epsrc h2fc supergen challenge 2 project hybrid … · epsrc h2fc supergen challenge 2 project...

29
EPSRC H2FC SUPERGEN CHALLENGE 2 PROJECT Hybrid Nanoporous Adsorption / High-pressure Gas Hydrogen Storage Tanks Prof Tim Mays Department of Chemical Engineering University of Bath Research Forum, University of St Andrews 1-2 September 2016

Upload: vannga

Post on 24-Dec-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

EPSRC H2FC SUPERGEN CHALLENGE 2 PROJECTHybrid Nanoporous Adsorption / High-pressure Gas

Hydrogen Storage Tanks

Prof Tim MaysDepartment of Chemical Engineering

University of Bath

Research Forum, University of St Andrews1-2 September 2016

General Concept

metal-organic frameworkspolymers of intrinsic microporosityactivated carbons…

currently 70 MPa, 298 K

Aspects of integrating nanoporous sorbents into Type IV hydrogen tanks mainly for transport applications to increase capacity and / or reduce storage pressure.

Challenge 2: Project Details• EPSRC Reference: EP/L018365/1• Dates: Start 30/6/14 – End 29/6/18• Duration: 48 months• EPSRC Funding: £924,617• Project Partner: Haydale Composite Solutions Ltd., Loughborough

• University of Bath Researchers:

Chemical Engineering Prof Tim Mays, PI Leighton Holyfield, PhD Student

(University Research Studentship /EPSRC DTC in Sustainable Chemical Technologies)

Dr Mi Tian, PDRA1

Mechanical Engineering Prof Chris Bowen, CoI Dr Katarzyna Polak-Kraśna, PDRA2

Chemistry Prof Andy Burrows, CoI Dr Sébastien Rochat, PDRA3

Dr NickWeatherby

Challenge 2: Workpackages

WP1 WP2

WP3

Chemistry:Nanoporous tank liners

Mechanical Engineering:Sorbent-composite systems

Chemical Engineering:Tank design

WP3Core Hub

2012-7Sorption science

Challenge 12013-7

Safety solutions

Challenge 22014-8

Design solutions

Extension …. ?2017-9

Storage simulations

Dr Dmitriy Makarov (PI)University of Ulster

Hydrogen energy chain

geothermal, tides,(nuclear, fossil)

Hydrogen Energy Chain

Density of Molecular Hydrogen, H2

0 10 20 30 40 50 60 70 80 90 1000

10

20

30

40

50

60

70

80

90

100solid

solid data:Silvera, Rev. Mod. Phys. 52 (1980) 393

liquid and real gas data:Leachman et al., J. Phys. Chem. Ref. Data 38 (2009) 721

solid at 4 K, limit of 0 MPa

liquid at solid-liquid-vapour triple point

liquid at liquid-vapour critical point

liquid at normal boiling point

real gasideal gas

real gas

dens

ity /

kg m

-3

pressure / MPa

77 K

298 K

ideal gas

liquid–

state‐of‐artcompression

Temperature / K Pressure / MPaCritical point 33.145 1.2964Triple point 13.957 0.00736Normal bp 20.28 0.1

0.083 kg m-3 inambient conditions

sustainable production of H2 → store / transport → energy conversion

5 kg H2 gas (ambient)~ 5 m diameter vessel

The Hydrogen Storage Challenge

Physical storagemolecular hydrogen, H2

Liquid and / or solidCompressed gas

Containment in porous solids

Chemical storageatomic, ionic, covalent hydrogen

H0

H-X

Physical and Chemical Storage

Also …

Power to gas

Subterranean storage

solid, liquid orgas / vapour

carriers

US DoE Storage Targets

0.0 0.5 1.0 1.5 2.0 2.5 3.00

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

31 kg m-3

70 kg m-3

76 kg m-3

tota

l mas

s %

upt

ake

= (

100

mH /

mS

)

specific open pore volume, VP / cm3 g-1

87 kg m-3

densityof H2 in pores

Pore Filling

accessibleparameterspace

H2 on AX-21 Carbon at 80 K

Estimated density of adsorbate = 102 kg m‐3 !!!!!

Inelastic Neutron Scattering

0 2 4 6 8 10

0.0

0.5

1.0

1.5

2.0

2.5

1E-3 0.01 0.1 1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

H2 u

ptak

e / w

t.%

Absolute pressure, P / MPa

Modelled absolute INS integrated elastic line

H2 on TE7 carbon at 77 K

ACS Nano 9, 8249-8254 (2015)

• Hydrogen storage is a challenge

• Current state-of-the-art for storage in cars is high pressure tanks (70 MPa, 298 K)

• We are exploring whether / how solid nanoporous adsorbents can be integrated into these tanks to improve performance*

* in terms of capacity, kinetics, cost, cycling, safety, …

Research Challenges

Current projects @ Bath:1. Sorption science2. Tank safety3. Tank design

Next Generation of Type IV Tanks

filament woundcarbon-fibre reinforced plastic outer casing

H2 impermeableliner

bulk H2

H2 adsorbent

• adsorbent material• bonding• thickness• H2 capacities• multi-functionality• cycling• cost• safety

Polymers ofIntrinsic Microporosity (PIMs)

+K2CO3, DMF

65 °C, 3 days

PIM‐1

Relative Pore Volume (P/P0)0.0 0.2 0.4 0.6 0.8 1.0

Qua

ntity

Ads

orbe

d (c

m3 /

g)

0

100

200

300

400AdsDes

Pore Width (Å)10 100 1000

Pore

Vol

ume

(cm

3 /g)

0.0

0.2

0.4

0.6

0.8

Differential Pore Volume (cm3/g)

797 m2 g‐1

M = 193 074 g mol‐1

PIM-1 Films

Uniaxial static tensile testing

• Thickness 43‐143 μm• Tensile stress 31 MPa • Ultimate strain 4.4 %• Young’s modulus = 1.26 GPa• Yield stress 11 MPa

Mechanical Testing of PIM-1 Films

• good mechanical properties

• processable

• porous aromatic frameworks (PAF)

• high surface areas up to 5000 m2 g-1

• High surface area• Good mechanical

properties• Soluble• Stable

TGA

100 200 300 400 500 600 700 800

65

70

75

80

85

90

95

100

wt.

%

Temperature (oC)

PIM PIM+PAF

PIM-1 / PAF-1 Composites

PIM-1 / PAF-1 Composites

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500 600 700 800

H 2adsorbed

 (77 K( / wt%

Pressure / mmHg

10% 20% 30% 40% 16.70% 28.60% 37.50% 0%

H2 @ 77 K PIM / PAF Isotherms

0 10 20 30 40 50 60

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Pure PIM-1 film

H2 u

ptak

e (w

t. %

)

Pressure (bar)

Adsorption Desorption

PIM-1 + 37 % PAF-1

0 10 20 30 40 50

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1

2

3

4

5

Pressure (bar)

Wt.

%

H2 @ 77 K PIM / PAF Isotherms

• Ideal slit pores to represent carbon

• Four graphitic layers

• Grand Canonical Monte Carlo:MUSIC software

• Lennard-Jones 12:6 pair potentials:

Molecular Simulations of Storage

absolute mass of adsorbate (mA) = excess mass    + bulk mass of adsorbate

mE = mA ‐mB(A),     mA = AvA ,     mB(A) = BvA

mE = AvA – BvA = (A – B)vA ,

mE = (A – B)vPθA

mP = mA + mB(P) = mE + BvP ,  total mass of adsorbate and adsorptive in pore

θA = vA /vP

excess

"bulk"

mE

mB(A)

mB(P)

X Y

ρA

ρB(P)

fill factor (e. g., Tóth isotherm)

ccbP

bP 1

1

θA 

adsorbate

Adsorption 19,643-652 (2013).

Modelling of Storage

AX‐21MIL‐101

MIL-101 AX-21

Adsorbate density, A / kg m-3 88.0 71.7

Pore volume, vP / cm3 g-1 0.81 1.97

Energy factor, Qst / kJ mol-1 5.49 6.36

Entropy factor, b0 /MPa-1 3.28 x 10-3 6.21 x 10-3

Heterogeneity factor, c /- 0.47 0.26

Experimental H2 Isotherms @ 77 K

Simulated H2 Isotherms

Simlulations vs Modelling

Simulated PAF-1 Nanostructure

Next Steps

• Further development of polymer composite sorbent systems

• Calculations of capacities and pressures of tanks containing composites

• Identify lead candidates for integrating into tanks

• Bonding of composites to inner tank lining• Integration of experimental measurements /

modelling / molecular simulations of storage

Published:N Bimbo, W Xu, J E Sharpe, V P Ting, T J Mays. High-pressure adsorptive storage of hydrogen in MIL-101(Cr) and AX21 for mobile applications: cryocharging and cryokinetics. Materials and Design 89, 1086-1094 (2016).A Noguera-Díaz, N Bimbo, L T Holyfield, I Y Ahmet, V P Ting, T J Mays. Structure-property relationships in metal-organic frameworks for hydrogen storage. Colloids and Surfaces A: Physicochemical and Engineering Aspects 496, 77-85 (2016).V P Ting, A J Ramirez-Cuesta, N Bimbo, J E Sharpe, A Noguera-Díaz, V Presser, S Rudic, T J Mays. Direct evidence for solid-like hydrogen in a nanoporous carbon hydrogen storage material at supercritical temperatures. ACS Nano 9, 8249-8254 (2015).A D Burrows, L C Fisher, T J Mays, S P Rigby, S E Ashbrook, D M Dawson. Post-synthetic modification of zinc metal-organic frameworks through palladium catalysed carbon-carbon bond formation. Journal of Organometallic Chemistry. 792, 134-138 (2015).C Stockford, N Brandon, J Irvine, T J Mays, I Metcalfe, D Book, P Ekins, A Kucernak, V Molkov, R Steinberger-Wilckins, N Shah, P Dodds, C Dueso, S Samsatli, C Thompson. H2FC SUPERGEN: An overview of hydrogen and fuel cell research across the UK. International Journal of Hydrogen Energy 40, 5534-5543 (2015).J E Sharpe, N Bimbo, V P Ting, B Rechain, E Joubert, T J Mays. Modelling the potential of adsorbed hydrogen for use in aviation. Microporous and Mesoporous Materials 209, 135-140 (2015).N Bimbo, J E Sharpe, V P Ting, A Noguera-Díaz, T J Mays. Isosteric enthalpies for hydrogen adsorbed on nanoporous materials at high pressures. Adsorption 20, 373-384 (2014).N Bimbo, V P Ting, J E Sharpe, T J Mays. Analysis of optimal conditions for adsorptive hydrogen storage in microporous solids. Colloids and Surfaces A: Physicochemical and Engineering Aspects 437, 113-119 (2013).J E Sharpe, N Bimbo, V P Ting, A D Burrows, D Jiang, T J Mays. Supercritical hydrogen adsorption in nanostructured solids with hydrogen density variation in pores. Adsorption 19, 643-652 (2013).

Submitted:L T Holyfield, D L Scott, E L McPherson, T J Mays. State-of-the art hydrogen storage in light-duty road vehicles: A review. Submitted to International Journal of Hydrogen Energy, March 2016.K Polak-Kraśna, R Dawson, L T Holyfield, C R Bowen, A D Burrows, T J Mays. Mechanical property characterisation of polymer of intrinsic microporosity, PIM-1, for hydrogen storage applications. Submitted to Journal of Materials Science, August 2016.

H2FC Publications @ Bath

Thank you