entropy equation in chapter 4: control mass approach 4... · 2018. 9. 13. · entropy equation in...

55
Energy Equation Entropy equation in Chapter 4: control mass approach The second law of thermodynamics Availability (exergy) The exergy of a system is the maximum useful work possible during a process that brings the system into equilibrium with a heat reservoir. The availability function is a characteristic of the state of the system and the environment which acts as a reservoir at constant pressure (p 0 ) and constant temperature (T 0 ). (4.27)

Upload: others

Post on 31-Mar-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Entropy equation in Chapter 4: control mass approach 4... · 2018. 9. 13. · Entropy equation in Chapter 4: control mass approach The second law of thermodynamics Availability (exergy)

Energy Equation

Entropy equation in Chapter 4: control mass approach

The second law of thermodynamics

Availability (exergy)– The exergy of a system is the maximum useful work possible during a process that brings the system 

into equilibrium with a heat reservoir.

– The availability function is a characteristic of the state of the system and the environment which acts as a reservoir at constant pressure (p0 ) and constant temperature (T0 ).

(4.27)

Page 2: Entropy equation in Chapter 4: control mass approach 4... · 2018. 9. 13. · Entropy equation in Chapter 4: control mass approach The second law of thermodynamics Availability (exergy)

Energy Equation

Entropy equation in Chapter 4: control mass approach

Availability/exergy

Carnot cycle efficiency

,

, ,

Page 3: Entropy equation in Chapter 4: control mass approach 4... · 2018. 9. 13. · Entropy equation in Chapter 4: control mass approach The second law of thermodynamics Availability (exergy)

Energy Equation

Entropy equation in Chapter 4: control mass approach

The second law of thermodynamics

From state 1 to 2

Maximum useful work

Maximum useful work obtainable from the specified change

Page 4: Entropy equation in Chapter 4: control mass approach 4... · 2018. 9. 13. · Entropy equation in Chapter 4: control mass approach The second law of thermodynamics Availability (exergy)

Energy Equation

Energy and entropy equation in Chapter 4: control mass approach

The second law of thermodynamics

(4.27)

Page 5: Entropy equation in Chapter 4: control mass approach 4... · 2018. 9. 13. · Entropy equation in Chapter 4: control mass approach The second law of thermodynamics Availability (exergy)

Energy Equation

Energy and entropy equation in Chapter 4: control mass approach

The second law of thermodynamics

(4.27)

the second T‐ds relation

Page 6: Entropy equation in Chapter 4: control mass approach 4... · 2018. 9. 13. · Entropy equation in Chapter 4: control mass approach The second law of thermodynamics Availability (exergy)

Energy Equation

Energy and entropy equation in Chapter 4: control mass approach

The second law of thermodynamics

(4.27)

Page 7: Entropy equation in Chapter 4: control mass approach 4... · 2018. 9. 13. · Entropy equation in Chapter 4: control mass approach The second law of thermodynamics Availability (exergy)

Energy Equation

Energy and entropy equation in Chapter 4: control mass approach

Entropy change of ideal gas

From the first T ds relation From the second T ds relation

Page 8: Entropy equation in Chapter 4: control mass approach 4... · 2018. 9. 13. · Entropy equation in Chapter 4: control mass approach The second law of thermodynamics Availability (exergy)

Energy Equation

Energy equation in Chapter 4: control volume approach

The first law of thermodynamics

In the control volume approach, there are flow in and out.

The first law

Page 9: Entropy equation in Chapter 4: control mass approach 4... · 2018. 9. 13. · Entropy equation in Chapter 4: control mass approach The second law of thermodynamics Availability (exergy)

Energy Equation

Energy equation in Chapter 4: control volume approach

Heat addition term

Work term

Work done by the mass in the control volume + work associated with mass flow

Body force

PvmmPVPW

VPxAPW

normal

normal

I

ii

I

ii gzm

dtmgzd

DtmgzDm

dtmd

DtmD

11

Page 10: Entropy equation in Chapter 4: control mass approach 4... · 2018. 9. 13. · Entropy equation in Chapter 4: control mass approach The second law of thermodynamics Availability (exergy)

Energy Equation

Energy equation in Chapter 4: control volume approach

Control mass

Control volume

For stationary control volume

(4.38)

dtdVP

dtdW

normal

Page 11: Entropy equation in Chapter 4: control mass approach 4... · 2018. 9. 13. · Entropy equation in Chapter 4: control mass approach The second law of thermodynamics Availability (exergy)

Energy Equation

Energy equation in Chapter 4: control volume approach

Control volume

Page 12: Entropy equation in Chapter 4: control mass approach 4... · 2018. 9. 13. · Entropy equation in Chapter 4: control mass approach The second law of thermodynamics Availability (exergy)

Energy Equation

Entropy equation in Chapter 4: control volume approach

Entropy equation

For a stationary control volume

Page 13: Entropy equation in Chapter 4: control mass approach 4... · 2018. 9. 13. · Entropy equation in Chapter 4: control mass approach The second law of thermodynamics Availability (exergy)

Energy Equation

Entropy equation in Chapter 4: control volume approach

Actual work

Useful work (useful part of the actual work)

Maximum useful work

Maximum useful workActual workUseful work

Page 14: Entropy equation in Chapter 4: control mass approach 4... · 2018. 9. 13. · Entropy equation in Chapter 4: control mass approach The second law of thermodynamics Availability (exergy)

Energy Equation

Entropy equation in Chapter 4: control volume approach

Energy equation

Useful work (useful part of the actual work)

Useful work (or useful actual work)

Partial derivative? Stationary!

Page 15: Entropy equation in Chapter 4: control mass approach 4... · 2018. 9. 13. · Entropy equation in Chapter 4: control mass approach The second law of thermodynamics Availability (exergy)

Energy Equation

Entropy equation in Chapter 4: control volume approach

Multiplying  , then subtracting from (4.44)

Express the actual useful work with entropy

Page 16: Entropy equation in Chapter 4: control mass approach 4... · 2018. 9. 13. · Entropy equation in Chapter 4: control mass approach The second law of thermodynamics Availability (exergy)

Energy Equation

Entropy equation in Chapter 4: control volume approach

Maximum useful work

Irreversibility

=0

Page 17: Entropy equation in Chapter 4: control mass approach 4... · 2018. 9. 13. · Entropy equation in Chapter 4: control mass approach The second law of thermodynamics Availability (exergy)

Energy Equation

Entropy equation in Chapter 4: control volume approach

Irreversibility

Page 18: Entropy equation in Chapter 4: control mass approach 4... · 2018. 9. 13. · Entropy equation in Chapter 4: control mass approach The second law of thermodynamics Availability (exergy)

Energy Equation

Entropy equation in Chapter 4: control volume approach

Example

Page 19: Entropy equation in Chapter 4: control mass approach 4... · 2018. 9. 13. · Entropy equation in Chapter 4: control mass approach The second law of thermodynamics Availability (exergy)

Energy Equation

Entropy equation in Chapter 4: control volume approach

Example

(4.27)

Maximum useful work

Page 20: Entropy equation in Chapter 4: control mass approach 4... · 2018. 9. 13. · Entropy equation in Chapter 4: control mass approach The second law of thermodynamics Availability (exergy)

Energy Equation

Entropy equation in Chapter 4: control volume approach

Example

Actual work

Useful work

Useful work

Page 21: Entropy equation in Chapter 4: control mass approach 4... · 2018. 9. 13. · Entropy equation in Chapter 4: control mass approach The second law of thermodynamics Availability (exergy)

Energy Equation

Entropy equation in Chapter 4: control volume approach

Example

Irreversibility

Maximum useful work

Useful work

Page 22: Entropy equation in Chapter 4: control mass approach 4... · 2018. 9. 13. · Entropy equation in Chapter 4: control mass approach The second law of thermodynamics Availability (exergy)

Energy Equation

Entropy equation in Chapter 4: control volume approach

Example

Irreversibility

Page 23: Entropy equation in Chapter 4: control mass approach 4... · 2018. 9. 13. · Entropy equation in Chapter 4: control mass approach The second law of thermodynamics Availability (exergy)

Contents

1. Introduction

2. Nonflow Process

3. Thermodynamic Analysis of Nuclear Power Plants

4. Thermodynamic Analysis of A Simplified PWR System

5. More Complex Rankine Cycles: Superheat, Reheat, Regeneration, and Moisture Separation

6. Simple Brayton Cycle

7. More Complex Brayton Cycles

8. Supercritical Carbon Dioxide Brayton Cycles

Page 24: Entropy equation in Chapter 4: control mass approach 4... · 2018. 9. 13. · Entropy equation in Chapter 4: control mass approach The second law of thermodynamics Availability (exergy)

Introduction

Summary of the working forms of the first and second laws

First law for control volume

Second law

Working forms

Page 25: Entropy equation in Chapter 4: control mass approach 4... · 2018. 9. 13. · Entropy equation in Chapter 4: control mass approach The second law of thermodynamics Availability (exergy)

Contents

1. Introduction

2. Nonflow Process

3. Thermodynamic Analysis of Nuclear Power Plants

4. Thermodynamic Analysis of A Simplified PWR System

5. More Complex Rankine Cycles: Superheat, Reheat, Regeneration, and Moisture Separation

6. Simple Brayton Cycle

7. More Complex Brayton Cycles

8. Supercritical Carbon Dioxide Brayton Cycles

Page 26: Entropy equation in Chapter 4: control mass approach 4... · 2018. 9. 13. · Entropy equation in Chapter 4: control mass approach The second law of thermodynamics Availability (exergy)

Thermodynamic Analysis of Nuclear Power Plants

Analysis of NPPs

Provides the relation between the mixed mean outlet coolant temperatures (or enthalpy forBWR) of the core through the primary and secondary systems to the generation of electricityat the turbine.

Cycles used for the various reactor types and the methods of thermodynamic analysis of these cycles are described. Rankine cycle for steam‐driven electric turbines(PWR, BWR) Brayton cycle can be considered for gas cooled reactor systems Both cycles are constant‐pressure heat addition and rejection cycles for steady‐flow operation

Page 27: Entropy equation in Chapter 4: control mass approach 4... · 2018. 9. 13. · Entropy equation in Chapter 4: control mass approach The second law of thermodynamics Availability (exergy)

Thermodynamic Analysis of Nuclear Power Plants

Analysis of NPPs

Simple Brayton cycle

Maximum temperature of the Brayton cycle (T3) is set by turbine blade and gas cooledreactor core material limits far higher than those for the Rankine cycle, whichis set by liquid-cooled reactor core materials limits .

Page 28: Entropy equation in Chapter 4: control mass approach 4... · 2018. 9. 13. · Entropy equation in Chapter 4: control mass approach The second law of thermodynamics Availability (exergy)

Thermodynamic Analysis of Nuclear Power Plants

Efficiency to assess the thermodynamic performance of components and cycles

Thermodynamic efficiency (or effectiveness): The ratio between the actual useful work and the maximum useful work

Isentropic efficiency: Special case of thermodynamics efficiency Adiabatic case Important for devices such as pump, turbine, compressor

Thermal efficiency: The fraction of the heat input that is converted to net work output The cycle efficiency that we are interested in.

Page 29: Entropy equation in Chapter 4: control mass approach 4... · 2018. 9. 13. · Entropy equation in Chapter 4: control mass approach The second law of thermodynamics Availability (exergy)

Thermodynamic Analysis of Nuclear Power Plants

Thermodynamic efficiency (or effectiveness): 

Maximum useful work No entropy generation

Fixed, non‐deformable control volume with zero shear work Negligible kinetic and potential energy differences

Page 30: Entropy equation in Chapter 4: control mass approach 4... · 2018. 9. 13. · Entropy equation in Chapter 4: control mass approach The second law of thermodynamics Availability (exergy)

Thermodynamic Analysis of Nuclear Power Plants

Isentropic efficiency: 

Maximum useful work

For steady‐state condition

Page 31: Entropy equation in Chapter 4: control mass approach 4... · 2018. 9. 13. · Entropy equation in Chapter 4: control mass approach The second law of thermodynamics Availability (exergy)

Thermodynamic Analysis of Nuclear Power Plants

Isentropic efficiency: 

Useful actual work for an adiabatic control volume with zero shear and negligible kinetic andpotential energy differences

For steady state

Page 32: Entropy equation in Chapter 4: control mass approach 4... · 2018. 9. 13. · Entropy equation in Chapter 4: control mass approach The second law of thermodynamics Availability (exergy)

Thermodynamic Analysis of Nuclear Power Plants

Thermal efficiency: 

Cycle efficiency

For adiabatic systems, it is not useful.

Page 33: Entropy equation in Chapter 4: control mass approach 4... · 2018. 9. 13. · Entropy equation in Chapter 4: control mass approach The second law of thermodynamics Availability (exergy)

Thermodynamic Analysis of Nuclear Power Plants

Example problem (a)

Thermal efficiency: 

Thermodynamic efficiency (or effectiveness):  100

70

30

30100 30%

, 1 1300600 · 100 50

(a) (b)

, 1 13001000 · 100 70

3050 60%

3070 42.9%

Page 34: Entropy equation in Chapter 4: control mass approach 4... · 2018. 9. 13. · Entropy equation in Chapter 4: control mass approach The second law of thermodynamics Availability (exergy)

Thermodynamic Analysis of Nuclear Power Plants

Example problem (b)

Maximum useful work  no entropy generationEntropy in = entropy out

Entropy decrease in hot reservoirs = entropy increase in cold reservoir

Page 35: Entropy equation in Chapter 4: control mass approach 4... · 2018. 9. 13. · Entropy equation in Chapter 4: control mass approach The second law of thermodynamics Availability (exergy)

Thermodynamic Analysis of Nuclear Power Plants

Example problem (b)

1275 16%

, 35.2

, 39.8

1239.8 30.2%

Page 36: Entropy equation in Chapter 4: control mass approach 4... · 2018. 9. 13. · Entropy equation in Chapter 4: control mass approach The second law of thermodynamics Availability (exergy)

Contents

1. Introduction

2. Nonflow Process

3. Thermodynamic Analysis of Nuclear Power Plants

4. Thermodynamic Analysis of A Simplified PWR System

5. More Complex Rankine Cycles: Superheat, Reheat, Regeneration, and Moisture Separation

6. Simple Brayton Cycle

7. More Complex Brayton Cycles

8. Supercritical Carbon Dioxide Brayton Cycles

Page 37: Entropy equation in Chapter 4: control mass approach 4... · 2018. 9. 13. · Entropy equation in Chapter 4: control mass approach The second law of thermodynamics Availability (exergy)

Thermodynamic Analysis of A Simplified PWR System

First Law Analysis of a Simplified PWR System

One component with multiple inlet and outlet flow streams operating at steady state and surround it with a non‐deformable, stationary control volume

Energy equation

Steady Negligible Non‐deformable No shear

Negligible kinetic energy

Page 38: Entropy equation in Chapter 4: control mass approach 4... · 2018. 9. 13. · Entropy equation in Chapter 4: control mass approach The second law of thermodynamics Availability (exergy)

Thermodynamic Analysis of A Simplified PWR System

First Law Analysis of a Simplified PWR System

One component with multiple inlet and outlet flow streams operating at steady state and surround it with a non‐deformable, stationary control volume

Energy equation

Mass conservation equation

• Turbine 0, 0 Left side > 0

• Condenser 0, 0 Left side > 0

• Pump 0, 0 Left side < 0

• Steam generator 0, 0 Left side < 0

Page 39: Entropy equation in Chapter 4: control mass approach 4... · 2018. 9. 13. · Entropy equation in Chapter 4: control mass approach The second law of thermodynamics Availability (exergy)

Thermodynamic Analysis of A Simplified PWR System

First Law Analysis of a Simplified PWR System

Turbine 

Shaft work, no heat addition  adiabatic turbine

Actual turbine work is related to the ideal work

by the component isentropic efficiency.

Isentropic efficiency

Pump

Shaft work, no heat addition  adiabatic pump

,

Page 40: Entropy equation in Chapter 4: control mass approach 4... · 2018. 9. 13. · Entropy equation in Chapter 4: control mass approach The second law of thermodynamics Availability (exergy)

Recirculating steam generator

Thermodynamic Analysis of A Simplified PWR System

First Law Analysis of a Simplified PWR System

Steam generator 

Heat transfer between the primary and the secondary

Pinch point temperature

– Minimum temperature difference between the primary and the secondary

– Inversely related to the heat transfer area

Small temperature difference: large heat transfer area

Large temperature difference: small heat transfer area

– Directly related to the irreversibility of the SG

Large temperature difference: large irreversibility

– Important design choice based on tradeoff between 

cost and irreversibility

Page 41: Entropy equation in Chapter 4: control mass approach 4... · 2018. 9. 13. · Entropy equation in Chapter 4: control mass approach The second law of thermodynamics Availability (exergy)

Thermodynamic Analysis of A Simplified PWR System

First Law Analysis of a Simplified PWR System

Steam generator 

Reactor plant

Actual work

Positive or negative?

Page 42: Entropy equation in Chapter 4: control mass approach 4... · 2018. 9. 13. · Entropy equation in Chapter 4: control mass approach The second law of thermodynamics Availability (exergy)

Thermodynamic Analysis of A Simplified PWR System

First Law Analysis of a Simplified PWR System

Reactor plant

Maximum useful work

– In section 6.4.2.3

Maximum useful work expressed

with the secondary side properties

Thermodynamic efficiency or effectiveness: 

Single turbine case

Page 43: Entropy equation in Chapter 4: control mass approach 4... · 2018. 9. 13. · Entropy equation in Chapter 4: control mass approach The second law of thermodynamics Availability (exergy)

Review

First law analysis in a simplified PWR system Stationary, non‐deformable control volume operating at steady state

Turbine and pump 

Steam generator and condenser

=0

Page 44: Entropy equation in Chapter 4: control mass approach 4... · 2018. 9. 13. · Entropy equation in Chapter 4: control mass approach The second law of thermodynamics Availability (exergy)

Review

First law analysis in a simplified PWR system Stationary, non‐deformable control volume operating at steady state

Thermodynamic efficiency and cycle thermal efficiency 

Page 45: Entropy equation in Chapter 4: control mass approach 4... · 2018. 9. 13. · Entropy equation in Chapter 4: control mass approach The second law of thermodynamics Availability (exergy)

Thermodynamic Analysis of A Simplified PWR System

First Law Analysis of a Simplified PWR System

Assume that the turbine and pump have isentropic efficiencies of 85%.

Page 46: Entropy equation in Chapter 4: control mass approach 4... · 2018. 9. 13. · Entropy equation in Chapter 4: control mass approach The second law of thermodynamics Availability (exergy)

Thermodynamic Analysis of A Simplified PWR System

First Law Analysis of a Simplified PWR System

Example 6.4: Thermodynamic Analysis of a Simplified PWR Plant

Draw the temperature‐entropy (T‐s) diagram for this cycle.

7.75 MPa

6.89 kPa

15.5 MPa

Page 47: Entropy equation in Chapter 4: control mass approach 4... · 2018. 9. 13. · Entropy equation in Chapter 4: control mass approach The second law of thermodynamics Availability (exergy)

Thermodynamic Analysis of A Simplified PWR System

First Law Analysis of a Simplified PWR System

Example 6.4: Thermodynamic Analysis of a Simplified PWR Plant

Compute the ratio of the primary to secondary flow rates.

Page 48: Entropy equation in Chapter 4: control mass approach 4... · 2018. 9. 13. · Entropy equation in Chapter 4: control mass approach The second law of thermodynamics Availability (exergy)

Thermodynamic Analysis of A Simplified PWR System

First Law Analysis of a Simplified PWR System

Example 6.4: Thermodynamic Analysis of a Simplified PWR Plant

Compute the nuclear plant thermodynamic efficiency.

– Calculate the enthalpies of each state!

State 1

Page 49: Entropy equation in Chapter 4: control mass approach 4... · 2018. 9. 13. · Entropy equation in Chapter 4: control mass approach The second law of thermodynamics Availability (exergy)

Thermodynamic Analysis of A Simplified PWR System

First Law Analysis of a Simplified PWR System

Example 6.4: Thermodynamic Analysis of a Simplified PWR Plant

State 2

– Isentropic efficiencies of 85%.

– Isentropic process

– ,

Page 50: Entropy equation in Chapter 4: control mass approach 4... · 2018. 9. 13. · Entropy equation in Chapter 4: control mass approach The second law of thermodynamics Availability (exergy)

Thermodynamic Analysis of A Simplified PWR System

First Law Analysis of a Simplified PWR System

Example 6.4: Thermodynamic Analysis of a Simplified PWR Plant

State 3

State 4

– Isentropic efficiency

– Isentropic process

1 · ·

1 · ·

Page 51: Entropy equation in Chapter 4: control mass approach 4... · 2018. 9. 13. · Entropy equation in Chapter 4: control mass approach The second law of thermodynamics Availability (exergy)

Thermodynamic Analysis of A Simplified PWR System

First Law Analysis of a Simplified PWR System

Example 6.4: Thermodynamic Analysis of a Simplified PWR Plant

Compute the nuclear plant thermodynamic efficiency.

Page 52: Entropy equation in Chapter 4: control mass approach 4... · 2018. 9. 13. · Entropy equation in Chapter 4: control mass approach The second law of thermodynamics Availability (exergy)

Thermodynamic Analysis of A Simplified PWR System

First Law Analysis of a Simplified PWR System

Example 6.4: Thermodynamic Analysis of a Simplified PWR Plant

Compute the cycle thermal efficiency.

–  

– ,  

Thermal efficiency (cycle thermal efficiency)

=  plant thermodynamic efficiency

Page 53: Entropy equation in Chapter 4: control mass approach 4... · 2018. 9. 13. · Entropy equation in Chapter 4: control mass approach The second law of thermodynamics Availability (exergy)

Thermodynamic Analysis of A Simplified PWR System

First Law Analysis of a Simplified PWR System

Improvements in thermal efficiency for this simple saturated cycle

Pressure

– Increase the pump outlet pressure/decrease turbine outlet pressure

Page 54: Entropy equation in Chapter 4: control mass approach 4... · 2018. 9. 13. · Entropy equation in Chapter 4: control mass approach The second law of thermodynamics Availability (exergy)

Thermodynamic Analysis of A Simplified PWR System

First Law Analysis of a Simplified PWR System

Improvements in thermal efficiency for this simple saturated cycle

Pressure

– Increase the pump outlet pressure/decrease turbine outlet pressure

Added heat 

Rejected heat 

Net work 

Efficiency 

Page 55: Entropy equation in Chapter 4: control mass approach 4... · 2018. 9. 13. · Entropy equation in Chapter 4: control mass approach The second law of thermodynamics Availability (exergy)

Thermodynamic Analysis of A Simplified PWR System

First Law Analysis of a Simplified PWR System

Improvements in thermal efficiency for this simple saturated cycle

Pressure

– Increase the pump outlet pressure/decrease turbine outlet pressure

Added heat 

Rejected heat 

Net work 

Efficiency