r i a l s and

    hard chromium.

    T BLE

    1

    COMP RISON

    OF THE

    T BER BR SER

    RESISTANCE

    OF DIFFERENT ENGINEERING COATINGS

    CO TINJ

    HE T

    TRE lMENT TWI, mg/1000

    Cycles 1)

    Watts

    Nickel

    on

    25

    Electroless Ni-9 P None

    17

    Electroless

    Ni-9 P

    300

    oC/l

    hr

    10

    Electroless

    Ni-9 P 500

    oC/l

    hr

    6

    Electroless

    Ni-9 P

    650

    oC/l

    hr 4

    Electroless

    Ni-5 B on

    9

    Electroless

    Ni-5 B

    400

    oC/l

    hr 3

    Hard Chromium

    on

    3

    1)

    Taber

    Wear

    Index

    CS-IO

    abraser wheels

    1000

    gram

    load

    de te rm in ed a s a vera ge w eig ht loss per 1000 cycles

    for

    to ta l te st

    of 6000 cycles.

    Tests with

    e l ec t ro l e s s

    n icke l c oa te d v ee b lo ck s in a Falex

    Wear Tes te r have confi rmed a s i m i l a r

    re la t ion

    between hea t

    t r ea tmen t and wear and shown th e co a ting to be more r e s i s -

    t a n t than hard

    chrome

    under l ub r i ca ted wear cond i t ions .

    This

    i s

    i l l u s t r a t e d by Table 2 fo r an

    e l ec t ro l e s s

    n icke l

    con ta in ing approximate ly 9 percen t

    phosphorus .

  • 8/11/2019 Engineering Properties of en Coatings

    16/24

    TABLE 2

    COMPARISON OF THE FALEX WEAR RESISTANCE

    OF CHROMIUM AND ELECTROLESS NICKEL COATINGS

    COATII G

    PLATED V B LOCKS

    UNPLATED

    STEEL

    PINS

    Heat

    Hardness Wear

    ear

    mg

    1)

    Treatment

    lHN

    mg 1)

    Chromium

    None

    1100

    0.5

    1.9

    Electroless

    Nickel

    None

    590

    6.6

    0.2

    Electroless

    Nickel

    290

    oC/2

    hrs 880

    1.2

    0.1

    Electroless

    Nickel

    290

    oC/16

    hrs

    1050 0.4

    0.1

    Electroless

    Nickel

    400

    oC/l

    hr

    1100 0.5

    0.2

    Electroless Nickel

    540

    oC/l

    hr

    750

    1.4

    0.1

    1

    Falex Wear Test under

    white o il lubricant .

    a t 60 HRC

    hardness.

    180

    kg 400

    lb

    for 40 minutes with

    Unplated pins were SAE 9310 s teel

    The e f f e c t

    o f

    phosphorus con ten t

    upon th e

    wear

    exper ienced

    by

    e l e c t r o l e s s

    n icke l coa t ings under l ub r i ca ted cond i t ions

    i s

    summarized in

    Figure

    15.

    These ro t a t i ng b a l l

    t e s t s

    showed t h a t

    a f t e r h e a t t r ea tmen t high phosphorus depos i t s l i ke

    i

    pro

    vide

    th e b e s t r e s is ta n c e to adhesive wear

    29 3 0 .

    5

    ;

    >

    0

    E

    e

    ,

    0

    >

    0

    8

    6

    e : eposite

    2

    l

    r

    1

    1

    8

    6 250

    c

    {480 of} for 1

    ::

    2

    400 c 750

    of

    for 1

    1

    1

    ,

    6

    2

    1

    I

    .

    0 00

    o

    0 00

    I.

    o

    o

    E

    0 0

    0.0

    0 0

    0 0

    e

    ll

    0 00

    0 00

    E ffect of phosphorus

    content

    on

    the

    wear of

    e lec t ro less nickel

    coatings in r ota ti ng

    ba l l t e s t s .

    FIGURE

    15

    12

    Phosphorus content

  • 8/11/2019 Engineering Properties of en Coatings

    17/24

    FRICTIONAL PROPERTIES

    The f r i c t i o n a l c ha ra c t e r i s t i c s o f e l e c t ro l e s s nicke l

    coa t ings

    are exce l l en t . Thei r phosphorus con ten t

    prov ides

    a

    n a tu r a l

    l ub r i c i t y which he lps

    to

    minimize hea t

    bui ldup

    and reduces

    scor ing and ga l l ing

    and which

    can be

    very

    use fu l fo r

    ap p l i c a t i o n s

    such as p l as t i c

    molding .

    The c oe f f i c i e n t o f f r i c t i on fo r e l e c t ro l e s s nicke l versus

    s t e e l

    i s about

    0.13

    fo r lub r ica ted

    condi t ions

    and 4 fo r

    u n lu b r ic a te d c o n d it io n s . This i s approximately 20 percent

    lower

    than

    chromium, one ha l f

    o f

    t h a t o f s t e e l

    and

    much

    lower

    than aluminum o r s t a in l e s s s t e e l .

    The

    f r i c t i ona l

    p ro pe rt ie s o f

    th es e co atin gs

    vary

    l ttl with

    e i t h e r

    phosphorus

    content

    o r

    with h ea t t re atm e nt

    2

    , 2 6 ,30 .

    SOLDERABILITY AND WELDABILITY

    Elec t ro less

    n icke l

    coa t ings

    can be

    eas i ly

    soldered and

    are

    commonly

    used in e le ctro nic

    a p pl ic at io n s to

    f a c i l i t a t e solder ing

    o f

    l i g h t

    meta ls l ike

    aluminum.

    For

    mos t c ompo ne nt s,

    mildly

    ac t iva ted

    ros in RMA

    f lux i s

    spec i f i ed t oge the r with convent ion-

    a l t i n l e a d

    s o ld e r .

    Prehea t ing the

    component to 100

    to 110C

    2100 to 230F

    w i l l

    improve

    th e

    ease and speed o f jo in ing .

    with moderately oxidized su r faces such as th ose resu l t ing from

    steam

    ag ing

    a c ti va te d r os in RA

    f lux

    i s usua l ly

    req uired to

    ob ta in

    wet t ing

    of th e

    coa t ing

    2

    , 31

    Welding

    o f

    e l e c t ro l e s s

    n icke l coated

    components

    i s more d i f f i c u l t

    due to

    th e low welding p o i n t o f th e

    a l l o y

    and because phosphorus

    can

    d if fu se in to

    an

    embr i t t l e

    s t e e l .

    Some

    success

    has

    been

    re -

    por ted using s p ec i a l high pur i ty s t a in l e s s s t e e l e lec t rodes and

    i n e r t

    gas

    sh ie ld ing .

    with

    p ip ing high n icke l backup r ings

    are

    also sometimes used

    2

    CORROSION RESISTANCE

    Elec t ro less n icke l i s a b a r r i e r coa t ing t pro tec t s

    i t s

    subs t ra t e by

    sea l ing

    t o ff from th e environment , ra the r

    than

    by s a c r i f i c i a l ac t i o n . Because of

    i t s

    amorphous

    na ture

    and p a s s i v i t y however,

    th e c or ro sio n

    res i s t ance

    o f th e

    coa t ing

    i s ex ce l l en t and in many

    environments

    supe r io r to

    t h a t

    o f

    pure

    nicke l

    or

    chromium

    a l loys .

    Amorphous

    a l loys genera l ly

    have

    b e t t e r

    res i s t ance to a t t ack

    than equ iva len t po lycrys ta l l ine

    mate r i a l s

    because o f t h e i r

    freedom from grain o r

    phase

    boundaries and because o f th e

    glassy f i lms which form on and pass iva te t h e i r su r faces .

  • 8/11/2019 Engineering Properties of en Coatings

    18/24

    Effec t o f

    Environment.

    When p ro pe rly a pp lie d

    Elec t ro les s

    Nickel

    i s

    almost

    t o t a l l y

    r e s i s t a n t

    to a lk a l i e s

    to

    s a l t

    so lu t ions

    and

    br ines to chemical and

    petroleum

    e n - ~ n m e n t s , and to a l l types of hydrocarbons and

    so lven t s .

    d ep osits a ls o have

    good

    r es i s t ance

    to

    ammonia

    so lu t ions

    to organic ac ids and to reducing inorganic ac ids . The are

    only

    s ign i f i can t ly

    at tacked

    by

    s tr on g ly o xid iz in g

    media

    2 .

    Some examples of

    the

    cor ros ion exper ienced in d i f f e ren t

    environments i s shown in Table 3

    2,9,32

    Effec t

    o f

    Composit ion. The cor ros ion r es i s t ance of an

    e lec t ro l e s s

    nicke l coat ing

    i s

    a

    funct ion

    of

    i t s

    composi t ion.

    Most

    deposi t s

    are natura l ly pass ive and

    very

    r e s i s t a n t to

    a t tack in most

    environments .

    Thei r degree

    of

    pass iv i ty

    and cor ros ion

    r e s i s t ance

    however,

    i s

    qrea t ly a f fec t ed by

    t he i r phosphorus

    con ten t . Alloys

    conta in ing more

    than 10

    percen t

    phosphorus

    are g en era lly

    more

    r e s i s t a n t

    to

    a t t ack

    than

    those with lowe r pho spho ru s

    conten ts

    9 15 .

    This

    i s

    i l l u s t r a t ed

    by

    Figure 16,

    which

    compares th e c orro sio n

    exper ienced

    by e lec t ro l e s s

    nicke l co at in g s cont ai ni ng

    S

    to

    1 0 ~

    percent

    phosphorus

    in ae ra ted 6 percent c i t r i c acid

    a t

    SOoC

    120 F 33.

    FIGURE 16

    4

    Effect of phosphorus

    ont nt

    on th

    orrosion

    of e lec t ro less nickel

    coat ings.

    2

    2

    ;

    - - - ; - ~ ; - - - ; - - ~ - - - - : - - ; - - 7 . ; - - - : - - ~

    PHOSPHORUS CONTENT WT PERCENT

  • 8/11/2019 Engineering Properties of en Coatings

    19/24

    CORROSION OF

    TABLE 3

    ELECTROLESS NICKEL IN

    VARIOUS

    ENVIRONMENTS

    EN \lI:ROtM ENT

    TEMPERATURE

    CORROSION RATE

    c

    Il

    m

    y

    mpy

    cet ic

    cid

    Glac i a l

    20 0 .8

    0.03

    Acetone

    20

    0.08

    0.003

    Aluminum Sul fa te 27 20

    5

    0.2

    Armnonia 25 20

    16

    0 .6

    Ammonium

    Ni tra te 20 20 15

    0 .6

    Ammonium

    Su l f a t e Satura ted 20 3 0 .1

    Benzene 20 Nil Nil

    Brine

    Sa l t

    CO

    2

    Satura ted 95

    5

    0 .2

    Brine 3 >

    Sa l t

    H

    2

    S

    Satura ted

    95 Nil

    N il

    Calcium

    Chlor ide

    42

    20

    0.2 0.01

    Carbon Te t rach lor ide 20 Nil

    N il

    Ci t r i c cid

    Satura ted

    20

    7 0 .3

    Cupric Chlor ide

    5

    20

    25

    1 .0

    Ethylene

    Glycol

    20 0 .6

    0.02

    Ferric

    Chlor ide 20

    200

    8 .0

    lOrmic cid 88

    20

    13

    0 .5

    Hydrochloric cid 5

    20

    24

    0 .9

    Hydrof luqr ic Acid 2

    20

    27

    1 .1

    Lact ic cid 85

    20 1 0.04

    Lead

    Aceta te 36

    20

    0 .2

    0.01

    Ni t r i c cid 1

    20

    25

    1 .0

    Oxalic Acid

    10

    20 3 0 .1

    Phenol 9 20

    0.2

    0.01

    Phosphoric Acid

    8

    20 3

    0 .1

    Potassium

    Hydroxide

    50

    20

    Nil

    Nil

    Sodium

    Carbonate Satura ted 20 1

    0.04

    Sodium

    Hydroxide

    45

    20

    Nil

    Nil

    Sodium Hydroxide

    50 95

    0.2

    0.01

    Sodium SUl fa t e 10 20 0.8

    0.03

    Sul fur i c Acid 65 20

    9

    0 .4

    Water cid

    Mine

    3.3

    pH

    20

    7

    0 .3

    Water Dis t i l l ed N

    2

    deaera ted

    100 Nil

    Nil

    Water Dis t i l l ed

    O

    2

    Satura ted 95 Nil Nil

    Water Sea

    (3 >

    Sal t

    95 Nil Nil

  • 8/11/2019 Engineering Properties of en Coatings

    20/24

    In t h e s e t e s t s

    c o r r o s i o n

    o f

    t h e

    d e p o s i t was o n l y about

    one h a l f o f t h a t o f t h e lower

    phosphorus

    c o a t i n g s .

    O f t e n t h e

    t ramp

    c o n s t i t u e n t s p r e s e n t i n

    an

    e l e c t r o l e s s n i c k e l

    a r e even more i m p o r t a n t

    t o

    its

    c o r r o s i o n

    r e s i s t a n c e t h a n its

    phosphorus c o n t e n t . Most c oa t i n gs a re

    a p p l i e d

    from b a t h s

    i n h i b i t e d

    w i t h

    l e a d

    t i n

    cadmium

    o r

    s u l f u r .

    Codeposi t ion

    o f

    t h e s e elements i n

    more

    t h a n t r a c e

    amounts

    c a u s e s

    a

    s e v e r e

    r e d u c t i o n i n t h e c o at i n g s p a s si v it y and

    c o r r o s i o n

    r e s i s t a n c e .

    This

    i s

    i l l u s t r a t e d

    by Table

    4 , which

    shows t h e r e s u l t s

    o f

    c o r r o s i o n

    t e s t s

    w i t h

    6

    d i ff e re n t e le c tr o le s s n ic ke l d e p o s it s

    i n

    C02

    s a t u r a t e d

    p e r c e n t s a l t

    b r i n e a t

    9SoC

    200

    0F 9

    TABLE 4

    EFFECT OF COMPOSITION

    CORROSION RESISTANCE

    OF ELECTROLESS

    NICKEL

    IN

    CO2

    SATURATED,

    PERCENT SALT BRINE AT

    9SoC

    DEPOSIT

    PHOSPHOR LS OTHER

    CORROSION

    RATE

    CONTENT,

    ELEMENTS,

    lJro/y

    ropy

    ELNIC

    10.2 tr e

    5

    0 .2

    11.8

    0.04 Sn 7

    0 .3

    C

    8.3

    0.05 Cd 24

    0.9

    10.3

    0.12 Pb

    15 0.6

    E

    8 .0 0.13

    S

    15 0.6

    F

    10.4

    0.05 Pb

    and

    11

    0 .4

    0.08

    Cd

    S i m i l a r t e s t s i n

    10

    p e r c e n t

    RCl

    a t ambient

    t empera tu re

    showed

    l o s s e s

    r a n g i n g from l S lJm/v

    0.6 mpy

    f o r to

    660

    umz y 26 mpy)

    f o r

    D e p o s i t D

    The

    pr imary d i f f e r e n c e between t h e s e d e p o s i t s was

    n o t

    t h e i r

    phosphorus

    c o n t e n t b u t t h e i r

    b a t h s

    i n h i b i t o r .

    D e p o s i t s

    B,

    D.

    and

    F

    a l l c o n t a i n e d more

    than 10

    p e r c e n t

    phosphorus .

    B

    t o

    F, were a p p l i e d

    s u l f u r and c o n t a i n e d

    D e p o s i t s

    from b a t h s i n h i b i t e d w it h m et a ls o r

    s i g n i f i c a n t

    amounts

    o f

    t h e s e

    elements

    9.

  • 8/11/2019 Engineering Properties of en Coatings

    21/24

    Ef fec t of Heat Treatment. One of the

    most

    impor tan t var i ab le s

    e f f ec t i ng

    the

    corrosion

    o f e lec t ro l e s s nicke l

    i s i t s hea t

    t rea tment . As

    e lec t ro l e s s

    nicke l d ep os i ts are heated to

    temperatures above

    220 to

    260C

    420 to 500F n icke l phosphide

    pa r t i c l e s begin to

    form,

    reducing the

    phosphorus

    co nten t o f

    the remaining

    mater ia l .

    This reduces the coa t i ng s corros ion

    r e s i s t ance . The

    pa r t i c l e s

    also

    crea te

    small

    ac t ive /pass ive

    c or ro si on c el l , fur the r

    cont r ibut ing

    to the

    depos i t s

    des t ruc t ion .

    The e f f ec t

    of

    these changes i s

    i l l u s t r a t ed

    by

    Table 5 ,

    which shows the r e su l t s o f t e s t s with

    depos i t s ,

    h ea t t re ate d to represen t d i f f e r en t commercial t rea tments and

    then exposed to 10 percent HCl a t ambient tempertaure. A

    secondary

    e f f ec t

    of

    hea t

    t rea t ing

    i s t h a t the depos i t shr inks

    as hardens , which can crack the coat ing and

    expose

    the

    subs t ra te

    to

    a t t ack .

    A

    cross - sec t iona l view

    o f th e cracks

    throuqh an

    e lec t ro l e s s

    n ic ke l c oa tin q a f t e r h ea t tre atm en t

    a t

    400C

    7500F i s

    shown

    in Figure 7

    9

    FIGURE 7

    ross

    se t ion l

    vi w

    of

    a 7 r

    thick

    _

    e lec t ro

    less nickel de-

    pos i t

    a f te r heat t rea t

    ment

    a t

    400C

    for

    hour. Cracks formed

    due

    to shrinkage

    of

    the

    deposit .

    lOOX

    magnification.

    Etched in ni t a l .

  • 8/11/2019 Engineering Properties of en Coatings

    22/24

    TABLE 5

    THE EFFECT OF HEAT TREATMENT

    ON THE

    CORROSION OF ELECTROLESS NICKEL

    IN 10 HCl

    HEAT

    TREATMENT DEPOSIT CORROSION

    RATE

    HARDNESS,

    z y

    ropy

    vllNIOO

    on

    480

    15 0.6

    190C (375 for

    hours

    500 20 0.8

    290C (550F) for 6 hours 900

    1900 75

    290C

    550E

    for 10 hours

    970 1400 55

    340C (650E)

    for

    4

    hours

    970 900 35

    400C (750 F) for 1 hour 1050 1200

    47

    Baking a t 190C 375F , l i k e t h a t used

    f o r

    hydrogen e m b r i t t l e -

    ment r e l i e f

    caused

    no

    s i g n i f i c a n t

    i n c r e a s e i n c o r r o s i o n .

    Harden ing ,

    however ,

    caused t h e c o a t i n g s c o r r o s i o n r a t e t o

    i n c r e a s e

    from 15 ).Im/y

    0 .6

    mpy

    t o more t h a n

    900 ).Im/y 35

    mpy

    T e s t s

    i n

    o t h e r

    environments

    showed a

    s i m i l a r r e d u c t i o n i n

    r e s i s t a n c e

    a f t e r

    h a r d e n i n g . Where

    c o r r o s i o n

    r e s i s t a n c e

    i s r e q u i r e d hardened

    c o a t i n g s

    should n o t be used

    9

  • 8/11/2019 Engineering Properties of en Coatings

    23/24

    SU RY

    OF THE PROPERTIES OF

    ELE TROLESS NI KEL

    COMPOSITION

    STRUCTURE

    INTERNAL STRESS

    DENSITY

    MELTING POINT

    ELECTRICAL RESISTIVITY

    THERMAL

    CONDUCTIVITY

    MAGNETIC

    SUSCEPTABILITY

    TENSILE STRENGTH

    DUCTILITY

    MODULAS OF ELASTICITY

    COEFFICIENT OF

    THERMAL

    EXPANSION

    ADHESION STRENGTH

    HARDNESS

    AS DEPOSITED

    IMRDNESS HEAT TREATED

    400C/l hr)

    COEFFICIENT

    OF

    FRICTION VS STEEL

    TABER

    WE R

    RESISTANCE

    AS DEPOSITED

    TABER WE R RESISTANCE

    HEAT TREATED 400C/l

    hr)

    CORROSION

    RESISTANCE

    RN l t

    December 31, 1980

    Revised

    May 19,

    1983

    Alloy

    of

    10 to 11

    percent phosphorus

    dissolved

    in nicke l ,

    containing

    l e s s

    than 0 0 5 p er ce nt other impuri t ies

    Completely amorphous without

    an y

    crysta l

    or phase s tructure , lamination

    or

    internal

    segregat ion

    During heat

    treatment part ic les of Ni3P

    precipi tate

    and

    th e coating

    crystal l izes

    2 to 3 MFa

    2 .5

    to 4 ks i

    compressive

    7.75

    g/cm

    3

    9 ~ Q c m as

    deposited

    0.08 W/cm oK

    4.6

    Btu/ft-hr-OF), as deposited

    -

    pproximately 10 mks

    >700 MPa >100 ksi as

    deposited

    to

    percent elongation

    as

    deposited

    6

    200 GPa 28 x 10 psi)

    300

    to

    400

    MPa

    40

    to

    60

    ksi)

    480

    to

    500 VHN

    10 0

    1000 to 1100 VHN

    10 0

    0.13

    lubricated)

    to

    0.4 non-lubricated)

    18

    to

    20 mg/1000

    cycles

    10

    to

    12 mg/1000

    cycles

    A barrier

    coating with

    e xce ll en t r es is tan ce

    to attack

    by a l l but th e most severely

    oxidizing

    environments

  • 8/11/2019 Engineering Properties of en Coatings

    24/24