environmental product declaration medium density … density fiberboard environmental product...

17
Medium Density Fiberboard Environmental Product Declaration AMERICAN WOOD COUNCIL CANADIAN WOOD COUNCIL The American Wood Council (AWC) and Canadian Wood Council (CWC) are pleased to present this Environmental Product Declaration (EPD) for Medium Density Fiberboard (MDF). This EPD was developed in compliance with ISO 14025 and ISO 21930 and has been verified under UL Environment’s EPD program. The EPD includes Life Cycle Assessment (LCA) results for all processes up to the point that MDF is packaged and ready for shipment at the manufacturing gate. The life cycle of MDF includes the production of wood residues that are a coproduct of lumber milling. The cradle-to-gate product system thus includes forest management, logging, transportation of logs to lumber mills, sawing, transportation of wood residues to MDF plants, and MDF production. The AWC and CWC represent wood product manufacturers across North America. Our organizations have undertaken numerous sustainability initiatives on behalf of our membership and we are pleased to present this document to show how we are doing. The publication of this EPD, which is based on rigorous LCA research, is our effort to back up with science what we know to be true – that wood products stand alone as a green building material. Please follow our sustainability initiatives at: www.awc.org and www.cwc.ca

Upload: vuongtuyen

Post on 01-Apr-2018

221 views

Category:

Documents


1 download

TRANSCRIPT

Medium Density FiberboardEnvironmental Product Declaration

AMERICAN WOOD COUNCILCANADIAN WOOD COUNCIL

The American Wood Council (AWC) and Canadian Wood Council (CWC) are pleased to present this Environmental Product Declaration (EPD) for Medium Density Fiberboard (MDF). This EPD was developed in compliance with ISO 14025 and ISO 21930 and has been verified under UL Environment’s EPD program.

The EPD includes Life Cycle Assessment (LCA) results for all processes up to the point that MDF is packaged and ready for shipment at the manufacturing gate. The life cycle of MDF includes the production of wood residues that are a coproduct of lumber milling. The cradle-to-gate product system thus includes forest management, logging, transportation of logs to lumber mills, sawing, transportation of wood residues to MDF plants, and MDF production.

The AWC and CWC represent wood product manufacturers across North America. Our organizations have undertaken numerous sustainability initiatives on behalf of our membership and we are pleased to present this document to show how we are doing. The publication of this EPD, which is based on rigorous LCA research, is our effort to back up with science what we know to be true – that wood products stand alone as a green building material. Please follow our sustainability initiatives at: www.awc.org and www.cwc.ca

Page 2 of 17

Medium Density Fiberboard (MDF)North American Structural and Architectural Wood Products According to ISO 14025 and ISO 21930

Environmental Product Declaration

PROGRAM OPERATOR UL Environment DECLARATION HOLDER American Wood Council and Canadian Wood Council DECLARATION NUMBER 13CA24184.109.1 DECLARED PRODUCT Medium Density Fiberboard

REFERENCE PCR FP Innovations: 2011. Product Category Rules (PCR) for preparing an Environmental Product Declaration for North American Structural and Architectural Wood Products, Version 1 (UN CPC 31, NAICS 321), November 8, 2011.

DATE OF ISSUE November 13, 2013 PERIOD OF VALIDITY 5 years

CONTENTS OF THE DECLARATION

Product definition and information about building physics Information about basic material and the material’s origin Description of the product’s manufacture Indication of product processing Information about the in-use conditions Life cycle assessment results Testing results and verifications

The PCR review was conducted by:

FP Innovations PCR confirmed by PCR Review Panel 570 Saint-Jean Blvd. Pointe-Claire, QC Canada H9R 3J9 T 514 630-4100 [email protected]

This declaration was independently verified in accordance with ISO 14025 by Underwriters Laboratories

☐ INTERNAL ☒ EXTERNAL Paul Firth

This life cycle assessment was independently verified in accordance with ISO 14044 and the reference PCR by:

Tom Gloria

This declaration is an environmental product declaration (EPD) in accordance with ISO 14025. EPDs rely on Life Cycle Assessment (LCA) to provide information on a number of environmental impacts of products over their life cycle. Exclusions: EPDs do not indicate that any environmental or social performance benchmarks are met, and there may be impacts that they do not encompass. LCAs do not typically address the site-specific environmental impacts of raw material extraction, nor are they meant to assess human health toxicity. EPDs can complement but cannot replace tools and certifications that are designed to address these impacts and/or set performance thresholds – e.g. Type 1 certifications, health assessments and declarations, environmental impact assessments, etc. Accuracy of Results: EPDs regularly rely on estimations of impacts, and the level of accuracy in estimation of effect differs for any particular product line and reported impact. Comparability: EPDs are not comparative assertions and are either not comparable or have limited comparability when they cover different life cycle stages, are based on different product category rules or are missing relevant environmental impacts. EPDs from different programs may not be comparable.

EXTENSION PERIOD 1 Year (November 13, 2019)

Page 3 of 17

Medium Density Fiberboard (MDF)North American Structural and Architectural Wood Products According to ISO 14025 and ISO 21930

Environmental Product Declaration

Description of Industry and Product

Description of North American MDF Industry

The North American composite panel industry is a major contributor to both the American and Canadian econo-mies. MDF is a composite panel that is valued for its homogeneity that allows precision millwork and finishing.These properties have caused MDF to be widely used to manufacture furniture, kitchen cabinets, doors, and moulding. MDF is also widely regarded as a sustainable material because it utilizes wood residues from other manufacturing processes that might otherwise be wasted. In 2012, North American MDF manufacturers produced more than 1.8 billion square feet (3.3 million cubic meters) of MDF in 20 different facilities.

The North American MDF industry has weathered unprecedented economic changes in recent years through innovation and expansion into new and emerging markets. Efficiency improvements, beyond simply ensuringcompetitiveness, continually improve the environmental footprint of wood products. Now, more than ever, we are ready to present this EPD that reflects years of research and demonstrates the hard work we’ve been doing

Page 4 of 17

Medium Density Fiberboard (MDF)North American Structural and Architectural Wood Products According to ISO 14025 and ISO 21930

Environmental Product Declaration

Description of MDF Product

The product profile presented in this EPD is for a declared unit of 1 cubic meter of MDF. MDF is manufactured from wood residues that are generated as a coproduct of lumber milling. The cradle-to-gate product system thus in-cludes forest management, logging, transportation of logs to lumber mills, sawing, transportation of wood residues to MDF plants, MDF production, and packaging for shipment .

One cubic meter of average North American MDF weighs 745.95 kg, excluding the variable moisture content. The product composition is presented below and represents the weighted average of the various resin types that are used by different manufacturers:

- Wood residues: 667.48 oven dry kg (89.48%)- Urea formaldehyde resin: 71.13 kg (9.54%)- Urea: 0.81 kg (0.11%)- Melamine urea formaldehyde resin: 0.72 kg (0.10%)- Scavenger: 1.45 kg (0.20%)- Catalyst: 0.11 kg (0.01%)- Slack wax: 4.25 kg (0.57%)

This EPD is based on LCA studies that considered the entire range of MDF product sizes and functions. The results are presented for the metric unit of measure, 1 cubic meter, which is equal to 565 square feet (3/4” thickness).

Page 5 of 17

Medium Density Fiberboard (MDF)North American Structural and Architectural Wood Products According to ISO 14025 and ISO 21930

Environmental Product Declaration

Board Shapingpanel forming and pressing

Cradle-to-Gate Life Cycle of MDF

Figure 1: Cradle-to-gate product system for MDF

System Boundary

Resource G

eneration & E

xtraction

Forest Management

thinning, fertilizing

Loggingfelling, transport to landing

Planting including site preparation

Roundwoodlogs on truck

Residue P

roduction

Transportation

Log Yardmanufacturing facility

Sawmill debarking and primary log

breakdown

MD

F Manufacturing

Transportation

Board Finishingcooling, trimming, and sanding

Packaging

Seedlinggreenhouse operations

ElectricityEnergy

gasoline, diesel, nat.gas, etc.

Resins Ancillary Materialslubricants, fertilizers,

packaging

Air Emissions Water Emissions Solid Waste

Drying & Blending

Page 6 of 17

Medium Density Fiberboard (MDF)North American Structural and Architectural Wood Products According to ISO 14025 and ISO 21930

Environmental Product Declaration

Business-to-Business EPD and Cradle-to-Gate LCA

Business-to-business EPD’s are those that focus on the life cycle up to the point that the product has been manu-factured and is ready for shipment, the portion of the life cycle referred to as cradle-to-gate. This EPD includes the cradle-to-gate processes as shown in Figure 1 on the previous page.

The delivery of the product to the customer, its use, and eventual end-of-life processing are excluded from the cradle-to-gate portion of the life cycle. This exclusion limits the accounting of carbon sequestration in the wood product because the benefit of sequestration is not realized at the point of manufacturing, but occurs over the life cycle of the product.

Forest Operations

The assessment of the life cycle impacts of a wood product begins with its origin in natural or managed forests and the energy use and emissions caused by its extraction. Forest management and the reforestation that occurs after extraction are also included. The PCR requires that the cradle-to-gate product system includes all forest manage-ment activities which may include site preparation, thinning, and fertilization. The forest operations portion of the re-source extraction/generation phase also includes the production and planting of seedlings that occurs after logging. Residue Production

Residue production begins with the transportation of logs from the forest and includes the primary sawing process that is shared with the lumber life cycle.

MDF Production

The MDF production phase begins with the transportation of residues from the upstream sawmills. The residues are then dried, blended with resins, and shaped into boards that are pressed and finished. These processes consume electricity drawn from regional grids, fossil fuel, and internally generated biomass.

Page 7 of 17

Medium Density Fiberboard (MDF)North American Structural and Architectural Wood Products According to ISO 14025 and ISO 21930

Environmental Product Declaration

Methodology of Underlying LCA

Declared Unit

The declared unit in this EPD is 1 cubic meter (m3) of MDF. This is equivalent to 565 square feet (3/4” thickness). The average density of North American MDF including resins and excluding moisture content is 745.95 oven dry kg/m3. MDF produced in North America is understood to have some moisture in the product, while the oven dry unit of measure contains neither free moisture (moisture in cell cavities) nor bound moisture (moisture in cell walls).

System Boundaries

The system boundary begins with the forest management and resource extraction and ends with finished MDF product ready for shipment at the manufacturer. The forest resources system boundary includes planting the seed-lings, site preparation, thinning, fertilization and final harvest. Residue production includes the transportation of logs to sawmills and sawing. MDF manufacturing includes the transportation of residues to MDF manufacturers, drying, board shaping, finishing, and packaging. Seedlings and the fertilizer and electricity it took to grow them were also included in the system boundary.

Cut-off Rules

The cut-off criteria for flows to be considered within the system boundary are as follows:

- Mass – if a flow is less than 1% of the cumulative mass of the model flows it may be excluded, provided it environmental relevance is minor.

- Energy – if a flow is less than 1% of the cumulative energy of the system model it may be excluded, provided its environmental relevance is minor.

- Environmental relevance – if a flow meets the above two criteria, but is determined (via secondary data analysis) to contribute 2% or more to the selected impact categories of the products underlying the EPD, based on a sensitivity analysis, it is included within the system boundary.

Page 8 of 17

Medium Density Fiberboard (MDF)North American Structural and Architectural Wood Products According to ISO 14025 and ISO 21930

Environmental Product Declaration

Data Quality

Precision and Completeness

Primary data on raw materials, energy, and emissions were provided by logging operations, lumber mills, and MDF manufacturing facilities, based on input purchases, production output, and reported process emissions. All up-stream and downstream secondary data was drawn from publicly available databases, primarily the United States Life Cycle Inventory (USLCI) database. The LCA practitioners performed quality control on all secondary data sources to ensure completeness.

All inventory flows were modeled and at no time were data excluded due to application of the studies’ cut-off criteria.

Consistency and Reproducibility

To ensure consistency, only primary data as provided by the study participants were used to model gate-to-gate MDF manufacturing processes. All other secondary data (upstream and downstream) were consistently applied and adaptations to the databases were documented in the LCA reports.

Reproducibility by third parties is possible using the background LCIs documented in the CORRIM and Athena LCA reports.

Temporal Coverage

Primary data collected from the manufacturing facilities related to the product processes of interest are representa-tive for the years 2004-2007. The LCA models were updated in 2013 to reflect updates in underlying secondary data used to develop the LCI.

Geographical Coverage

The geographical coverage for this study is based on North American (NA) system boundaries for all processes and products.

Treatment of Biogenic Carbon

Biogenic carbon dioxide emissions were accounted as global warming neutral in accordance with the PCR. Under this approach, the carbon dioxide emissions from the combustion of internally generated wood fuels are considered equal to the carbon dioxide uptake in the forest during tree growth.

Crediting carbon sequestration against the global warming potential was excluded as the long term carbon storage is dependant on gate-to-grave processes not considered directly in this EPD. The expected carbon sequestration for average end-use and end-of-life treatment is provided in the section on “Additional Information”.

Page 9 of 17

Medium Density Fiberboard (MDF)North American Structural and Architectural Wood Products According to ISO 14025 and ISO 21930

Environmental Product Declaration

Allocation

Allocation followed the requirements and guidance of ISO 14044:2006, clause 4.3.4, which gives preference to mass based allocation, and the following description of allocation from the PCR:

- Allocation of multi-output processes shall be based on mass. However, if economic value difference is at least ten times greater between products from a multi-output process, a suitable revenue based allocation principle shall be applied and these deviations shall be substantiated and readily available for review.

The residue inputs to MDF manufacture that are coproducts of lumber milling fall within this 10 times value thresh-old and were thus allocated a portion of the lumber milling impacts on a mass basis.

Aggregation of Regional Results

The LCA results that follow represent the weighted average of two different LCA studies; one based on the United States national average and the other based on the Canadian national average. The weighting of the two nations relative to the aggregate profile is as follows

- United States - National Average: 75%

- Canada - National Average: 25%

The weighting factors were developed from the relative annual production of the two countries. The production totals for the two countries were published by the Composite Panel Association in the “North American Shipments and Downstream Market Report”. In addition to calculating weighted average impact assessment results, these weighting factors were also used to calculate the weighted average density of North American MDF. All other values presented in this EPD also utilize this weighting.

Page 10 of 17

Medium Density Fiberboard (MDF)North American Structural and Architectural Wood Products According to ISO 14025 and ISO 21930

Environmental Product Declaration

Life Cycle Assessment Results

The life cycle impact assessment (LCIA) establishes links between the life cycle inventory results and potential environmental impacts. In the LCIA, results are calculated for impact category indicators such as global warming potential and smog potential. These impact category indicator results provide general, but quantifiable, indications of potential environmental impacts. The various impact category indicators and means of characterizing the impacts are summarized in Table 1 below. Environmental impacts are determined using the TRACI 2 method. These fiveimpact categories are reported consistently with the requirements of the PCR.

Impact Category Indicators Characterization ModelGlobal WarmingPotential

Calculates global warming potential of all greenhouse gasses that are recognized by the IPCC. The characterization model scales substances that include methane and nitrous oxide to the com-mon unit of kg CO2 equivalents.

Ozone DepletionPotential

Calculates potential impact of all substances that contribute to stratospheric ozone depletion. The characterization model scales substances that include CFC’s, HCFC’s, chlorine, and bromine to the common unit of kg CFC-11 equivalents.

AcidificatioPotential

Calculates potential impacts of all substances that contribute to terrestrial acidification potential. The characterization model scales substances that include sulfur oxides, nitrogen oxides, and ammonia to the common unit of H+ moles equivalents.

SmogPotential

Calculates potential impacts of all substances that contribute to photochemical smog potential. The characterization model scales substances that include nitrogen oxides and volatile organic com-pounds to the common unit of kg O3 equivalents.

EutrophicationPotential

Calculates potential impacts of all substances that contribute to eutrophication potential. The characterization model scales sub-stances that include nitrates and phosphates to the common unit of kg N equivalents.

Table 1: Impact Assessment Categories

Page 11 of 17

Medium Density Fiberboard (MDF)North American Structural and Architectural Wood Products According to ISO 14025 and ISO 21930

Environmental Product Declaration

Cradle-to-Gate Impact Assessment Results

The impact assessment results are shown in Table 2 on the following page. This LCIA does not make value judgments about the impact indicators, meaning that no single indicator is given more or less value than any of the others. All are presented as equals. Additionally, each impact indicator value is stated in units that are not comparable to others. Some variation exists between the two underlying data sets and is a result of differences in regional energy mixes, particularly the sources of electricity, as well as differences in production practices and efficiencies

The results presented in Table 2 on the following page indicate the potential impacts caused by the cradle-to-gate production of MDF. Ozone depletion was below 10-5 kg CFC-11 eq. in both of the LCA studies and is thus not reported in the results table. Water consumption was estimated for Canada as required by the PCR. However, the U.S. LCA includes all water withdrawals without netting out non-consumptive use. As a result, the combined weighted average overstates total water consumption and is therefore conservative.

Page 12 of 17

Medium Density Fiberboard (MDF)North American Structural and Architectural Wood Products According to ISO 14025 and ISO 21930

Environmental Product Declaration

Impact category indicator Unit Total Forestry operations & Residue production

MDFproduction

Global warming potential kg CO2 eq. 525.50 62.06 434.44Acidification potentia H+ moles eq. 317.92 31.16 286.76Eutrophication potential kg N eq. 0.2128 0.0301 0.1827Ozone depletion potential kg CFC-11 eq. 0.0000 0.0000 0.0000Smog potential kg O3 eq. 64.48 10.93 53.56Total primary energyconsumption

Unit Total Forestry operations & Residue production

MDFproduction

Non-renewable fossil MJ 9621.29 922.40 8663.43Non-renewable nuclear MJ 1163.84 108.90 1054.94Renewable, biomass MJ 6762.74 424.10 6338.88Renewable, other MJ 400.31 44.96 355.36Material resourcesconsumption

Unit Total Forestry operations & Residue production

MDFproduction

Non-renewable materials kg 0.93 0.16 0.75Renewable materials kg 763.28 737.96 8.44Fresh water L 1319.16 146.91 1172.22Non-hazardous waste generated

Unit Total Forestry operations & Residue production

MDFproduction

Solid waste kg 71.54 11.17 60.38

Table 2: Cradle-to-Gate Impact Assessment Results - 1m3 North American MDF

Page 13 of 17

Medium Density Fiberboard (MDF)North American Structural and Architectural Wood Products According to ISO 14025 and ISO 21930

Environmental Product Declaration

Impact Assessment Results by Life Stage

The two graphs below show that MDF manufacturing itself is the primary driver of impacts in the cumulative cradle-to-gate product system. MDF manufacturing consumes 90% of fossil fuels and 94% of biomass energy which drive the impacts in every category.

Figure 2: Cradle-to-Gate Impact Assessment Results

Figure 3: Cradle-to-Gate Primary Energy Consumption

0%10%20%30%40%50%60%70%80%90%

100%

Global warming Acidification Eutrophication Smog

MDF Manufacturing Forest Operations and Residue Production

0%10%20%30%40%50%60%70%80%90%

100%

Non-renewable fossil Non-renewable nuclear Renewable, biomass Renewable, other

MDF Manufacturing Forest Operations and Residue Production

Page 14 of 17

Medium Density Fiberboard (MDF)North American Structural and Architectural Wood Products According to ISO 14025 and ISO 21930

Environmental Product Declaration

Figure 4: Cradle-to-Gate Energy Use

Figure 5: Forestry Operations and Residue Production Energy Use

Figure 6: MDF Production Energy Use

Primary Energy Consumption by Resource

The three pie charts show the consumption of various energy resources in the cradle-to-gate portion of the life cycle. The cradle-to-gate and MDF production charts show similar results as manufacturing consumes the bulk of cradle-to-gate energy.

The forest operations and residue produc-tion portion of the life cycle relies heavily on oil-based energy as consumed in the form of diesel by heavy machinery used in logging. Fossil energy accounts for 62% of energy resources consumed in the combined forestry operations and residue production life stage.

A significant portion of the energy requir -ment in manufacturing is met by renewable energy sources, 39% from biomass and 2% from hydro power. This translates to 38% of cradle-to-gate energy use for biomass and 2% for hydro power. Biomass is also used in the upstream residue production as a readily available coproduct of lumber milling. Besides biomass and hydroelectricity, coal, natural gas, oil, and nuclear power comprise the remaining energy use.

The prevalence of renewable energy use in the life cycle of MDF means that 54% of energy consumption is derived from fossil fuel sources. This means that MDF has a particularly low carbon footprint relative to the energy required for manufacturing.

Fossil: 54%

Nuclear: 6%

Biomass: 38%

Other renewable: 2%

Fossil: 62%

Nuclear: 7%

Biomass: 28%

Other renewable: 3%

Fossil: 53%

Nuclear: 6%

Biomass: 39%

Other renewable: 2%

Page 15 of 17

Medium Density Fiberboard (MDF)North American Structural and Architectural Wood Products According to ISO 14025 and ISO 21930

Environmental Product Declaration

Additional Information

Range of Applications

The carbon sequestration calculation on the following page is based on the expected service life for MDF in different applications. To complete this calculation, the various end uses for MDF were estimated based on the classification for “non-structural panels” as provided in the FPInnovations B2B carbon sequestration tool. This breakdown is as follows:

- Furniture manufacture: 36%- Residential construction and upkeep: 30%- Other manufacturing: 9%- Nonresidential construction: 5%- Other uses: 20%

Source: Data for “non-structural panels” from APA - Engineered Wood Association (2012) Structural Panel and Engineered Wood Yearbook, APA Economics Report E178.

Page 16 of 17

Medium Density Fiberboard (MDF)North American Structural and Architectural Wood Products According to ISO 14025 and ISO 21930

Environmental Product Declaration

Carbon Sequestration

The PCR requires that carbon sequestration may only be credited to the product if the end-of-life fate of that car-bon is considered in the LCA study. FPInnovations has recently published a carbon sequestration calculation tool that estimates the emissions from typical end-of-life treatment of wood products that includes recycling, combus-tion, and landfilling. The carbon sequestered in the product at the manufacturing gate serves as the basis for such an analysis and is as follows (all conversion factors and assumptions are documented in carbon tool):

1m3 MDF = 667.48 oven dry kg = 333.74 kg Carbon = 1223.71 kg CO2 eq.

This initial carbon sequestration may then be considered against its emission as the MDF product reaches the end of its service life in various applications. The FPI carbon tool is used to estimate the biogenic carbon balance at year 100, including service life estimations for various applications and the average landfill decay rate. The carbon tool gives the following results:

Carbon sequestered in product at manufacturing gate: 1223.71 kg CO2 eq. = - 1223.71 kg CO2 eq emission

Methane emitted from fugitive landfill gas:5.69 kg CH4 = 142.37 kg CO2 eq. emission

Carbon dioxide emitted from fugitive landfill gas and the combustion of waste and captured landfill gas404.32 kg CO2 eq. emission Carbon sequestration at year 100, net of biogenic carbon emissions: 677.02 kg CO2 eq. = - 677.02 kg CO2 eq. emission

Page 17 of 17

Medium Density Fiberboard (MDF)North American Structural and Architectural Wood Products According to ISO 14025 and ISO 21930

Environmental Product Declaration

References

APA - Engineered Wood Association (2012) Structural Panel and Engineered Wood Yearbook, APA Economics Report E178.

Athena Institute: 2013. A Cradle-to-Gate Life Cycle Assessment of Canadian Medium Density Fiberboard (MDF) - 2013 Update.

Composite Panel Association: 2010 North American Shipments and Downstream Market Report. CORRIM:2013. Cradle to Gate Life Cycle Assessment of U.S. Medium Density Fiberboard Production.

FPInnovations: 2011. Product Category Rules (PCR) for preparing an Environmental Product Declaration (EPD) for North American Structural and Architectural Wood Products, Version 1 (UN CPC 31, NAICS 321), November 8, 2011. http://www.forintek.ca/public/pdf/Public_Information/EPD%20Program/PCR%20November%208%202011%20Final.pdf

FPInnovations and Athena Institute: 2013. Business-to-Business (B2B) Carbon Sequestration Tool for Wood EPD’s as per PCR for North American Structural and Architectural Wood Products, Version 1.

ISO 14040:2006. Environmental Management – Life Cycle Assessment – Principles and Framework.

ISO 14044:2006. Environmental Management – Life Cycle Assessment – Requirements and guidelines.

ISO 21930:2007 – Building and Construction Assets – Sustainability in building construction – Environmental declaration of building products.

TRACI: Tool for the Reduction and Assessment of Chemical and other environmental Impacts: http://www.epa.gov/ORD/NRMRL/std/sab/traci/

USLCI Database: http://www.nrel.gov/lci